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Bag-of-visual-words (BoW) has recently become a popular representation to describe video and image
content. Most existing approaches, nevertheless, neglect inter-word relatedness and measure similarity
by bin-to-bin comparison of visual words in histograms. In this paper, we explore the linguistic and onto-
logical aspects of visual words for video analysis. Two approaches, soft-weighting and constraint-based
earth mover’s distance (CEMD), are proposed to model different aspects of visual word linguistics and
proximity. In soft-weighting, visual words are cleverly weighted such that the linguistic meaning of
words is taken into account for bin-to-bin histogram comparison. In CEMD, a cross-bin matching algo-
rithm is formulated such that the ground distance measure considers the linguistic similarity of words.
In particular, a BoW ontology which hierarchically specifies the hyponym relationship of words is con-
structed to assist the reasoning. We demonstrate soft-weighting and CEMD on two tasks: video semantic
indexing and near-duplicate keyframe retrieval. Experimental results indicate that soft-weighting is
superior to other popular weighting schemes such as term frequency (TF) weighting in large-scale video
database. In addition, CEMD shows excellent performance compared to cosine similarity in near-dupli-
cate retrieval.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Retrieving and classifying video/image content according to
their semantics is currently one of the most difficult challenges
in computer vision, especially in the presence of within-class var-
iation, occlusion, background clutter, pose and lighting changes.
Recently, numerous approaches grounded on sparse local keypoint
features are proposed to deal with these variations and have been
shown to offer excellent performance. Keypoints are salient
patches that contain rich local information about an image or a vi-
deo frame. The most popular keypoint-based representation is bag-
of-visual-words (BoW). In BoW, a visual vocabulary is generated
through grouping similar keypoints into a large number of clusters
and treating each cluster as a visual word. By mapping the key-
points back into the vocabulary, a histogram of visual words is con-
structed, which forms the feature clue for retrieval and
classification.

Existing approaches with BoW mostly evaluate visual similarity
by direct bin-to-bin comparison of visual word histograms. This
comparison, nevertheless, neglects the linguistics and proximity
of visual words. For example in Fig. 1, five visual words derived
from three keyframes produce similarity scores equal to zero using
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histogram bin comparison. However, keyframes I1 and I2 are more
alike as both visual words v1 and v2 depict the visual parts of
wheel. In other words, v1 and v2 are linguistically related but this
cue is buried under the bin-to-bin comparison. While intuitively
quite appealing, such linguistics and proximity heuristics have so
far been largely under-explored in the literature of video semantic
analysis. Most approaches utilize visual words independently and
evaluate their individual significances by schemes such as binary
or term frequency (TF) weighting [1–4]. In these works, words
are stored in separate bins and then compared bin-to-bin with
measures such as Euclidean distance or histogram intersection.
These approaches therefore cannot capture the inter-word rela-
tionship and fail to address the problem illustrated in Fig. 1.

In text information retrieval (IR), the semantic relatedness of
text words has been widely explored through general purpose
vocabularies such as the WordNet ontology [5]. For instance, the
words ‘‘car” and ‘‘truck” should be more alike than ‘‘car” and ‘‘dog”,
as the common ancestor of ‘‘car” and ‘‘truck” (‘‘motor vehicle”) is
much lower than that of ‘‘car” and ‘‘dog” (‘‘object”) in WordNet.
Motivated by the text-based ontology which can be effectively uti-
lized for describing word-to-word relationships, this paper pro-
poses novel ideas exploring visual linguistics in two different
approaches. First, we propose a soft-weighting scheme which cap-
tures the inter-word relatedness to evaluate the significance of
words to a keypoint. In contrast to the traditional one-to-one key-
point-to-word mapping, the soft-weighting performs one-to-many
proximity and linguistics for semantic video indexing ..., Comput.
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Fig. 1. Histogram representation using bag-of-visual-words.
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mapping, while linguistically interpreting the relationship of mul-
tiple words in close proximity. The scheme still follows the con-
vention of bin-to-bin comparison, but inter-word relatedness is
inherently modeled during the construction of the word histogram.
In the second approach, we explore a cross-bin word matching
algorithm by constructing a visual-based ontology to capture the
is–a relationship of visual words. The ontology is built on top of
BoW, as illustrated in Fig. 2(b). Analogous to a text-based ontology
such as the WordNet, the visual ontology captures the hyponym
(is–a) relationship of visual words.

The two proposed approaches utilize the visual linguistics and
proximity from different points of view. The soft-weighting
scheme implicitly addresses the problem illustrated in Fig. 1. The
similarity between I1 and I2 is narrowed by softly assigning the
words v1 and v2 to both keyframes, after observing the proximity
of both words in comparing to the extracted keypoints. In other
words, the v1 and v2 bins of I2 and I1 are not empty and thus
the linguistic relatedness is still captured during the bin-to-bin his-
togram comparison. The cross-bin matching approach, on the other
hand, explicitly evaluates the linguistic relatedness of words. Any
two visual words can be directly linked and matched by knowing
their ontological relatedness. For instance, by traversing the ontol-
ogy in Fig. 2(b), the linguistic similarity of different words (e.g.,
v2 and v4) can be rigorously defined based on the distance trav-
eled (v2 ! e! c ! v4), depth of their ancestor (node c at depth
1) in the ontology, and the probability of words seen. In this paper,
we novelly formulate linguistic cross-bin matching under a con-
straint variant of the EMD (earth mover’s distance) framework,
namely CEMD. As an interesting note, the matching framework
can be used together with soft-weighting scheme. By recording
the soft weights as the signatures of words, a comprehensive ver-
sion of CEMD can be derived for video analysis.

With the two proposed approaches, we study the effectiveness
of visual linguistics for two challenging tasks: (1) semantic video
a

v2v1

b
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Fig. 2. Visual word ontology (b) as a bridge between expensive key
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indexing; and (2) near-duplicate keyframe retrieval. Intensive
experiments on the TRECVID dataset are conducted to compare
the proposed approaches with other existing methods. The rest
of this paper is organized as follows. In Section 2, we briefly review
the previous related works. Section 3 presents the main idea of
constructing visual ontology and modeling linguistic similarity.
Section 4 proposes the soft-weighting scheme and Section 5 pre-
sents the cross-bin matching by CEMD. Sections 6 and 7 describe
our experimental results on video semantic analysis and near-
duplicate retrieval, respectively. Finally, Section 8 concludes this
paper.

2. Related works

A major challenge in the field of video/image retrieval and clas-
sification is building effective features that are invariant to a wide
range of variations. The most popular image representation has
been global features, which describe images by the overall distri-
bution of color, texture, edge or other visual properties. Features
like color histograms/moments and Gabor filters [6] belong to this
category. To include spatial information, a keyframe is usually par-
titioned into either rectangular regions or segments of objects. Fea-
tures computed from these regions/segments are then
concatenated into a single feature vector for retrieval. Such re-
gion-based representation has been commonly adopted in tasks
such as image annotation [7] and semantic video indexing
[4,8,9]. Although popular, these global features face problems in
capturing the intra-class geometric and photometric variations.

More recently, there has been a great deal of interest in classi-
fying videos/images based on local keypoints. Keypoints are salient
patches that contain rich local information that can be detected
using various detectors such as difference of Gaussian (DoG) [10]
and depicted by various descriptors such as SIFT (scale-invariant
feature transform) [10]. Surveys of keypoint detectors and descrip-
tors can be found in [11] and [12], respectively. There are two com-
mon ways of utilizing keypoint features. Keypoints can be matched
directly in the descriptor feature space and the matching patterns
[13] or the cardinality of matching pairs [14] could be used to esti-
mate the video/image similarity. Alternatively, keypoints can be
vector-quantized or clustered into a representation analogous to
the bag-of-words representation commonly used in IR. There have
been many works in the computer vision community using this
vector-quantized keypoint feature, popularly referred to as BoW,
for multimedia retrieval [15,16] and classification [1–3,17–19]. Re-
cently, several studies have also been conducted to optimize the
representation choices of BoW. These choices include the selection
of keypoint detector and descriptor [1,2], clustering algorithm for
generating vocabulary [20,21], vocabulary size (number of visual
words) [1], and kernel utilized in supervised learning [2]. Never-
theless, none of the works studies the linguistics and proximity as-
pects of BoW for video analysis.
top nodes

visual wordsv3

v4

c

yralubacoVlausiVygol

......

keypoint feature space

k-means

v1

v4

v3
v2

c

point matching (a) and simple bin-to-bin word comparison (c).
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3. Modeling visual linguistics

In this section, we first describe the construction and utilization
of visual word ontology for linguistic reasoning.

3.1. Bag-of-visual-words ontology

Linguistic reasoning is a useful feature for word disambiguation
in IR. For example, the words ‘‘car” and ‘‘truck” are not matched by
comparing characters, but can be semantically linked by ‘‘motor
vehicle” through the is–a relationship in ontology. Building such
an ontology for visual words allows the modeling of word-to-word
similarity, while reducing the signal loss during quantization. Since
visual words are the outcome of clustering, the is–a relationship
can be explicitly extracted by considering the proximity among
the clusters of visual words in keypoint feature space.

To mine the is–a relationship, we first employ k-means algo-
rithms to cluster the set of given keypoints. The resulting clusters
form a visual vocabulary, where each keypoint cluster is treated as
a ‘‘visual word” in the vocabulary. With this BoW representation, a
visual ontology is further constructed by adopting the agglomerate
clustering algorithm to hierarchically group two words at a time in
the bottom-up manner. Consequently, an ontology which hierar-
chically encodes the set of visual words in a binary tree is con-
structed. The leaves of the ontology are words while the internal
nodes are ancestors modeling the is–a relationship of words. Note
that the ancestors are also treated as words. Fig. 2(b) shows an
example of the visual ontology. To model the information richness
of a word, the number of keypoints in a node is kept during the
construction of the ontology. This information hints at the proba-
bility of observing a word that could be utilized for linguistic rea-
soning. With this information, as shown in Fig. 2(b), each internal
node can be viewed as a hyperball and the size of the hyperball,
which increases when traversing the tree upward, models the pop-
ulation of visual words that are directly or indirectly related to a
particular branch. The depth of a branch, on the other hand, hints
at the specificity of visual words, which could also be utilized for a
linguistic measure.

The visual word ontology could also be interpreted as a link be-
tween the traditional bin-to-bin based BoW comparison
[1,2,17,20] and the keypoint-to-keypoint based matching [14,13].
With the ontology, the quantization loss in generating BoW as in
Fig. 2(c) can be eliminated since the similarity of any two words
can be measured. Furthermore, compared to keypoint matching,
there are normally less words to match. For instance, there could
be thousands of keypoints available for matching between two
keyframes, as depicted in Fig. 2(a). The proposed approach can
be viewed as an extension of visual vocabulary and an efficient ver-
sion of keypoint matching, where cross-bin matching of words, in-
stead of keypoints, is enabled.
Table 1
Weighting schemes for bag of visual/text words (ti: the ith word, tfi: term frequency
of ti; N: the total number of images/documents; ni: the number of images/documents
having word ti .).

Name Factors Value for ti

Binary Binary 1 if ti is present, 0 if not
TF tf tfi

TF-IDF tf, idf tfi � logðN=niÞ
3.2. Linguistic similarity of visual words

With the constructed BoW ontology, linguistic reasoning can be
conducted by considering specificity, path length and information
content (IC) of visual words. The specificity refers to the depth of a
word in the tree. The deeper a word, the more specific the word.
Path length, measured by the minimum number of links traverse
from one word to the other, indicates the physical distance of
two visual words in the ontology. IC is inversely proportional to
the probability of a word being seen. Basically, higher probability
means a word is frequently observed and less discriminative. Thus,
the value of IC, which indicates the significance of a word, should
be lower in this case. In the literature of linguistic computing, there
exist various measures characterizing the similarity of words [22].
Please cite this article in press as: Y.-G. Jiang, C.-W. Ngo, Visual word
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In this paper, by utilizing the BoW ontology, we explore the three
most popular measures for reasoning the similarity of visual
words.

3.2.1. Resnik
Resnik considers the IC of common ancestors for similarity mea-

sure [23]. Denote v i and v j as two visual words, Resnik is defined
as

simðv i;v jÞ ¼ ICðLCAðv i;v jÞÞ; ð1Þ

where LCA is the lowest common ancestor of v i and v j. IC is quan-
tified as the negative log likelihood of word probability. The proba-
bility is estimated by the percentage of keypoints in a visual
hyperball. In the extreme case, the root node ‘‘a” in Fig. 2(b) has
IC = 0 since pðaÞ ¼ 1.

3.2.2. JCN
Resnik has the disadvantage that all words sharing one LCA

have the same similarity, despite how far the distances between
them. JCN deals with this problem by also considering the ICs of
the compared words, defined as [24]

simðv i;v jÞ ¼
1

ICðv iÞ þ ICðv jÞ � 2 � ICðLCAðv i;v jÞÞ
: ð2Þ
3.2.3. WUP
In addition to IC, WUP considers the path length and the depth

of words to measure the linguistic similarity [25]:

simðv i;v jÞ ¼
2 � depthðLCAðv i;v jÞÞ

lenðv i;v jÞ þ 2 � depthðLCAðv i;v jÞÞ
; ð3Þ

where lenðv i;v jÞ represents the minimum path length between the
words v i and v j, and depthð�Þ is the depth a word in the BoW
ontology.

4. Soft weighting with visual linguistics

We first explore the BoW linguistics introduced in the previous
section to softly weight the importance of visual words in a key-
frame. Word (Term) weighting is a key technique in IR. Two major
factors in term weighting are TF (term frequency) and IDF (inverse
document frequency). The popular term weighting schemes in IR
are summarized in Table 1. Binary weighting assigns 1 (or 0) to
indicate the presence (absence) of a word, while TF measures the
importance of a word by considering the frequency of its appear-
ance in a document. TF-IDF further degrades the importance of a
word if the word also frequently appears in other documents.

In current literature, existing works on visual-based BoW
mostly migrate these weighting schemes directly. For example,
TF-IDF is adopted in video google [17], binary weighting is em-
ployed in [1] for image classification, and most approaches use
TF directly [2,3]. Furthermore, the assignment of a keypoint to vi-
sual word is normally conducted by measuring the distance be-
tween keypoint and cluster centroids. The assignment is basically
a one-to-one mapping process, where a keypoint is mapped to a
proximity and linguistics for semantic video indexing ..., Comput.
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word with the closest distance to centroid. Visual words are de-
rived directly from keypoint clustering, so the current weighting
schemes present several problems. First, the size of visual vocabu-
lary can govern the formation of clusters. By increasing the vocab-
ulary size, two similar keypoints may reside in different clusters.
The direct one-to-one keypoint-to-word assignment, which treats
each visual word independently, overlooks the inherent linguistics
among the visual words. Second, using the frequency of words (i.e.,
TF) for term weighting is not adequate. For example, two keypoints
assigned to the same visual word are not necessarily equally sim-
ilar to that visual word, meaning that their distances to the cluster
centroid are different. TF, which assumes equal contribution for
every keypoint assigned to a word, could over-estimate the signif-
icance of a word.

To tackle the aforementioned problems, we propose a soft
weighting scheme to rigorously evaluate the significance of visual
words in a keyframe. The new scheme takes into account two
key steps: the assignment of keypoint-to-word is one-to-many,
and the importance of an assigned word is governed by their lin-
guistic relationship. The intuitive idea is that, the significances of
visual words to a keyframe are softly weighted depending on the
underlying similarity among keypoints and words. Let V as a visual
vocabulary with n words. Each keypoint is assigned to k ðk < nÞ
nearest visual words in V.1 The soft-weight of a word vm in an image,
denoted as sfm, is then measured as

sfm ¼
Xk

i¼1

XLi

j¼1

hði; jÞ � simðj;mÞ; ð4Þ

where Li is the set of keypoints whose ith nearest neighbor is vm.
The measure simðj;mÞ represents the similarity between the key-
point pj 2 Li and the visual word vm 2 V . The hði; jÞ is a function to
further quantify the importance of simðj;mÞ, by modeling the rela-
tionship among pj, its first and ith nearest visual words.

Fig. 3(a) illustrates the function hði; jÞ. Suppose visual word v j1 is
the nearest neighbor of keypoint pj, the weight for v ji, which is the
ith nearest word of pj, is measured by hði; jÞ defined as

hði; jÞ ¼ sji

sj1

� �a

; ð5Þ

where sj1 and sji are the cosine similarities between keypoint pj and
visual words v j1 and v ji, respectively. The parameter a is introduced
to amplify the ratio of sji to sj1. Obviously a > 0 since the weight
hði; jÞ should be monotonically increasing with the similarity sji.

Eq. 5 only considers the proximity between keypoints and
words (cluster centroids), and thus cannot characterize the key-
point distributions such as cluster size. Linguistics can be utilized
to adjust the weight hði; jÞ by introducing the IC of both words:
1 Empirically we found k ¼ 4 is a reasonable setting.

Please cite this article in press as: Y.-G. Jiang, C.-W. Ngo, Visual word
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hði; jÞ ¼ sji

sj1

� �a

� ICðv j1Þ
ICðv jiÞ

� �
; ð6Þ

where ICð�Þ represents the IC described in Section 3.2. The rationale
of using IC can be explained by an example shown in Fig. 3(b), in
which the keypoint p resides in the cluster of v2 but having nearer
distance to the centroid of v1 compared to v2. To increase the
importance of v2, the hði; jÞ in Eq. 6 considers the ratio of two words
in terms of the size of their hyperballs.

Soft-weighting offers a new perspective of weighting visual
words. One similar piece of work is a recent study by Agarwal
et al. [26]. In [26], keypoints are estimated with posterior prob-
abilities through a Gaussian mixture distribution learnt from
the descriptor feature space. However, this approach is not scal-
able to a large dataset because learning the distribution from a
huge amount of descriptors is computationally intensive. The vi-
sual word proximity is also implicitly modeled in [27,28] using a
vocabulary tree, which is constructed by hierarchical quantiza-
tion of keypoint features. The word weighting scheme of
[27,28] is mainly based on TF or its combination with IDF. By
assigning weights to both inner nodes and leaf nodes of the tree,
the proximity of leaf nodes can also be partially inferred. Com-
paring [27,28] to soft-weighting, there are two major drawbacks.
First, the estimation of word significance is not as accurate as
ours because [27,28] are basically based on simple word count-
ing. Second, [27,28] uses both inner and leaf nodes as visual
words, resulting in a much higher dimensionality compared to
our approach that only uses the leaf nodes. Furthermore, the lin-
guistic aspect of visual words was not explored in these existing
works.

5. Linguistic matching with CEMD

A special feature of soft-weighting is that the proximity and lin-
guistics of visual words are determined offline during the process
of keypoint-to-word assignment. The similarity of two keyframes
can thus be efficiently computed via bin-to-bin comparison of visual
words. The linguistic similarity of the visual words, however, is only
partially exploited as the ontological factors such as ancestor rela-
tionship and path length are not characterized. In this section, we
present a cross-bin word matching algorithm that fully utilizes the
ontological relationship of visual words for measuring image
similarity.

Based on the BoW ontology, two different visual words can al-
ways be matched by measuring their linguistic similarity. Conse-
quently, given m words in a keyframe, there is Oðm2Þ possible
matching of words for comparing a keyframe pair. We adopt
EMD [29,30] for matching two sets of visual words across bins.
The ground distance of EMD is based on the linguistic measure,
while the signatures of words are characterized by word
weighting.

EMD measures the distance between two weighted point sets as a
transportation problem [29]. A point set is normally referred to as a
signature. EMD strives to find the minimum amount of ‘‘work” to
transport the weights from one signature to the other. In BoW, a key-
frame P is represented as a signature P ¼ fðp1;wp1

Þ; . . . ; ðpm;wpm
Þg of

m words, where pi indexes the pith visual word in the vocabulary,
and wpi

is the corresponding weight (signature). To match P with an-
other keyframe Q of n words, the EMD is computed as

EMDðP;QÞ ¼
Pm

i¼1

Pn
j¼1 fijdijPm

i¼1

Pn
j¼1 fij

; ð7Þ

where the ground distance dij between word vpi
and vqj

is mea-
sured via the linguistic similarity such as JCN. The flow fij, repre-
senting the amount of weight transferred from vpi

to vqj
, is

optimized during the transportation.
proximity and linguistics for semantic video indexing ..., Comput.
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5.1. Constraint-based EMD

While the idea of adopting EMD for exploring linguistic similar-
ity appears interesting, the approach suffers from speed ineffi-
ciency. Suppose the number of visual words in two signatures is
m, the complexity of EMD is Oðm3 log mÞ. Considering that there
are generally tens to hundreds of visual words in a keyframe, the
matching could be computationally intensive. Here, we propose a
novel constraint matching by dividing the visual vocabularies into
c visual chapters, and consequently enforcing EMD not to match
words across chapters. This is equivalent to ‘‘distributive match-
ing” where there are c EMDs being performed for each chapter,
and then merged as a whole. The idea is based on the fact that vi-
sual words are cluster centers in keypoint feature space. Certain
categories of visual words (e.g., people and building) are seldom
matched, and thus can be ignored from EMD matching when speed
is an issue to consider.

To learn the visual chapters of a vocabulary, we compute a flow
matrix F by observing the accumulated flows (fij) of EMD over a set
of training examples. EMD will basically create flows among simi-
lar words. The matrix F hints at the correlation among visual
words, and each entry Fij indicates the total sum of flows between
two words v i and v j. By treating F as a similarity matrix, an undi-
rected fully-connected graph is constructed over F, where nodes
are words and edges represent similarities based on EMD flows.
The normalized cut algorithm [31] is then employed to partition
the graph into c disjoint sub-graphs. Each sub-graph is treated as
a visual chapter of the vocabulary. The visual words with lower
amount of flows are expected to stay in different chapters.

With the c chapters of words, the constraint-based EMD,
namely CEMD, of two keyframes P and Q is performed by running
EMD separately in each chapter and then combined as

CEMDðP;QÞ ¼
Xc

i¼1

SPi

SP
þ SQi

SQ

� �
EMDðPi;QiÞ; ð8Þ

where SPi
is the number of visual words that P has in chapter i, and

similarly for SQi
. Note that SP ¼

Pc
i¼1SPi

and SQ ¼
Pc

i¼1SQi
. For two

keyframes with m visual words, the speed of CEMD is improved
to Oðc � ðm=cÞ3 logðm=cÞÞ. While the computational complexity is
the same as the original EMD, CEMD is practically more efficient be-
cause the constant ð1=cÞ3 eliminates many word comparisons.
Fig. 4. Keyframe examples of 20 semantic cat

Please cite this article in press as: Y.-G. Jiang, C.-W. Ngo, Visual word
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6. Experiment I: Semantic video indexing

Semantic video indexing is also referred to as high-level feature
extraction in TRECVID [32]. The aim is to annotate the semantic
concepts of keyframes for video indexing. In TRECVID, this task is
generally conducted in a diversified setting where the emphasis
usually includes feature extraction, multi-modality fusion, and ma-
chine learning on a huge multimedia dataset. In this section, we
only focus on the feature level testing. In particular, the perfor-
mance of soft-weighting on BoW will be verified and compared
with other weighting schemes.

6.1. Dataset and experimental setup

We use the TRECVID-2006 dataset, where the training and test-
ing sets consist of 61,901 and 79,484 video shots, respectively. In
the experiments, we test the 20 semantic concepts which are se-
lected in the TRECVID-2006 evaluation [32]. The class labels of
the training set are provided by LSCOM [33]. We use one keyframe
per shot for experiments. Fig. 4 shows example keyframes of the 20
semantic concepts. These concepts cover a wide variety of types,
including objects, indoor/outdoor scenes, people, events, etc. Note
that this dataset is a multi-label dataset, which means each key-
frame may belong to multiple classes or none of the classes, e.g.
the example of concept weather in Fig. 4 also belongs to concept
map.

In the experiments, we use DoG [10] to detect keypoints, and
128-dimensional SIFT descriptor [10] to describe keypoints. After
generating a visual vocabulary with the k-means algorithm and
encoding all the keyframes using BoW histograms, a two-class
SVM classifier is trained for each semantic concept using the train-
ing set. We only experiment with soft-weighting in this task. As the
size of the TRECVID dataset is huge, CEMD which performs expen-
sive cross-bin matching is not tested mainly due to speed consid-
eration. In addition, there is no proof showing that the EMD
kernel (and thus CEMD) satisfies Mercer’s condition [34]. Thus, in-
stead of adopting CEMD as the kernel of SVM, we use the v2 kernel
SVM [2] which is computationally efficient and theoretically valid.
The parameters in the SVMs are optimized by grid search using
cross validation.

The performance evaluation follows TRECVID’s standard using
the inferred average precision (InfAP) computed over the top
egories in the TRECVID-2006 evaluation.
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Table 3
Performance comparison of semantic video indexing on the TRECVID-2006 dataset.

Approach Mean InfAP

BoW with soft-weighting 0.120

Local feature systems in TRECVID’06 Mediamill [4] 0.055
UC Berkeley [36] 0.110

Top 3 performance of TRECVID’06 CMU [8] 0.159
IBM [37] 0.177
Tsinghua [9] 0.199
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2000 retrieved shots. The InfAP is an approximation of the conven-
tional average precision (AP). The main advantage of InfAP is that it
can save lots of judging effort in generating ground-truth labels for
a large test dataset [35].

6.2. Visual word weighting

We first study the sensitivity of the parameter a in Eq. 6. Fig. 5
plots the sensitivity curve. We can see that the curve appears to be
stable as the value of a increases and the performance peaks at
around 60. With reference to Fig. 3(b), this can be intuitively ex-
plained when observing that the distances among p, v1 and v2

are close to each other, so a larger value of a is required to amplify
the similarity difference among them. This experiment verifies that
by considering and amplifying the tri-wise relationship between
keypoint and visual words, better performance can be expected.
The a is not sensitive as long as the value is large enough to
emphasize the similarity difference.

Table 2 compares the performance of four different weighting
schemes. The proposed soft-weighting outperforms the other pop-
ular weighting schemes across different vocabulary sizes with
large margins (improvement ranges from 18% to 150%). This con-
firms our claim that the visual words are correlated to each other,
and by modeling the word linguistics and proximity in the soft-
weighting, we can significantly boost the discriminative power of
BoW. The vocabulary size is claimed as an important factor of
BoW in many other studies [3,15]. Generally, smaller size is pre-
ferred to speed up the assignment of keypoints to visual words,
which is a problem of nearest neighbor search. Most studies, nev-
ertheless, claim that large vocabulary size can lead to better perfor-
mance. In our experiment, when testing binary weighting, we
observe that an appropriate size of vocabulary is about 10,000
(or even larger). An interesting and important observation is that
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Fig. 5. Sensitivity to parameter a.

Table 2
Performance comparison (mean InfAP) of different word weighting schemes on the
TRECVID-2006 dataset.

Vocabulary size Weighting schemes

Binary TF TF-IDF Soft-weighting

500 0.048 0.088 0.081 0.120
1000 0.076 0.082 0.078 0.116
5000 0.082 0.083 0.089 0.107

10,000 0.083 0.090 0.096 0.113
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when more sophisticated weighting schemes are employed, the
impact of vocabulary size turns to be insignificant, especially for
our soft-weighting scheme. This observation is explained by the
advantages of the soft-weighting scheme discussed in Section 4.
We consider this an important merit of soft weighting: less sensi-
tivity to the size of vocabulary. The merit allows the use of smaller
vocabulary size, while maintaining a comparable or even better
performance to that of large vocabulary sizes.

6.3. Performance comparison

With soft-weighting, local features alone exhibit excellent per-
formance on video indexing. In this section, we further compare
and analyze the performance of soft-weighted BoW with some
state-of-the-art techniques presented in TRECVID-2006.

We first compare our BoW to the local feature approaches of
Berkeley [36] and Mediamill [4] teams. The results are shown in
Table 3. Compared to [36] who adopted keypoint matching, the
soft-weighting gives better performance. In [36], point-to-point
matching with exemplars is required. This process is computation-
ally expensive. For instance, the number of comparisons per key-
point in a test sample is as high as 258,200 (1291� 200), where
1291 exemplars and 200 keypoints per exemplar were used in
their experiment. While for the soft-weighting, the number of
comparisons per keypoint is only 500 for a vocabulary of 500
words. The BoW of [4] used late fusion to combine multiple key-
point detectors and descriptors. However, our results show that
the soft-weighted BoW using DoG detector alone achieves a mean
InfAP of 0.12, which already doubles that of [4]. Finally, we com-
pare our results with the top-3 performance teams (CMU, IBM,
Tsinghua) in the TRECVID-2006 evaluation [32]. These systems
emphasized not only features, but also multi-modality fusion tech-
niques and machine learning methods. As shown in Table 3, our
BoW using local feature alone is comparable to those sophisticated
systems such as CMU [8] and IBM [37]. CMU used both visual (col-
or, texture, BoW) and text features, while IBM used global and
localized color and textures, motion features, as well as text. Com-
pared to Tsinghua [9] who emphasized rich features and rich clas-
sifiers (110 SVMs were used for each concept), our method is more
efficient and can be easily scaled up to a thousand of semantic con-
cepts. To the best of our knowledge, the proposed soft-weighted
BoW is the best single visual feature for the TRECVID-2006 high-le-
vel feature extraction task.

7. Experiment II: Near-duplicate keyframe retrieval

In this section, we experiment the CEMD matching and soft-
weighting for near-duplicate keyframe (NDK) retrieval. Near-
duplicate keyframes are a group of keyframes similar to each other,
but appear differently due to variations introduced during acquisi-
tion time, lens setting, lighting condition, editing operation, etc.
Fig. 6 shows three pairs of NDKs that have undergone various
changes. The task of NDK retrieval is to identify and search the
set of near-duplicates for a given query keyframe.
proximity and linguistics for semantic video indexing ..., Comput.



Fig. 6. Examples of near-duplicate keyframes: (a) different acquisition time; (b)
lens variations; (c) video editing.
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Fig. 7. NDK retrieval performance on Columbia dataset: (a) comparison of linguistic
measures; (b) performance of CEMD versus EMD; (c) effect of word weighting on
CEMD.
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In this task, we begin by testing various settings of CEMD
matching, including the choice of ground distance using different
linguistic measures, and the choice of word signature (binary, TF,
soft-weighting).

7.1. Datasets and experimental setup

We use the Columbia dataset [38] which contains 600 keyframes
from the TRECVID-2004 benchmark. There are 150 near-duplicate
pairs in this dataset, and we use all of them (300 duplicates) as que-
ries for assessing retrieval performance. The evaluation is based on
the probability of successful top-k retrieval [38], defined as
RðkÞ ¼ Nc=Na where Nc is the number of queries that find their
near-duplicates in the top k list, and Na is the total number of queries.
To further strengthen our claim, we also use a larger dataset – the
TRECVID-2006 test set containing a total of 79,484 keyframes in
the experiments.

Again, we use DoG [10] as keypoint detector and SIFT [10] as the
descriptor. For Columbia dataset, a visual vocabulary of 1000
words is built, associated with an ontology of 32 levels. For the
TRECVID-2006 test set, we choose the vocabulary of 500 words,
which performs best in the experiments of semantic video index-
ing. The depth of the associated ontology is 23.

7.2. Effect of linguistic similarity measure

First, we compare three linguistic similarity measures: JCN, Res-
nik (RES) and WUP, with the original EMD as the distance measure
and TF as the weighting scheme. Fig. 7(a) shows the performance
comparison of the three measures on Columbia dataset. Among
them, JCN demonstrates the best performance for considering the
ICs of visual words and their ancestor. Resnik, considering only the
IC of the lowest common ancestor (LCA), loses the discriminative
power as it assigns equal similarity to all the words sharing the same
LCA. WUP, utilizing path length and depth, does not show an appar-
ent advantage over JCN, while still performing better than Resnik.
We investigate the results and find that this is mainly because the
similarity of some words is close to 0 as long as their LCA is near
the root (where depth(LCA) = 0), despite the distance between two
words. Our finding indeed indicates that the ancestor relationship
and ICs of words are the best resources to use in near-duplicate re-
trieval. To further justify the usefulness of the linguistic measure,
we also compare the performances with EMD which uses Euclidean
distance between words (cluster centroids) as the ground distance.
As shown in Fig. 7(a), Euclidean is not better than JCN, but still out-
performs WUP and Resnik. This probably indicates that word dis-
tance is an important factor that should not be ignored as in
Resnik. While JCN and WUP do not account for word distance, the
information can be indirectly inferred from the ICs and path length
of words. JCN, when considering ICs of three parties (words and their
Please cite this article in press as: Y.-G. Jiang, C.-W. Ngo, Visual word
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LCA), shows better performance. This is mainly because of the addi-
tional consideration of IC which infers cluster size, and LCA which in-
fers the global view of inter-cluster distance and density.

7.3. Comparison of CEMD and EMD

Next, we compare the performance of CEMD and EMD with JCN
as the linguistic measure. In CEMD, 300 keyframes are used for
proximity and linguistics for semantic video indexing ..., Comput.



Table 4
Per query NDK retrieval efficiency on the TRECVID-2006 test set.

Approach Time

Keypoint based OOS 5 h 44 min

Ontology based EMD- Soft 20 h 10 min
TF 2 h 5 min

CEMD- Soft 19 min 58 s
TF 2 min 59 s

Vocabulary based COS- Soft 51 s
TF 50 s

Fusion CEMD-TF + COS-Soft 3 min 10 s
Baseline CM 22 s
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training the visual chapters. To avoid over fitting, this training set
is randomly obtained from the TRECVID-2005 dataset and is inde-
pendent of the Columbia and TRECVID-2006 datasets. In our exper-
iment, the vocabulary is empirically divided into eight chapters.
Fig. 7(b) shows the performances of CEMD and EMD, in comparison
with the one-to-one symmetric (OOS) matching of [13] and block-
based color moment (CM). OOS, in contrast to our approach, adopts
keypoint matching (without vocabulary) and thus is computation-
ally slow. Nevertheless, since no quantization loss is involved, OOS
can achieve the best possible performance of keypoint-based ap-
proach for this dataset [13]. CM, on the other hand, serves as a
baseline to judge the performance improvement by CEMD and
EMD. As shown in Fig. 7(b), the performance of CEMD is highly
competitive to EMD. CEMD offers better retrieval rate for top-k
COS Soft

COS TF

0.4 0.45

CEMD TF+COS Soft

CEMD Soft

CEMD TF

Mean Ave

Fig. 8. NDK retrieval performance

Fig. 9. Examples of near-duplicate keyframes retrieved by CEMD-Soft. The left most five
The true positives are marked in red boxes. (For interpretation of color mentioned in th
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(k 6 10) list, despite the fact that CEMD is about 40 times faster
than EMD. Compared with OOS, CEMD offers lower precision but
faster speed (about 100 times, cf. Table 4).

7.4. Effect of word weighting

We experiment with the effects of three weighting schemes:
soft-weighting, binary and TF on CEMD. For soft-weighting, the
hði; jÞ is based on Eq. 5 since the CEMD has already incorporated
the linguistic information in the ground distance measure.
Fig. 7(c) shows the performances of CEMD with JCN based on three
weighting schemes on Columbia dataset. The results show that soft
(CEMD-Soft) outperforms other schemes. This confirms the fact
that soft-weighting performs well not only for semantic video
indexing, but also for NDK retrieval under the CEMD matching.

7.5. Performance on TRECVID-2006 test set

To further verify the performance, we conduct experiments on a
larger dataset: the TRECVID-2006 test set containing nearly 80k
keyframes. In addition to retrieval effectiveness, we also consider
speed which is also a concern when searching duplicate copies in
large-scale database. We compare five measures: CEMD-Soft,
CEMD-TF, COS-Soft, COS-TF, and CEMD-TF + COS-Soft. Cosine sim-
ilarity (COS) serves as a baseline for its popularity and efficiency in
IR [39]. It is important to note that the soft-weighting, which softly
assigns a keypoint to multiple words, sacrifices the advantage of
sparse representation as in TF weighting (average number of non-
0.493

0.479

0.557

0.569

0.549

0.5 0.55 0.6

rage Precision (MAP)

on the TRECVID-2006 test set.

examples are query keyframes, followed by the most similar retrieved keyframes.
is figure the reader is referred to the web version of the article.)
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zero bins in BoW histogram increases from 153 to 340). As a result,
the increase of non-zero bins in soft-weighting seriously affects the
speed of EMD/CEMD. This situation is in contrast to Section 6,
where soft-weighting does not affect the speed much because
the running time complexity of v2 kernel is linear. The complexity
of EMD/CEMD is cubic and thus can become much slower when
soft-weighting scheme is adopted. For practical consideration, we
also experiment a fusion strategy, CEMD-TF + COS-Soft, which
takes the advantage of cross-bin word matching in sparse repre-
sentation while still utilizing the power of soft-weighting under
cosine similarity.

We experiment with 110 near-duplicate queries randomly
found in the test set. Each approach returns the top-40 ranked key-
frames for performance comparison. To evaluate the results, two
assessors were invited to label the keyframes returned from the
five tested approaches. The ground-truth is produced by pooling
the near-duplicate keyframes labeled by assessors. We use AP over
the top-40 lists as the evaluation criteria. Fig. 8 shows the mean
average precision (MAP) of the five approaches over the 110 que-
ries. CEMD outperforms cosine similarity by 14.6% (TF) and 15.5%
(Soft). This again confirms the effectiveness of the proposed lin-
guistics-based CEMD matching for near-duplicate retrieval. Mean-
while, the average fusion of CEMD-TF and COS-Soft offers
comparable performance to CEMD-Soft, while with the advantage
of speed efficiency. Fig. 9 shows the examples of near-duplicate
keyframes retrieved by CEMD-Soft. These examples indicate the
types of near-duplicate visual information being captured. Our ap-
proach could successfully retrieve the NDKs with variations such
as color, lighting, scale, etc.

Table 4 lists average response time of querying a NDK in TREC-
VID-2006 test set. The response time includes the time to upload
the features and save the results. The experiments are conducted
on a Pentium-4 3 GHz machine. Overall, the proposed CEMD is sig-
nificantly faster (40–60 times) than EMD, and TF is more efficient
(7–10 times) than soft-weighting under EMD/CEMD. By fusing
CEMD-TF and soft weighting, the speed is about the same as
CEMD-TF but with better retrieval performance.

8. Conclusion and future work

We have presented our approaches in exploring the linguistics
and proximity of visual words. On one hand, a soft-weighting
scheme is proposed to softly and linguistically weight the signifi-
cance of words by assigning one keypoint to multiple words. On
the other hand, CEMD, which exploits the ontological relationship
of visual words, is proposed for the cross-bin matching of visual
words. The experimental results on video semantic indexing and
near-duplicate retrieval show the advantages of incorporating lin-
guistic and ontological relationships in word weighting and simi-
larity measures of BoW.

Given the success of modeling visual linguistics as shown in our
experiments, we plan to develop a more efficient method for cross-
bin word matching. One possible direction is to apply the recently
proposed diffusion distance [40]. In addition, while ontology is
shown to be useful, in this paper we only explore the hyponym
relationship of visual words. Other aspects such as synonymy
and polysemy of visual words could be further studied to extend
our current work.
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