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ABSTRACT
Event detection plays an essential role in video content anal-
ysis. However, the existing features are still weak in event
detection because: i) most features just capture what is in-
volved in an event or how the event evolves separately, and
thus cannot completely describe the event; ii) to capture
event evolution information, only motion distribution over
the whole frame is used which proves to be noisy in un-
constrained videos; iii) the estimated object motion is usu-
ally distorted by camera movement. To cope with these
problems, in this paper, we propose a new motion feature,
namely Expanded Relative Motion Histogram of Bag-of-
Visual-Words (ERMH-BoW) to employ motion relativity
and visual relatedness for event detection. In ERMH-BoW,
by representing what aspect of an event with Bag-of-Visual-
Words (BoW), we construct relative motion histograms be-
tween visual words to depict the object activities or how
aspect of the event. ERMH-BoW thus integrates both what
and how aspects for a complete event description. Instead
of motion distribution features, local motion of visual words
is employed which is more discriminative in event detec-
tion. Meanwhile, we show that by employing relative mo-
tion, ERMH-BoW is able to honestly describe object ac-
tivities in an event regardless of varying camera movement.
Besides, to alleviate the visual word correlation problem in
BoW, we propose a novel method to expand the relative mo-
tion histogram. The expansion is achieved by diffusing the
relative motion among correlated visual words measured by
visual relatedness. To validate the effectiveness of the pro-
posed feature, ERMH-BoW is used to measure video clip
similarity with Earth Mover’s Distance (EMD) for event
detection. We conduct experiments for detecting LSCOM
events in TRECVID 2005 video corpus, and performance is
improved by 74% and 24% compared with existing motion
distribution feature and BoW feature respectively.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Video analysis
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Figure 1: Difficulty in keyframe based event recognition.

(a) Airplane Takeoff or Airplane Landing? (b) Running,

Dancing, or Walking? (c) Throwing or Catching?
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1. INTRODUCTION
With the multimedia information widely available from

different sources such as web, the management and retrieval
of multimedia data has been actively researched in the past
few decades, where the multimedia content analysis serves
as a fundamental and essential step. Content analysis of
multimedia data, in nature, is event analysis, i.e. to detect
and recognize events of user interest from different modali-
ties such as video streams, audio and texts. A lot of efforts
have been put to event-based video analysis including un-
usual event detection [2, 4, 34, 35], action classification [6,
10, 11, 18, 23, 30, 32], and event recognition [9, 12, 17, 31].

Recently semantic detection has attracted a lot of atten-
tions. In the high-level feature extraction task of annual
TRECVID workshop [37], a benchmark of annotated video
corpus is provided to researchers for detecting a set of pre-
defined concepts. Besides the static concepts such as Build-
ing and River, some event-based concepts are also included,
such as Walking Running and People-Marching. Although
certain success has been achieved, the result is still far away
from satisfactory due to the bottleneck of large gap between
semantic and low-level features. On the other hand, the
event-based concepts specifically have not been paid enough
attentions and the performance is still poor.

In contrast to static concepts, event has its own nature, i.e.
dynamic nature. As a result, besides the semantic gap which
exists in the detection of all concepts, event-based concept
detection is also limited by the keyframe-based approaches
that are widely used for static concept detection. Without
viewing the dynamic course of the event, human frequently
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Figure 2: Motion relativity in event detection. Both two video clips contain the event Walking. Although camera

movements are different during video capture, similar relative motion between person and building can be observed in

both clips.

encounter difficulties in event annotation. In [36], by com-
paring the two-round manual annotations of 24 events based
on keyframe and video sequence respectively, only about
78% of the keyframe based annotations are correct. For
those motion-intensive events, the accuracy is even lower
such as Dancing (42%) and People Marching (39%). Fig-
ure 1 shows the difficulty in keyframe-based event anno-
tation and detection. For instance, in (a), by looking at
the keyframe only, even for human, it is difficult to judge
whether the airplane is landing, taking off or just standing
by in the lane. Event detection suffers from the incomplete
representation of the keyframe for a dynamic event. Thus,
in order to achieve better performance, it becomes neces-
sary to employ sequence information in event-based concept
detection instead of the keyframe only.

In this paper, we focus on extracting effective features
from video sequence for event detection. In a video clip, an
event is usually described from two aspects: i) what are in-
volved in the event, e.g. person, objects, buildings, etc; ii)
how the event evolves in temporal domain, i.e. the course of
the event. The former consists of static information and an-
swers the questions like who, what, where, and when. These
facets can basically be obtained from static images. The fea-
tures to describe what aspect have been intensively studied,
including global features (color moment, wavelet texture,
edge histogram), local features (bag-of-visual-words), and
semantic features (concept score). The latter contains the
dynamic information of the event and answers the question
of how, e.g. the motion of objects and the interaction among
different people. This information can only be captured by
viewing the whole frame sequence. Motion is an important
cue in describing event evolution. Recently, various motion
features have been developed to capture motion information
in the sequence such as motion histogram [6] and motion vec-
tor map [12]. However, the existing features are still weak
in event-based concept detection because: i) most features
only consider one of the two aspects, i.e. exploit what or how
separately and thus cannot completely describe an event; ii)
only motion distribution information is used, which has been
proven to be noisy in unconstrained videos; iii) the observed
motion in the video clip is distorted by camera movement,
and cannot depict the real object activities and interactions
in an event.

Figure 2 shows two example clips containing the event

Walking. Intuitively, “motion of person” is important in
describing Walking. Person and Motion are the two as-
pects of this event, which can be captured by static features
(color moment, bag-of-visual-words) and sequence feature
(motion histogram) respectively. However, neither one of
them is enough to describe event Walking. Furthermore,
motion is usually distorted by varying camera movement.
For instance, in the second clip of Figure 2, camera follows
the person when he walks through the yard. No motion
of person can be detected by traditional motion estimation.
Therefore, motion calculated in frame sequence cannot hon-
estly present the real activities of the person. However, in
both two clips, we can see that the relative position between
Person and background scene (Building) is changing, and
similar relative motion patterns can be observed under var-
ious camera movements. Thus, relative motion is suitable
to cope with camera movements for event description and
detection.

Due to its ability to honestly describe object activities
in an event, in this paper, we employ motion relativity for
event detection by proposing a new motion feature, namely
Relative Motion Histogram of Bag-of-Visual-Words (RMH-
BoW). Figure 3 illustrates the procedure for our feature ex-
traction. Considering that object segmentation and seman-
tic annotation remains extremely difficult in unconstrained
videos, we employ bag-of-visual-words (BoW) which has been
proven to be effective in concept detection [3, 13], to repre-
sent the presence of different objects/scenes, i.e. what aspect
of an event. In BoW, a visual vocabulary is first constructed
by grouping a set of local keypoint features using k -means.
Then, given a video frame, it can be represented as a vi-
sual word histogram by mapping its keypoints to the visual
vocabulary. With BoW, the activities and interactions be-
tween objects can be captured by modelling the relative mo-
tion between visual words depicting different objects/scenes.
For instance, as illustrated in Figure 2, Qp1, Qp2 and Qb1,
Qb2 are the keypoints lying on persons and buildings respec-
tively. Although in both clips, the two persons walk in the
similar way, Qp1 is moving while Qp2 remains still due to
different camera movement. On the other hand, by investi-
gating the relative motion between Qp1 and Qb1 in clip 1,
and between Qp2 and Qb2 in clip 2, similar motion patterns
can be observed to describe the motion relativity between
Person and Building for detecting event Walking. As shown
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Figure 3: Proposed feature extraction framework for

video event detection. With visual words capturing what

are involved in an event, the local motion histogram of

visual words describes both what and how aspects effec-

tively for a complete representation of an event. Motion

relativity and visual relatedness are employed to cope

with the distortion by camera movement and the visual

word correlation problem, respectively.

on the left of Figure 3, given a video clip, the keypoints are
tracked in neighboring frames and relative motion is calcu-
lated between every two keypoints. Given two visual words,
a relative motion histogram (RMH-BoW) is constructed by
accumulating motion vectors between every two keypoints
mapped to the two words respectively (Section 3).

However, with motion relativity between visual words rep-
resenting activities between objects/scenes, a feature mis-
match problem may be caused. As seen in Figure 2, al-
though both keypoints Qp1 and Qp2 actually depict Person,
they cannot be matched when they are mapped to different
visual words in BoW representation. This is possible consid-
ering the fact that visual words are the outcome of clustering
algorithm, and can be correlated to each other due to the
quantization effect. In this case, although they show similar
motion patterns of the same object category Person, activi-
ties of different objects are detected. To alleviate this visual
word correlation problem, as shown on the right of Figure 3,
we first construct a visual word ontology to measure the
relatedness between different words [14]. The visual word
relatedness is then incorporated into RMH-BoW to derive a
new feature called Expanded Relative Motion Histogram of
Bag-of-Visual-Words (ERMH-BoW; detailed in Section 4).

The expansion of RMH-BoW is achieved by diffusing the
relative motion between two visual words to other words
that are correlated to them, i.e. with higher visual related-
ness. Finally, ERMH-BoW is used for supervised learning
and event detection (Section 5).

Compared with existing features, the novelty of ERMH-
BoW lies in the following aspects. First, the two aspects
of an event, i.e. what and how, are closely integrated to
completely describe events. Second, local motion is used,
which is more discriminative in event detection. Third, mo-
tion relativity is exploited to honestly depict the activities
in an event. Finally, visual word relatedness is employed to
expand the relative motion histogram, which can effectively
alleviate the correlation problem in the widely used BoW
feature.

2. RELATED WORKS
In [9], visual events are viewed as stochastic temporal pro-

cesses in the semantic space. The dynamic pattern of an
event is modeled through the collective evolution patterns of
the individual semantic concepts in the course of the visual
event. HMM (Hidden Markov Model) is employed for event
modeling and recognition. This approach achieves some im-
provement compared with keyframe based approach from
an experiment on a small set of events. In [31], a video clip
is represented as a bag of descriptors from all of the con-
stituent frames. EMD (Earth Mover’s Distance) is applied
to integrate similarities among frames from two clips, and
TAPM (Temporally Aligned Pyramid Matching) is used for
measuring video similarity. EMD distance is then incorpo-
rated into the kernel function of SVM framework for event
detection. While these approaches attempt to construct dif-
ferent models for describing event evolution, in this paper,
we focus on extracting effective features, specifically motion
features for event detection.

As an important cue to characterize video content, motion
analysis has been intensively studied for video indexing and
retrieval. In [1], motion vectors extracted from MPEG com-
pressed domains are used for video indexing. Segmentation
and labeling are carried out based on motion vector cluster-
ing. Videos can then be indexed based on either global or
segmentation features. In [24], a motion pattern descriptor
namely motion texture is proposed for video retrieval and
the classification of simple camera and object motion pat-
terns. In [8], spatio-temporal interactions between objects
are expressed by predicate logic for video retrieval. This
algorithm assumes the objects are correctly detected and
located during video preprocessing. However, automatic
object segmentation and semantic annotation remains ex-
tremely difficult and unreliable in unconstrained videos.

Many events can be represented as object activities and in-
teractions (such as Walking and Airplane Flying), and show
different motion patterns. Motion is thus an important cue
in describing the course of an event, and has been employed
in some previous works in order to capture the event evo-
lution information. In [7], a ground-based mobile surveil-
lance system is built to detect and track moving people.
Their activities are recognized by PCA-based matching. In
[6], Motion History Image (MHI) is calculated over a frame
sequence to describe the characteristic of human motion.
Recognition is achieved by statically matching MHIs. This
approach is applied to well-segmented human figures for rec-
ognizing several predefined actions. In [17], event is treated



as a space-time volume in the video sequence. Volumetric
features based on optical flow are extracted for event de-
tection. The approach is used in videos with single moving
object (human) and action. In [29], a similarity measure
is proposed to search for two different video segments with
similar motion fields and behaviors, while recognition is not
performed. Although some success has been achieved, these
algorithms are just employed in some specific video domains
(such as surveillance videos) in known environments or sim-
ple scenarios with only the object of interest. The motion
distribution features could be easily noised by those motion
of no interest if being applied to general videos with different
moving objects.

Some attempts have also been made to employ motion for
event recognition in unconstrained videos. In [12], motion
vectors are extracted from MPEG encoded videos and com-
pressed to form a motion image. SVM is then used for event
recognition. By experimenting on a small set of events, the
feature is shown to be useful in recognizing events with dif-
ferent motion distribution patterns. However, more events
with different motion intensities and patterns should be in-
vestigated on a larger video corpus. In [5], motion is em-
ployed in searching for some event-based topics, for instance,
“Find shots of one or more people walking up stairs”. Eight
directions of motion vectors and intensities are efficiently ex-
tracted from motion vectors in MPEG compressed domain
and exploited for final ranking. The MAP for 24 topics is
improved from 0.04 to 0.043 by combining motion feature
with text, concept and visual features. Due to the overall
low accuracy in search task, it is difficult to draw the con-
clusion whether or by how much the results could be indeed
improved.

In summary, the problems with these existing features lie
in three aspects. First, motion is separated from the static
visual information, or what aspect of an event (such as car,
person) and considered independently. As a result, motion
might be useful in discriminating those events with different
motion patterns. However, different events may show similar
motion of different objects. For instance, Person Running
and Car Running could have the same motion patterns in
horizontal direction. If only motion is used without con-
sidering what is running, they will be detected as the same
event. To fully describe an event, the two aspects should be
closely integrated. Second, motion feature is extracted to
describe the motion distribution in the whole frame. This
might work in some specific video domains such as surveil-
lance videos in a lift, or videos containing few objects, where
the objects of interest dominate the motion in the video.
In an unconstrained videos, the motion distribution could
be greatly noised, and weak in event description. To ef-
fectively capture event evolution information, local motion
specifically the motion of event-centered objects should be
highlighted. Third, due to the distortion from camera move-
ment, the motion vectors calculated from video sequence is
composed of object motion plus camera movement. Thus,
it cannot depict the real object activities. This problem has
not been carefully studied.

In [19], inspired by the success of bag-of-visual-words (BoW)
in concept detection, space-time interest points with salient
changes in both spatial and temporal domains are extracted
in videos. In [27], spatial-temporal words are then derived
for recognizing human actions. This feature somehow ad-
dresses the first two problems by employing local motion and

capturing the information in both spatial and temporal do-
mains. However, experiments are just conducted on simple
video sequences captured by stationary camera to recognize
only few actions of human. As we know, spatial-temporal
word has not been successfully employed in unconstrained
videos. One important reason is that the space-time in-
terest point is not invariant to camera movement. In this
paper, we show that relative motion is able to completely
and honestly describe the events compared with these exist-
ing features. By employing motion relativity, the proposed
feature ERMH-BoW can cope with all the problems men-
tioned above for event description and significantly improve
the performance of detection.

3. RELATIVE MOTION HISTOGRAM OF
BoW (RMH-BoW)

As discussed in Sections 1, relative motion between differ-
ent objects and scenes is able to honestly describe an event
compared with existing features. In this section, we propose
to employ motion relativity for developing effective features
in event detection. We first briefly describe the generation
of BoW, which is used to capture what aspect. Given a video
clip, we then construct a motion histogram for each visual
word (MH-BoW) by employing local motion information.
Finally, we modify MH-BoW by replacing the motion vec-
tors with the relative motion between different visual words
so as to capture motion relativity.

3.1 BoW Generation
Keypoints are salient patches containing rich local infor-

mation of images. Shown as small crosses in the images on
the left of Figure 3, they usually lie around the corners and
edges in image objects. In this paper, we use DoG [25] as
keypoint detector and SIFT [21] as keypoint descriptor.

In BoW image representation, firstly a visual vocabulary
is generated by using k-means algorithm to cluster a set
of keypoints (SIFT features) and each cluster is treated as
a visual word. By mapping the keypoints in an image to
the vocabulary [13], we can represent the image as a vector
of visual words with its weights indicating the presence or
absence of the visual words.

3.2 Motion Histogram of Visual Words (MH-
BoW)

Instead of motion distribution which could be easily noised
in unconstrained videos, we employ the local motion infor-
mation to derive more discriminative features. In this sec-
tion, we construct a local motion histogram for each visual
word in BoW. Given a video clip, our motion features are
extracted between every two neighboring frames. To be ef-
ficient, 5 frames are evenly sampled every second. For a
sampled frame at time t, keypoints are first detected by
DoG [25]. We then employ the algorithm in [22] to track
the keypoints in the next frame. For each keypoint p that
can be successfully tracked, we calculate its motion vector
mp between these two frames. Different from other motion
histograms that are the sums of motion vectors over spa-
tial regions, our motion histogram of BoW (MH-BoW) is
constructed by summing up motion vectors of all keypoints
mapped to the same visual word. For each visual word,
we construct a 4-directional histogram. For this purpose,
the motion vector mp is decomposed into four components



Di(mp), where i = 1, 2, 3, 4 are corresponding to the four di-
rections: left, right, up and down; and Di(.) projects mp to
the ith direction. For a visual word v, the motion histogram
is calculated as

Hv(i) =
�

p∈Nv

Di(mp), i = 1, 2, 3, 4 (1)

where Nv is the set of tracked keypoints that are mapped to
the visual word v.

By Equation 1, we get an N-dimension feature vector
called Motion Histogram of BoW (MH-BoW), where N is
the number of visual words, and each element is a 4−directional
motion histogram for the corresponding visual word. MH-
BoW indeed encodes both what and how aspects of an event
in a single feature. Each histogram is corresponding to a
specific visual word which describes what aspect, while the
motion histogram depicts the motion pattern and intensity
of the visual word to capture how aspect. Since the local
motion of the visual words is employed in MH-BoW, differ-
ent events can be represented as certain motion patterns of
specific visual words depicting different objects. Thus, by
MH-BoW, we have addressed two problems that lie in the
current existing features, i.e. how to integrate what and how
aspects of an event, and how to make use of more discrimi-
native local motion information for event description.

3.3 Relative Motion Histogram between Visual
Words (RMH-BoW)

Based on RM-BoW, in this section, we address the third
problem in feature extraction, i.e. the motion distortion
problem caused by varying camera movement. To this end,
we propose to employ motion relativity between different
objects and scenes. As discussed in Section 1 and observed
in Figure 2, motion relativity can cope with the motion dis-
tortion problem caused by camera movement, and remain
consistent for different clips containing the same event re-
gardless of different camera movement. In other words, it
is able to honestly describe the real activities in an event.
With BoW representing what aspect of an event, we capture
the object activities by using the relative motion between
different visual words. We modify MH-BoW in Section 3.2
with the relative motion histograms between visual words.

Given two visual words va and vb, the relative motion
histogram between them is calculated as

RHi(va, vb) =
�

p∈Nva ,q∈Nvb

Di(mp − mq) (2)

where p and q are two interest points mapped to visual words
va and vb respectively, mp − mq is the relative motion of p
with reference to q, and Di(.), i = 1, 2, 3, 4 decomposes the
relative motion vector to the four directions as in the last
section to generate a 4-directional histogram between visual
words va and vb. By Equation 2, the motion information in
a video clip is represented as an N × N matrix R, where
each element R(i, j) is a relative motion histogram between
the two visual words i and j. We call this feature matrix
Relative Motion Histogram of BoW (RMH-BoW).

As seen in the derivation process, RMH-BoW depicts the
intensities and patterns of relative motion between differ-
ent visual words. Since the visual words in BoW capture
what aspect of an event, RMH-BoW can be used to describe
the activities and interactions between different objects and
scenes in an event. Intuitively, different events are presented

as different object motion patterns and intensities, while
video clips containing the same event show similar motion
patterns and intensities between specific objects or scenes.
RMH-BoW can thus be used in supervised learning to dis-
cover these common patterns in different clips containing
the same event for effective detection.

4. EXPANDING RMH-BoW WITH VISUAL
WORD RELATEDNESS (ERMH-BoW)

As discussed in Section 1, when BoW is used to represent
the what aspect of an event, some visual words may be cor-
related (i.e. depicting the same object category), but are
treated as isolated to each other. This will cause feature
mismatch problem between events containing the same ob-
ject. In this section, to address the visual word correlation
problem in RMH-BoW, we propose a method to expand the
relative motion histogram based on visual relatedness. The
expansion is conducted by diffusing the motion histograms
across correlated visual words, so that the visual word cor-
relation problem can be alleviated.

4.1 Visual Relatedness
The visual relatedness is a measurement of visual word

similarity, which can be estimated in the same way as we es-
timate the semantic relatedness of textual words using gen-
eral ontology such as WordNet. We apply the method of [14]
to estimate the visual relatedness. Given a set of keypoints,
we first construct a visual vocabulary through clustering the
keypoints by k -means algorithm. With the visual vocab-
ulary, a visual ontology is further generated by adopting
agglomerative clustering to hierarchically group two visual
words at a time in the bottom-up manner. Consequently,
the visual words in the vocabulary are represented in a hi-
erarchical tree, namely visual ontology, where the leaves are
the visual words and the internal nodes are ancestors mod-
eling the is-a relationship of visual words. An example of
the visual ontology is shown on the right of Figure 3. In the
visual ontology, each node is a hyperball in the keypoint fea-
ture space. The size (number of keypoints) of the hyperballs
increases when traversing the tree upward.

Similar to the semantic relatedness measurements of text
words, the visual relatedness can also be estimated by con-
sidering several popular ontological factors based on the vi-
sual ontology. We directly apply a text linguistic measure-
ment, JCN [16], to estimate the visual relatedness. Denote
vi and vj as two visual words, JCN considers the ICs of their
common ancestor and the two compared words, defined as:

JCN(vi, vj) =
1

IC(vi) + IC(vj) − 2 · IC(LCA(vi, vj))
(3)

where LCA is the lowest common ancestor of visual words
vi and vj in the visual ontology. IC is quantified as the
negative log likelihood of word/node probability:

IC(v) = − log p(v) (4)

where the probability p(v) is estimated by the percentage of
keypoints in the visual hyperball v.

Compared to directly calculating the visual word related-
ness based on the proximity of cluster centers, using JCN
can be more accurate as not only cluster proximity, but also
the cluster size/density (inferred by IC) are taken into ac-
count.



4.2 Expanding RMH-BoW
Based on the visual relatedness calculated by JCN, we ex-

pand RMH-BoW by diffusing the relative motion histograms
between two visual words to their correlated visual words.
The Expanded Relative Motion Histogram of BoW (ERMH-
BoW) is calculated as

RE(i, j) = R(i, j) +
�
si,sj

JCN(si, i) ×R(si, sj) × JCN(sj , j)

(5)
where {si} and {sj} are the sets of visual words that are
correlated to the words i and j respectively. The aim of
RMH-BoW expansion is to alleviate the problem of visual
word correlation. More specifically, the relative motion be-
tween two words are diffused by the influence of other words
that are ontologically related to them. The diffusion inher-
ently results in the expansion of RMH-BoW to facilitate the
utilization of word-to-word correlation for video clip compar-
ison. For instance, in Figure 2, if the two points Qp1 and QP2

lying on Person were assigned to different visual words, say
v1 and v2 respectively, which will cause mismatch in RMH-
BoW. With ERMH-BoW, given that v1 and v2 are highly
correlated, their corresponding motion histograms will be
diffused to each other, and thus can be matched with higher
similarity as expected. In our experiments, for each visual
word, we empirically choose the five most similar words for
diffusion in Equation 5. On one hand, this guarantees the ef-
ficiency of the RMH-BoW expansion process and also retains
the sparse property of the resulted ERMH-BoW histograms.
On the other hand, diffusing with more visual words does
not promise better performance.

5. EVENT DETECTION
In this section, we employ the proposed feature ERMH-

BoW for event detection to demonstrate the effect of motion
relativity and visual relatedness. For this purpose, we adopt
the kernel based algorithm in [30]. First, ERMH-BoW is
used to measure the distance between different video clips.
This distance is then incorporated into the kernel function
of support vector machine (SVM) for event detection.

5.1 Distance between Video Clips
First, given a video clip, ERMH-BoW is calculated be-

tween every two neighboring sampled frames. The video
clip is then represented by a sequence of ERMH-BoW as its
signature. For video clip similarity measure, EMD (Earth
Mover’s Distance) has proven to be effective in clip align-
ment and matching [28]. To employ EMD for video clip
similarity measure, the ground distance between a pair of
frames from two clips is defined as the Euclidean distance of
the ERMH-BoW corresponding to the two frames:

d(RE
1 ,RE

2 ) =

�
1

N2

�
1≤i,j≤N

(RE
1 (i, j) −RE

2 (i, j))2 (6)

Given two clips A = {(RE
A1, wA1), · · · , (RE

Am, wAm)} and
B = {(RE

B1, wB2), · · · , (RE
Bn, wBn)} with m and n ERMH-

BoW matrices as signatures respectively, and wAi = 1/m,
wBj = 1/n as the weights for each ERMH-BoW matrix.
The EMD distance between A and B is computed by

D(A, B) =

�m
i=1

�n
j=1 fijd(RE

Ai,RE
Bj)�m

i=1

�n
j=1 fij

(7)

where fij is the optimal match among two sequences of
ERMH-BoW matrices of A and B. The details of how to
determine fij can be found in [31].

Considering the large scale of the motion histogram, the
distance measure could be quite slow. Fortunately, this
problem can be alleviated by employing the sparseness prop-
erty of the feature matrix. Furthermore, each clip usually
contains at most tens of sampled frames and EMD matching
can be carried out efficiently.

5.2 SVM Detection
With the EMD distance between video clips computed in

Equation 7 by employing ERMH-BoW features, we adopt
the algorithm in [31] to train SVMs for event detection. The
EMD distance between video clips is incorporated into the
kernel function of the SVM framework by using Gaussian
function:

K(A, B) = exp(− 1

κM
D(A, B)) (8)

where the normalization factor M is the mean of the EMD
distances between all training video clips, and κ is a scaling
factor empirically decided by cross-validation.

In [31], the positive definiteness of the EMD kernel has
been verified by experiments. Pyramid matching with dif-
ferent levels is fused to achieve better results. In this work,
since we focus on feature extraction for event description, we
aim at validating the effectiveness of the proposed feature
ERMH-BoW. To be efficient, we just adopt a single-level
EMD matching algorithm for distance measure and com-
pare the performance of ERMH-BoW with other existing
features under the same framework for event detection.

6. EXPERIMENTS
In this section, we conduct video event detection experi-

ments to validate the effectiveness of the proposed ERMH-
BoW. Comparisons with other existing motion feature and
static features will be given.

6.1 Data Description
We choose the LSCOM annotated events [36] in the ex-

periments. This dataset is annotated specifically for event-
based concept detection in news videos. The video data
are from TRECVID 2005 benchmark, and 24 events are
re-annotated by watching the video clip based on the pre-
liminary keyframe-based annotation. This provides more
accurate annotations since the presence of many events can-
not be correctly judged by just looking at one or few static
keyframes. After removing some events with only few posi-
tive examples, in our experiments, 14 events are used namely
Exiting Car, Handshaking, Demonstration Or Protest, Riot,
Running, Walking, Dancing, Shooting, Airplane Flying, Elec-
tion Compaign Greeting, Street Battle, ,People Marching, Peo-
ple Crying, and Singing. The definition of these events can
be found in [36]. In the selected 14 events, the numbers of
positive examples range from 61 to 2332. Negative exam-
ples for each event are composed of annotated negative clips
and extra examples randomly selected from other event cat-
egories. As a result, there are totally about 40, 000 clips in
the dataset, among which 50% is used for classifier training
and the remaining for testing. For performance evaluation,
we use Average Precision (AP) [37] which has been the offi-
cial performance metric in TRECVID evaluation since 2001.



Table 1: Average Precision (%) for event detection with different features. CM: Color Moment; CS: Concept

Score; GMH: Grid-based Motion Histogram; BoW: Bag-of-Visual-Words; MH-BoW: Motion Histogram of BoW;

RMH-BoW: Relative Motion Histogram of BoW; ERMH-BoW: Expanded Relative Motion Histogram of BoW;

MAP: Mean Average Precision.

Event GMH CM CS BoW MH-BoW RMH-BoW ERMH-BoW

Exiting Car 17.4 19.7 23.7 25.3 29.2 32.5 34.8

Handshaking 6.9 8.2 10.3 10.1 10.8 11.0 11.4

Running 32.8 48.6 57.1 56.7 61.2 66.7 68.7

Demonstration Protest 27.5 29.2 31.3 31.6 33.4 34.7 36.8

Walking 20.7 24.3 29.8 28.5 32.4 37.6 39.2

Riot 10.3 13.7 16.5 18.7 20.6 22.5 23

People Marching 21.4 20.8 23.4 24.3 26.9 28.9 30.2

Dancing 12.1 14.9 16.2 15.4 16.5 18.2 19.5

Election Campaign Greeting 7.4 9.1 10.4 10 11.3 12.9 13.9

Shooting 9.2 10.7 11.0 10.4 11.2 11.5 12.4

Airplane Flying 13.6 14.1 17 17.3 19.1 21.6 23.1

Street Battle 15.7 20.9 23.8 24.1 26.3 29.1 32.3

People Crying 4.6 5.5 8.6 8.0 7.4 7.2 7.2

Singing 9.0 11.3 12.1 11.6 10.9 11.2 11.0

MAP 14.90 17.93 20.80 20.86 22.66 24.69 25.96
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Figure 4: Per-event performance comparison of keyframe-based (KF) and sequence-based approaches.



6.2 ERMH-BoW vs. Motion Distribution
To compare ERMH-BoW with motion distribution fea-

tures in event detection, we extract Grid-based Motion His-
togram (GMH) from each frame in the sequence. Each frame
is segmented into 5×5 grids in spatial domain. Motion vec-
tors are extracted from MPEG compressed video and aggre-
gated in each grid to form 4−directional histograms, which
results in a 100-d feature vector. For event detection with
GMH, the similar algorithm in Section 5 is employed by
using GMH as the signatures of video clips.

As seen in Table 1, compared with GMH, ERMH-BoW
improves the MAP (Mean Average Precision) of 14 events
by 74.2% (from 14.90% to 25.96%). GMH just considers how
aspect of an event, but ignores what aspect. Thus, it might
be useful to discriminate those events with different motion
intensities and patterns, e.g. Singing vs. People Marching,
but does not help much if different events have similar mo-
tion intensities and patterns. This is why current motion
distribution features are just applied to some specific video
domains or for recognizing a small set of events with differ-
ent motion patterns. In ERMH-BoW, the presence of vi-
sual words captures what aspect of an event, while their cor-
responding motion histograms describe how aspect. Thus,
ERMH-BoW encodes both two aspects of an event in a sin-
gle feature to provide a complete description.

In addition, instead of motion distribution in GMH, ERMH-
BoW takes the advantage of employing local motion infor-
mation. Intuitively, only motion of event-centered object is
useful for event description and detection. For instance, only
the motion of a person can be used to detect an event Walk-
ing, while the movement of other objects could be random
and noisy in unconstrained video domains. However, motion
distribution feature simply sums up all detected motion in
the spatial domain, which can be easily noised. Instead,
ERMH-BoW employs the local motion of the visual words,
and thus the activities of those objects of interest (depicted
by visual words) can be highlighted during supervised learn-
ing. This makes ERMH-BoW a more discriminative feature
in event detection. (How ERMH-BoW benefits from motion
relativity will be discussed in the next section.)

6.3 ERMH-BoW vs. Static Features
We compare ERMH-BoW with the features that are widely

used in concept detection, including Color Moment (CM),
Bag-of-Visual-Word (BoW), and Concept Score (CS). For
experiments, these features are extracted in each frame of
the sequence used in ERMH-BoW extraction. CM is a global
color feature. We calculate the first 3 moments of 3 channels
in Lab color space over 5×5 grids for each keyframe, and ag-
gregate the features into a 225-d feature vector. BoW makes
use of local visual information in images. The generation of
BoW is the same as in Section 3.1. The local patches (key-
points) are detected by DoG [25] and described with SIFT
[21]. We build a vocabulary of 500 visual words by clus-
tering the SIFT descriptors. TF-IDF is used to weight the
significance of a word in the keyframe, resulting in a 500-d
feature vectors. Besides these two low-level features, CS can
be seen as a mid-level feature. Given a frame, the concept
score vector is calculated by employing the VIREO-374 con-
cept detectors [15]. In VIREO-374 detectors, three kinds of
features: color moment, wavelet texture, and BoW (Bag-
of-Words) are extracted for training three sets of classifiers

respectively. Given a frame, the score for each concept is
calculated as the mean of the three classifiers’ outputs. We
select 70 concept detectors which are related to the experi-
mented events to compose a 70-d concept score vector. The
extracted features are then used as the signatures of video
clips as in Section 5 for EMD matching and SVM recogni-
tion.

As seen in Table 1, among these three features, CM gets
the lowest MAP of 17.9%, while the performance of BoW
(20.9%) and CS (20.8%) is similar. BoW outperforms CM
by employing more discriminative local information in im-
ages. The result is consistent with concept detection [13].
CS employs BoW indirectly in concept score calculation, and
probably this is why they achieve similar MAPs. Compared
with BoW, ERMH-BoW improves the MAP by 24.4% (from
20.86% to 25.96%). These three static features just capture
what aspect of an event, but ignore how aspect. Notice that
EMD matching with static features (CM, BoW, CS) indeed
models some sequence information of event evolution. How-
ever, by this experiment, we can see it is still necessary to
develop features to describe the event evolution. This is be-
cause EMD matching just depicts event evolution coarsely
without considering detailed event activities. For instance,
when matching two clips using CS features, EMD just inves-
tigates the presence or absence of detected concepts along
the sequence. Two clips containing the same objects will be
regarded as similar although the object activities are totally
different corresponding to different events.

To further evaluate the effect of motion relativity and vi-
sual relatedness, we also test the performance of another two
features: MH-BoW and RMH-BoW extracted in Section 3.2
and 3.3 respectively. As seen in Table 1, the improvement of
ERMH-BoW compared with BoW can be decomposed into
three pieces due to local motion, motion relativity and visual
relatedness respectively.

MH-BoW encodes local motion information of visual words.
Compared with BoW, an improvement of 8.6% is achieved.
On one hand, this shows the necessity of integrating what
and how aspects for event detection. Motion, especially local
motion, is useful in describing event evolution. On the other
hand, by using MH-BoW, the improvement is not significant
enough to convince the importance of motion considering the
extra computation amount needed. This is because the mo-
tion vector calculated as spatial difference between frames in
Section 3.2 cannot honestly depict the real object activities
in an event. As shown in Figure 2, MH-BoW might work
for the first clip, but not for the second one due to the vary-
ing camera movement. To cope with this problem, relative
motion is used in RMH-BoW. With BoW representing what
aspect in an event, object activies are encoded as the rela-
tive motion between different visual words. Compared with
MH-BoW, another improvement of 9.0% is observed. This
supports our argument in Section 1 that relative motion is
better at honestly depicting object activities and interac-
tions in event detection. The third piece of improvement of
ERMH-BoW comes from the visual relatedness. Intuitively,
in RMH-Bow, for two video clips containing the same event,
some different visual words may belong to the same object
or scene, but are treated independently. As a result, the two
clips cannot be correctly matched as expected. In ERMH-
BoW, we alleviate this problem by diffusing the relative mo-
tion histogram among correlated visual words based on vi-
sual relatedness. The experiment shows the effectiveness of



our approach. Compared with RMH-BoW, an improvement
of 5.1% is achieved by ERMH-BoW.

As seen in Table 1, by employing the local motion and rel-
ative motion information, the improvement is mainly from
those motion-intensive events such as Running, Walking,
and People Marching. Meanwhile, some decline is also ob-
served for those events which are not motion-intensive, such
as Singing and People Crying. This is because there is no or
very little motion involved, and motion information is less
useful for detecting these events. In addition, the (relative)
motion histograms of most visual words integrate visual and
motion information together, and proves useful in capturing
the motion of event-centered objects. However, for non-
motion-intensive events, the motion for all visual words are
almost equally minor, which cannot describe the event evo-
lution and even weakens the effectiveness of BoW weighting
scheme. As a result, the features with only static visual
(BoW) or semantic (CS) information could perform better
than the motion features for these two events.

6.4 Comparison to Keyframe-based Approaches
To give a more comprehensive understanding for the per-

formance of the different features for event detection, we
also conduct experiments to contrast sequence-based and
keyframe-based (KF) event detection. For KF-based ap-
proaches, a single keyframe is used for feature extraction.
The features used include CM, BoW, CS, and EBoW (Ex-
paned BoW with Visual Relatedness). The first three fea-
tures are the same as used in Section 6.3, but extracted just
in the keyframe. EBoW is derived by diffusing the weight
of each visual word in BoW using visual relatedness in a
similar way as we expand RMH-BoW.

Table 2 shows the results of keyframe-based approaches.
By comparing the results to Table 1, sequence based ap-
proaches perform much better than keyframe based approaches.
Figure 4 plots the overall performances of sequence-based
and KF-based approaches for the 14 tested events. Com-
paring the best performances of sequence-based (ERMH-
BoW) and KF-based (EBoW) approaches, an improvement
of nearly 35% is achieved when considering sequence in-
formation. As observed in Tables 1 and 2, the MAPs of
CM, BoW and CS are also improved by 20.3%, 16.1% and
16.3% respectively when sequence information is used. This
demonstrates the advantage of using video sequence com-
pared with static keyframes for event detection. The im-
provement is mainly due to two aspects. First, more visual
information is employed when more frames are used. This
improves the probabilities to make correct detections. Sec-
ond, EMD matching can, if not perfectly, model some se-
quential information in the video clip, which proves to be
useful in event detection. Although limited information is
used, keyframe-based approaches can still achieve similar
performance compared with sequence based approaches for
those events that are not motion-intensive or do not show
explicit motion patterns such as People Crying and Singing.
This is because the recognition of these events does not ben-
efit much from the additional motion information used in
sequence based approaches.

Among all features used in keyframe based approaches, as
seen in Table 2, CM using the global visual feature of the
keyframe gets the lowest AP. The local feature BoW again
demonstrate its ability to discriminate different events as
in concept detection [13] by achieving an improvement of

Table 2: Average Precision (%) of event detection by

keyframe based approaches using different features. CM:

Color Moment; BoW: Bag-of-Visual-Words; EBow: Ex-

panded BoW by visual relatedness; CS: Concept Score;

MAP: Mean Average Precision.

Event CM BoW EBoW CS

Exiting Car 16.9 20.1 21.9 18.6

Handshaking 6.7 8.8 9.4 9.5

Running 40.7 49.4 52.3 47.9

Demonstration Protest 24.3 28.1 29.9 26.8

Walking 18.5 26.6 27.8 25.7

Riot 10.4 14.1 14.7 11.3

People Marching 17.4 21.4 23.3 20.5

Dancing 12.3 12.8 13.9 15.2

Election Campaign Greeting 7.7 8.2 8.9 9.2

Shooting 9.3 8.7 9.4 9.8

Airplane Flying 11.9 14.7 15.6 14.2

Street Battle 18.6 21.8 23.4 20.7

People Crying 4.8 7.1 7.9 8.4

Singing 9.2 9.8 11.2 12.7

MAP 14.91 17.97 19.26 17.89

20.5% compared with CM. This is because the global fea-
tures can be easily affected by noise in unconstrained en-
vironments and is thus weak in describing concepts/events.
In contrast, local feature is capable of recognizing different
concepts more effectively by extracting more discriminative
local information. While using the expanded BoW (EBoW),
the MAP is further improved by 7.2%.

7. CONCLUSION
In this paper we address event detection in unconstrained

videos by proposing a new motion feature namely ERMH-
BoW. While most existing features remain weak in event
description, we show ERMH-BoW can completely and hon-
estly describe an event. In ERMH-BoW, we adopt bag-
of-visual-words to represent what aspect of an event, and
capture the object activities or how aspect of the event by
the relative motion histograms between visual words. The
derived feature ERMH-BoW can thus provide a complete
description of an event by closely integrating what and how
aspects. Instead of motion distribution which is noisy, we
employ local motion information of visual word, which is
more discriminative by capturing the motion of interest for
effective event detection. To address the motion distortion
problem caused by various camera movement, motion rela-
tivity is employed. We demonstrate that relative motion is
able to present the object activities in an event regardless
of various camera movement. As we know, this is the first
work to seriously study the motion distortion problem in
event detection. In addition, we also propose to expand the
motion histogram of visual words to alleviate the correlation
problem by visual relatedness calculated from a visual word
ontology. Our experiments show that ERMH-BoW can sig-
nificantly improve the MAP of event detection compared



with existing features. Due to the use of sequence informa-
tion, the extraction of ERMH-BoW is naturally slower than
KF-based extraction. The speed is largely dependent on the
number of frames being processed in the video examples.
In our current implementation, the feature extraction and
learning speed is approximately 10 times slower than that
using only single keyframe. In the future, we will research
efficient model for the utilization of motion relativity and
visual relatedness for video event detection.

Acknowledgement
The work described in this paper was fully supported by a grant
from the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China (CityU 118906) and a grant from City
University of Hong Kong (Project No. 7002241).

8. REFERENCES
[1] E. Ardizzone, M. L. Cascia, A. Avanzato, and A. Bruna,

“Video Indexing Using MPEG Compensation Vectors”,
IEEE Int. Conf. on Multimedia Computing and Systems,
vol. 2, 1999.

[2] Oren Boiman and Michal Irani, “Detecting Irregularities in
Images and in Video”, Int. Conf. on Computer Vision,
2005.

[3] J. Cao et. al, “Intelligent Multimedia Group of Tsinghua
University at TRECVID 2006”, TRECVID Workshop,
2006.

[4] M. T. Chan, A. Hoogs, J. Schmiederer, and M. Petersen,
“Detecting Rare Events in Video Using Semantic Primitives
with HMM”, Int. Conf. on Pattern Recognition, 2004.

[5] T. Chua, S. Neo, Y. Zheng, H. Goh, X. Zhang, S. Tang, Y.
Zhang, J. Li, J. Gao, H. Luan, Q. He, and X. Zhang,
“TRECVID 2007 Search Tasks by NUS-ICT”, TRECVID
Workshop, 2007.

[6] James W. Davis, “Hierarchical Motion History Images for
Recognizing Human Motion”, IEEE Workshop on
Detection and Recognition of Events in Video, 2001.

[7] L. Davis, S. Fejes, D. Harwood, Y. Yacoob, I. Hariatoglu,
and M. J. Black, “Visual Surveillance of Human Activity”,
Asian Conf. on Computer Vision, 1998.

[8] Y. F. Day, S. Dagtas, M. Iino, A. Khokhar, and A.
Ghafoor, “Object-Oriented Conceptual Modeling of Video
Data”, Int. Conf. on Data Engineering, 1995.

[9] S. Ebadollahi, L. Xie, Shih-Fu Chang, and J. R. Smith,
“Visual Event Detection Using Multi-Dimensional Concept
Dynamics”, IEEE Int. Conf. on Multimedia and Expo,
2006.

[10] A. Efros, A. Berg, G. Mori, and J. Malik, “Recognizing
Action at a Distance”, IEEE Int. Conf. on Computer
Vision, 2003.

[11] S. Gong and T. Xiang, “Recognition of Group Activities
using Dynamic Probabilistic Networks”, IEEE Int. Conf.
on Computer Vision, 2003.

[12] A. Haubold and M. Naphade, “Classification of Video
Events using 4-dimensional time-compressed Motion
Features”, ACM Int. Conf. on Image and Video Retrieval,
2007.

[13] Y. G. Jiang, C. W. Ngo, and J. Yang, “Towards Optimal
Bag-of-Features for Object Categorization and Semantic
Video Retrieval”, Int. Conf. on Image and Video Retrieval,
2007.

[14] Y. G. Jiang and C. W. Ngo, “Bag-of-Visual-Words
Expansion Using Visual Relatedness for Video Indexing”,
ACM SIGIR, 2008.

[15] Y. G. Jiang, C. W. Ngo, and J. Yang, “VIREO-374:
LSCOM Semantic Concept Detectors Using Local Keypoint
Features”, http://vireo.cs.cityu.edu.hk/research/vireo374/.

[16] J. J. Jiang and D. W. Conrath, “Semantic similarity based
on corpus statistics and lexical taxonomy”, Proc. of

ROCLING X, 1997.
[17] Y. Ke, R. Sukthankar, and M. Hebert, “Efficient Visual

Event Detection using Volumetric Features”, Int. Conf. on
Computer Vision, 2005.

[18] T. K. Kim, S. F. Wong, and R. Cipolla, “Tensor Canonical
Correlation Analysis for Action Classification”, IEEE Conf.
on Computer Vision and Pattern Recognition, 2007.

[19] Ivan Laptev and Tony Lindeberg, “Space-time Interest
Points”, IEEE Int. Conf. on Computer Vision, 2003.

[20] H. Ling and S. Soatto, “Proximity distribution kernels for
geometric context in category recognition,” in Int. Conf. on
Computer Vision, 2007.

[21] D. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints”, Int. Journal of Computer Vision, vol. 60, no.
2, 2004.

[22] B. D. Lucas and T. Kanade, “An Interative Image
Registration Technique with an Application to Stero
Vision”, Int. Joint Conf. on Artifical Intelligence, pp.
121-130, 1981.

[23] Lihi Zelnik-Manor and Michal Irani, “Statistical Analysis of
Dynamic Actions”, IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 28, no. 9, 2006.

[24] Y. F. Ma and H. J. Zhang, “Motion Pattern-Based Video
Classification and Retrieval”, EURASIP Journal on Applied
Signal Processing, vol. 2003, no. 1, pp. 199-208, 2003.

[25] K. Mikoljczyk and C. Schmid, “Scale and affine invariant
interest point detectors,” Int. Journal of Computer Vision,
vol. 60, pp. 63–86, 2004.

[26] C. W. Ngo, Y. Jiang, X. Wei, F. Wang, W. Zhao, H. Tan,
and X. Wu, “Experimenting VIREO-374:
Bag-of-Visual-Words and Visual-Based Ontology for
Semantic Video Indexing and Search”, TRECVID
Workshop, 2007.

[27] J. C. Niebles, H. Wang, and Fei-Fei Li, “Unsupervised
Learning of Human Action Categories Using
spatial-Temporal Words”, IEEE Conf. on Computer Vision
and Pattern Recognition, 2006.

[28] Y. Peng and C. W. Ngo, “EMD-based Video Clip Retrieval
by Many-to-Many Matching”, Int. Conf. on Image and
Video Retrieval, 2005.

[29] E. Shechtman and M. Irani, “Space-Time Behavior Based
Correlation”, IEEE Conf. on Computer Vision and Pattern
Recognition, 2005.

[30] A. Veeraraghavan, R. Chellappa, and A. K.
Roy-Chowdhury, “The Function Space of an Activity”,
IEEE Conf. on Computer Vision and Pattern Recognition,
2006.

[31] D. Xu and Shih-Fu Chang, “Visual Event Recognition in
News Video using Kernel Methods with Multi-Level
Temporal Alignment”, IEEE Conf. on Computer Vision
and Pattern Recognition, 2007.

[32] Y. Yacoob and M. J. Black, “Parametrized modeling and
recognition of activities”, Computer Vision and Image
Understanding, vol. 73, no. 2, 1999.

[33] J. Yuan, Y. Wu, and M. Yang, “Discovery of collocation
patterns: from visual words to visual phrases,” in IEEE
Conf. on Computer Vision and Pattern Recognition, 2007.

[34] D. Zhang, D. G. Perez, S. Bengio, and I. McCowan,
“Semi-supervised Adapted HMMs for Unusual Event
Detection”, IEEE Conf. on Computer Vision and Pattern
Recognition, 2005.

[35] H. Zhong, J. Shi, and M. Visontai, “Detecting Unusual
Activity in Video”, IEEE Conf. on Computer Vision and
Pattern Recognition, 2004.

[36] DTO Challenge Workshop on Large Scale Concept
Ontology for Multimedia, “Revision of LSCOM
Event/Activity Annotations”, Columbia University
ADVENT Technical Report#221-2007-7, Dec 2006.

[37] TREC Video Retrieval Evaluation,
http://www-nlpir.nist.gov/projects/trecvid.


