
On the Sampling of Web Images for Learning Visual
Concept Classifiers

Shiai Zhu†, Gang Wang†‡, Chong-Wah Ngo†, Yu-Gang Jiang§

†Dept of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
‡School of Computer Science, Fudan University, Shanghai, China

§Dept of Electrical Engineering, Columbia University, New York, NY, USA
shiaizhu2@student.cityu.edu.hk, wanggang_sh@hotmail.com

cwngo@cs.cityu.edu.hk, yjiang@ee.columbia.edu

ABSTRACT
Visual concept learning often requires a large set of train-
ing images. In practice, nevertheless, acquiring noise-free
training labels with sufficient positive examples is always
expensive. A plausible solution for training data collection
is by sampling the largely available user-tagged images from
social media websites. With the general belief that the prob-
ability of correct tagging is higher than that of incorrect
tagging, such a solution often sounds feasible, though is not
without challenges. First, user-tags can be subjective and,
to certain extent, are ambiguous. For instance, an image
tagged with “whales” may be simply a picture about ocean
museum. Learning concept“whales”with such training sam-
ples will not be effective. Second, user-tags can be overly ab-
breviated. For instance, an image about concept “wedding”
may be tagged with “love” or simply the couple’s names.
As a result, crawling sufficient positive training examples
is difficult. This paper empirically studies the impact of
exploiting the tagged images towards concept learning, in-
vestigating the issue of how the quality of pseudo training
images affects concept detection performance. In addition,
we propose a simple approach, named semantic field, for
predicting the relevance between a target concept and the
tag list associated with the images. Specifically, the rele-
vance is determined through concept-tag co-occurrence by
exploring external sources such as WordNet and Wikipedia.
The proposed approach is shown to be effective in selecting
pseudo training examples, exhibiting better performance in
concept learning than other approaches such as those based
on keyword sampling and tag voting.
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1. INTRODUCTION
Visual concept detection is fundamentally a classification

task that determines whether a multimedia unit (e.g., im-
age) is relevant to a given target concept. Specifically, clas-
sifiers (e.g., SVM) are trained with training examples, and
the learnt classifiers are employed for concept annotation.
A critical step along this process is the acquisition of suf-
ficiently large amount of quality training data for concept
learning. The acquisition, nevertheless, is not a trivial pro-
cess. Labeling TRECVID 2009 dataset, for instance, re-
quires collaborative efforts from about 40 research teams to
manually annotate 43,616 shots for 12 concepts [18]. Such
a labor-intensive process will become extremely difficult for
the ultimate aim of labeling thousands of visual concepts.

On the other hand, with the popularity of social media,
there are more and more digital images annotated with user
tags and comments on the web. For example, it is reported
that there are four billions of images on the Flickr web site.
Automatic sampling of these weakly labeled web images for
concept learning thus appears as a natural way of replacing
expensive manual labeling. Such efforts include the recent
works in [8, 15]. In [8], for the purpose of filtering noisy
tagged images, semi-supervised learning is adopted to col-
lect web images similar to expert-labeled images for cross-
domain concept learning. In [15], in view that as high as 90%
of manual labeling efforts are spent on identifying negative
samples, concept learning is conducted by direct collection
of negative samples from user-tagged images, together with
expert-labeled positive examples. Despite of these efforts, in
general, sampling of noise-free training samples, especially
the positive samples, from the web for effective classifier
learning remains an issue not fully understood. How such
weakly labeled examples affect learning, and the proper way
of acquiring training examples for free, are yet to be ad-
dressed. The study in [13] reveals that the user-supplied
tags are imprecise and only 50% of tags are related to images.



Making photos accessible to public is only one of the tagging
motivation from users. As indicated by [6], there are roughly
eight categories of tagging motivation including opinion ex-
pression, attraction of attention, and self-presentation. Un-
der such scenario, user tags can be personalized, and more
importantly, may not be helpful for visual search.
The challenges of sampling web images for concept learn-

ing can be briefly summarized as follows. First, user-tags
tend to be subjective and personalized. Different users may
focus on different aspects of an image and thus provide a va-
riety of tags which are not necessarily content-related. For
example, Figure 1(a) is an image about child. However, the
concept “child” is not tagged. Instead, context-related tags
such as “barossa” and “valley”, indicating the place and lo-
cation where the photo was taken, are tagged. Collecting
images as 1(a) for training concepts such as “valley” will
lead to ineffective classifier learning. Second, user tags can
be ambiguous. The photo in 1(b) contains the tag “bear”.
While “bear” is commonly referred to as an animal, it also
has another word sense: “a surly, uncouth, burly, or sham-
bling person”. In other words, while the tag“bear” for 1(b) is
content-related, certain degree of word sense disambiguation
is required to differentiate “bear” in this photo as a person
from an animal. Third, tag list is often incomplete. For
instance, in 1(c), while the concepts such as “sea”, “sky” and
“water” are tagged, the concept “beach” is missing. In this
case, sampling training images merely based on keyword can
result in low recall of positive samples.

beach bear furry 
fur dirty celebrity 
hairy arms fuzzy 

channel mike 
discovery daddy

blue light sea sky
water clouds d50 
graffiti sand salou 

paintwithlight 
sigma  capsalou 

animal animals cute 
dog child eyes friends 

happy pet eye hair 
best puppy head joy 
friend ears paws paw 

(a) subjective tags (b) ambiguous tag

(c) incomplete tags (d) content and context 
related tags 

fun boy smile 
valley hat balloon 

laugh beanie 
barossa

Figure 1: Examples of web images with tags.

This paper studies two issues: 1) how to sample pseudo
positive/negative training data from web images, and 2) the
quality of training data towards concept classifier learning.
Given a web image with a tag list, we propose an approach
to predict the“Semantic Field”of the image. Semantic Field
[12] was originally proposed to capture a more integrated re-
lationship among the entire set of words. In our work, we
consider four different cases of examples, as shown in Fig-
ure 1. In 1(a), the image will not be sampled for training
concept “valley” since the surrounding tags such as “boy”
and “laugh” do not support the existence of “valley” in the
image. In 1(b), the concept “bear” could possibly be dis-
ambiguated as not related to “animal” – the most common
sense of “bear”, by investigating other tags such as “beach”
and “celebrity”. In 1(c), though concept “beach” is missing,
the image will still be sampled for learning “beach” since
surrounding tags such as “sea”, “sky” and “sand” jointly sug-
gest the concept of “beach” in the image. In 1(d), the image
could possibly be ranked higher for learning concept “dog”

since the tags “dog”, “animal”, “pet” and “puppy” give clue
that “dog” is the major highlight of the image. The signifi-
cance of user tags towards a target concept can be modeled
from three different sources: web image copus, Wordnet and
Wikipedia. In brief, different from the direct matching of
keywords and tags, we consider tags of an image collectively
to predicting underlying semantic field. Ideally, the seman-
tic field can highlight the major visual concepts in images
while providing an effective means for ranking and sampling
pseudo-training images for a given concept.

The remaining sections are organized as follows. Section 2
reviews the related work about concept learning, tag quality
refinement, and sampling of pseudo training examples. Sec-
tion 3 describes the proposed work on modeling the semantic
field of concepts for image ranking and sampling. Section 4
presents our empirical study and simulation on the effect of
training data quality towards classifier learning. Compari-
son among different approaches is also given to investigate
the performance of the proposed approach based on seman-
tic field. Finally Section 4 concludes the findings in this
paper.

2. RELATED WORKS
2.1 Concept Learning

In multimedia community, numerous efforts have been de-
voted to concept classifier learning. Naphade and Smith [17]
surveyed the state-of-the-art systems and pointed that most
of them adopted supervised learning approaches for seman-
tic concept detection. Such learning approaches estimate a
function for all possible input values. This implies the avail-
ability of good quality training data, which ideally includes
most typical types of the data in the test set. In other
words, supervised learning expects that the data distribu-
tion of training examples is close enough to that of testing
data such that learning can be effective. The detection per-
formance may degrade significantly if this condition could
not be satisfied.

To address this problem, Yan and Naphade [24] proposed
a multi-view semi-supervised cross-feature learning approach.
Initially one classifier from each view is learnt by expert-
labeled training data. The model is further boosted by aug-
menting the training set of one view with selected unlabeled
testing data on which the other views have high-confidence
prediction. However, Tian et al. [7] pinpointed that unla-
beled data helps only if labeled and unlabeled data are from
the same distribution in a semi-supervised learning frame-
work. Otherwise, detection performance may degrade. Qi et
al. [4] and Wang et al. [22] proposed transductive learning
methods to infer unlabeled test data by finding related la-
beled training data via a clustering method. Tong et al. [21]
conducted active learning to capture more related training
examples through relevance feedback. Despite these efforts,
the gap between training and testing data commonly exists
and adversely impacts the effectiveness of classifier. Intu-
itively, the gap can be bridged by acquiring a sufficiently
number of training examples. In view that manual label-
ing is expensive, automatic sampling of weakly tagged but
heterogeneous training data from the web becomes a timely
issue to study.

2.2 Quality of User Tagging
Ames and Naaman [1] analyzed the motivations of anno-

tation in mobile and online media. They found that the



these include both personal and social purposes. Bischoff et
al. [6] provided the tag distributions in three tagging envi-
ronments. The study indicated that only 45%-60% tags can
be used to enhance search experience. In the view of aiding
in searching, other tags such as tagging for owners or self
references belong to the noise.
Kennedy et al. explored the trade-off in acquiring training

data by automated web image search as opposed to human
annotation [13]. The study, based on concepts in consumer
photos, indicated that concept classifiers learnt from manual
annotation generally outperform those learnt from training
examples acquired from image search. However, for con-
cepts which are visually consistent across domains, there is
no apparent performance difference between using human
annotation and noisy web images. This suggests that man-
ual annotation is not necessary for this group of concepts.
On the other hand, for concepts which are visually diverse
across different domains, the performance is equally worse
regardless of using human annotation or search result. This
also gives clue that human annotation may not be necessary
for this category of images. The study showed that there are
mainly two cases where human annotation will be helpful.
These include concepts which have many view angles but are
visually consistent across domains, and concepts which lack
of coherence across domains but share visual consistency be-
tween training and testing data.
Tag refinement is one effort aiming for improving tagging

quality. Liu et al. [3] adopted random walk over a tag sim-
ilarity graph to refine the relevance scores. Li et al. [16]
proposed a neighbor voting algorithm to learn tag relevance
by accumulating votes from visual neighbors. While these
works indicated that content relevant tags can be somewhat
predicted from noisy user tags and visual similarity, these
tags were also considered seperately and there is no effort yet
showing the effect of using the images under tag refinement
for concept learning. One simulation study was conducted
by [20] using images with manually disambiguated tags. It
was report that training images with higher quality will im-
prove the performance of most concept classifiers either in
within-domain or cross-domain scenarios.

2.3 Collecting Pseudo Training Examples
Acquiring training images from the web for various pur-

poses including concept classifier learning has recently cap-
tured numerous research attentions [20, 5, 14, 2]. One com-
mon technique is to start with tag-based visual search such
as keyword matching or query expansion for collecting train-
ing samples. The initial search list is then utilized directly
for classifier learning [20, 2]. More advanced techniques
include the refinement of search list with machine learn-
ing techniques. In [19], a two-step approach was proposed.
Firstly a Bayes posterior estimator is trained on the sur-
rounding metadata of images to rerank the initial list. Then
the top ranked images are used to learn a SVM classifier to
further refine the ranking. In [5], semi-supervised learning
is adopted to harness tagged and untagged images simulta-
neously to alleviate the effect of noisy tagging. In [14], an
iterative concept learning and image collecting framework
was provided. Starting from a small number of training im-
ages, a model is trained for each class to sample the text
search results. The newly collected images serve as addi-
tional training data for refining the original learnt classifier.
By iterative learning, it is expected that the robustness of
the classifiers will be improved, while more quality training

images can be acquired. These refinement techniques, how-
ever, are computationally very expensive [5, 14] and there-
fore unscalable for large scale data sets [5].

While acquiring noise-free positive examples is difficult,
obtaining negative samples appears feasible even with simple
heuristics. Yan et al. [23] proposed an approach to collect
negative samples by exploiting the most irrelevant images
via content-based retrieval. On the other hand, Liu et al.
[3] adopted text-based analysis. Given a concept, synonyms
and descendant related words are expanded to the concept.
Negative training samples are collected by eliminating im-
ages tagged with the related words. In addition, Li et al. [15]
empirically shown that replacing expert-labeled negative ex-
amples with social tagged images for concept learning only
results in slight loss of detection performance.

3. MODELING SEMANTIC FIELD
In this section, we introduce a method called Semantic

Field (SF) to measure the relevance of tags to concepts. Se-
mantic Field is to capture the semantics of a set of words
[12]. The basic idea is that the meaning of a word is depen-
dent partly on its relation to other words. This implies that
mining the semantics of a word list needs collective analysis,
rather than interpreting each word in the list individually.
Translating this to our application, each tag list of an im-
age basically carries one semantic field. In this section, we
propose a probabilistic model to describe the association be-
tween a target concept and a tag list. For efficiency, we also
build a dictionary for each target concept. The dictionary is
composed of a list of reference words that depicts the seman-
tic field of a target concept. We explore this dictionary to
evaluate the degree of association between tag lists and the
target concept. Different from tag refinement [3, 16] which
ranks tags of an image, we employ SF to rank the pseudo
training images of a concept.

3.1 A Probabilistic Model
Intuitively, some tags in a list are correlated to each other.

A tag list can be integrally considered as carrying a Se-
mantic Field. Denote Cx as a target concept, and SF =<
T1, T2, . . . , Tn > as the tag list of an image I containing n
tags. The probability of Cx in I is defined as:

P (Cx|SF ) =
P (SF |Cx)× P (Cx)

P (SF )
(1)

where the prior probability P (Cx) can be viewed as a con-
stant and therefore can be ignored for the purpose of rank-
ing based on P (Cx|SF ). We approximate P (SF |Cx) us-
ing P (SF ) ∗ (

∑
P (Ti|Cx)/n), and Equation (1) can then be

rewritten as:

P (Cx|SF ) =

∑n
i=1 P (Ti|Cx)

n
(2)

where P (Ti|Cx) donates the likelihood of observing a tag Ti

given a concept Cx.

3.2 Learning SF from Multiple Sources
To estimate P (Ti|Cx) in Equation (2), we consider both

domain and general knowledge. For domain knowledge, we
utilize the co-occurrence statistics of tag lists which can be
computed from any web image corpus. For general knowl-
edge, we exploit Wordnet and Wikipedia for information



Table 1: Statistics of 81 labeled concepts in NUS-
WIDE corpus.

Categories
Number of Average number of Average tag
concepts training samples frequency

people 4 8494 916
objects 33 1956 1405
scene/location 33 6015 2436
event/activities 9 366 645
program 1 1104 758
graphics 1 40 212

inference. Combining different knowledge sources, we have

P (Ti|Cx) = Pwd(Ti|Cx)× Pwiki(Ti|Cx)× Pco(Ti|Cx) (3)

where Pwd(Ti|C) is the probability of observing tag Ti after
querying Wordnet with concept Cx. Similarly Pwiki(Ti) and
Pco(Ti) are the probabilities inferred fromWikipedia and co-
occurrence statistics of tags in our Flickr corpus respectively.
The three knowledge sources provide different aspects of

information. WordNet models the relatedness of words as
a graph and lists the multiple senses of a word. Wikipedia
provides less structural information but gives comprehensive
description of concepts. While both WordNet and Wikipeda
are text based, tag co-occurrence computed from tag lists of
web images provides an objective view of tag statistics in
the domain of visual data. Based on different natures of
information sources, we compute Equation (3) as following:

Pwd(Ti|Cx) =
#(Ti, Cx)

#(Cx)
≈ #(Ti)

#(words)wd
(4)

Pwiki(Ti|Cx) =
#(Ti, Cx)

#(Cx)
≈ #(Ti)

#(words)wiki
(5)

Pco(Ti|Cx) =
#(Ti, Cx)

#(Cx)
(6)

where #(Ti, Cx) is the number of co-occurrences between tag
Ti and concept Cx, and #(Cx) is the term frequency of con-
cept Cx. We approximate Equation (4)-(5) by counting the
term frequency of Ti, #(Ti), against the number of non-stop
words, #(words)wd and #(words)wiki, respectively from the
WordNet and Wikipedia pages which describe concept Cx.
For WordNet, we choose the most common sense to de-
scribe target concept, while for Wikipedia, we download
the related page and compute Pwiki(Ti|Cx). In general,
#(words)wiki > #(words)wd. For tag co-occurrence, the
denominator #(Cx) is simply the number of images tagged
with concept Cx.
In practice, the number of co-occurrence #(Ti, Cx) can be

equal to zero. We employ add-one smoothing technique [12]
as following to deal with the problem:

P =
#(Ti, Cx) + 1

#(Cx) + 1
(7)

3.3 Dictionary Construction for Image Rank-
ing

Online querying different information sources for comput-
ing Equation (2) can be time consuming. For efficiency con-
sideration, we offline build a dictionary for each target con-
cept. A large pool of image tags is first crawled from image

search engines. Given a target concept Cx, Equation (3)
is evaluated to rank the tags in the pool according to their
probability scores. The dictionary of Cx is then formed by
including the top-k ranked tags. In our current implemen-
tation, k is set to 200 in order to reduce computational cost.
From our observation, the scores of the tags ranked after
200 are mostly very small.

The dictionary basically captures the set of words related
to the target concept. With the dictionary, given an image
and its tag list, Equation (2) can be efficiently computed by
dictionary look-up and score averaging. After that, given
a target concept, the set of candidate images can be eas-
ily ranked, and pseudo positive training samples are then
selected according to their scores based on Equation (2).

4. EXPERIMENTS
We split the experiments into two major parts. The first

part examines the quality of training samples in affecting
the concept detection performance, in which we assume the
number of positive samples to be known and randomly choose
a set of negative samples. The second part of experiments
considers a more realistic scenario in which the number of
positive samples is unknown and we therefore select a fixed
number of top ranked images as positive set. We compare
our approach to several existing techniques including neigh-
bor voting [16] and keyword-based image sampling [20, 2].

4.1 Dataset and Performance Evaluation
We use the recently released web image dataset, NUS-

WIDE [9], for performance evaluation. The dataset includes
269,648 images crawled from Flickr, with a total of 5,018
unique tags. Images in NUS-WIDE corpus are manually la-
beled to provide ground-truth for 81 concepts. This forms
161,789 images for training, and 107,859 images for test-
ing. The 81 concepts are divided into six categories: people,
objects, scene or location, event or activities, program and
graphics. Table 1 lists the number of concepts, the aver-
age number of training samples under each category and
the average tag frequency. Tag frequency is the number of
training images tagged by users with the target concept. As
indicated in Table 1, there is a large difference between the
number training images (ground-truth) labeled by human
expert and the number images tagged with target concepts
by the web users. In the experiment, we conduct testing for
81 concepts based on this subset of NUS-WIDE corpus.

For concept classifier learning, we adopt similar setting as
VIREO-374 [10]. For each concept, three SVM classifiers
are trained separately based on bag-of-visual-words (BoW),
grid-based color moment and wavelet texture respectively.
In BoW, local keypoints are randomly sampled from training
examples and a visual dictionary of size 500 is constructed.
Soft weighting [11] is employed to map multiple keywords
to a keypoint, and this forms a BoW of 500 dimensions for
each image. For color moment, each image is partitioned
into 5×5 grids, and the first three moments are computed on
Lab color space over each grid. Concatenating the features
from all grids forms a vector of 255 dimensions for each
image. Similarly for wavelet texture, each image is divided
into 3×3 grids, and each grid is represented by the variances
in 9 Haar wavelet sub-bands. This forms a feature vector
of 81 dimensions. The raw outputs from the three SVM
classifiers are then converted to posterior probabilities using
Platt’s method. The probabilities are combined as a score,



which indicates the confidence of detecting a concept in an
image, by average fusion.
We employ average precision (AP), over the rank list of

N = 107, 859 testing images, to assess the performance of
concept detection. Denote R as the total number of true
positives (relevant images) in the testing dataset, and Rj as
the number of true positives for top-j retrieved images, AP is

defined as AP = 1
R

∑N
j=1 Ij ×

Rj

j
, where Ij = 1 if the image

ranked at jth position is relevant, and Ij = 0 otherwise.
By averaging the APs of all concepts being tested, mean
AP (or MAP) is obtained and used to assess the overall
performance.

4.2 Quality of Training Samples
In this section, we examine the quality of positive train-

ing samples in affecting concept learning, with an assump-
tion that the number of positive samples for each concept
is known, according to the ground-truth annotations. The
aim is to provide a fair evaluation when comparing concept
detection performance using sample selection approaches to
that directly using the ground-truth. In NUS-WIDE, the
number of positive training samples varies a lot from concept
to concept, depending on their popularities. For instance,
popular concept such as “sky” has as many as 44,255 posi-
tive samples, while rare concepts such as “map” only has 40
positive samples.
We first compare the performances of the proposed ap-

proach (named as Semantic Field) to an oracle setting (Or-
acle) and a keyword-based sampling method (Keyword). In
oracle setting, we use the original training samples provided
by NUS-WIDE corpus for learning the 81 concepts. In other
words, Oracle should provide the best possible detection per-
formance since all training samples are manually labeled.
For Semantic Field and Keyword, no ground-truth labels
are given. Instead, the positive training samples are gener-
ated by ranking the 161,789 training images in NUS-WIDE
by one of both methods. For Semantic Field, a dictionary,
as presented in Section 3.3, is constructed for each concept
from the unlabeled training images. Then, given a training
image, Equation (2) is applied to assign a concept relevancy
score for the image. The training images are then ranked
according to the scores, and the top-k ranked images are fi-
nally used for training concept classifiers. Note that in this
experiment the value of k is assumed known for each clas-
sifier. For Keyword, a similar setting is used. The training
set is prepared by collecting images which are tagged with
the target concept. The images are ranked according to the
output list sorted by Flickr search engine, and the top-k list
are used for classifier learning.
We use the same set of negative samples for all the tested

methods in this section. For each concept, we randomly
select 5,000 negative samples from the training set after ex-
cluding the images which are considered as positive samples
by any of the three methods.

4.2.1 Performance of Concept Classifiers
Table 2 lists the performances of the three tested ap-

proaches. Oracle achieves a MAP of 0.2223 under ideal
setting, followed by Semantic Field with MAP = 0.1660,
and Keyword with MAP = 0.1242. Compared with Key-
word, Semantic Field can achieve an overall improvement of
33.8%. The improvement is consistently observed in all the
six categories of concepts. From our analysis, the perfor-

Table 2: Performance of concept detection using dif-
ferent sets of training examples.

Categories
MAP

Oracle Semantic Field Keyword
people 0.2096 0.1218 0.0967
objects 0.1960 0.1625 0.1299
scene/location 0.2845 0.2136 0.1568
event/activities 0.1101 0.0522 0.0211
program 0.1353 0.0661 0.0241
graphics 0.1800 0.0209 0.0001
all concepts 0.2223 0.1660 0.1240

mance of Keyword is highly dependent on the correctness
of tags provided by users. Referring to Table 1, there is an
average of 916 images being tagged with concepts related
to the category “people”. However, considering the aver-
age of 8,494 true positive images being manually labeled,
the recall rate is only 10.7%. In other words, by simply
matching tags to target concepts, Keyword pays the risk
that a large number of positive samples will not be recalled
for classifier training. Noisy tags are frequently observed
in the categories “events/activities” and “graphics”. For in-
stance, among the 645 images tagged with concepts related
to “events/activities”, 50% of them is regarded as “wrongly”
tagged by manual labeling. As a consequence, the training
samples collected by Keyword are contaminated by exces-
sive number of false positives for certain concepts such as
“soccer”, with only 93 true exemplars among the 456 tagged
images. red architecture california car cars truck hotel classic auto automobile ford trucks spanish mission autos ... red train station metal public railroad power illinois tracks industry june railway angle rail business locomotive engine machine ...boat boats port seattle dock transportation transport harbors ferry watercraft red vintage bike classic frame motorcycle engine motor engines chrome twins double czech twin motors motorbike ... 

(a) positive examples with concept "vehicle"sky blue clouds green snow beautiful lake mountains asia grass rocks ice amazing pakistan glacier stones clouds landscape film mountains mountain switzerland hospital analog health alps schweiz suisse smorgasbord nature blue green park mountains glacier turquoise peru 
yellow california colors mountains rocks desert outdoors hiking 

(b) positive examples with concept "valley"

Figure 3: Examples of images which are not tagged
with target concepts but correctly labeled by Se-
mantic Field as positive samples.

Semantic Field, in contrast, can deal with both problems
quite effectively to certain extent. Figure 3 shows few exam-
ples of images which are correctly labeled as positive samples
even though the target concept is not tagged by users. In
3(a), the images are tagged with “car”, “train” and “boat”,
but not“vehicle”. Based on inference from three information
sources, especially the WordNet and Wikipedia, Semantic
Field correctly predicts the existence of concept “vehicle”
for these images. As a result, the AP of “vehicle” detector is
significantly boosted to 0.4300 compared to Keyword whose
AP is 0.2480. Similarly in 3(b), the images have several
attracting regions and different users provided tags to high-
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Figure 2: AP comparison of the 81 concepts using the three methods

light different parts of attentions. The tag list of an image, in
general, is incomplete. By Semantic Field, nevertheless, the
target concept of “valley” can be correctly predicted by tags
such as“mountain”, “sky”and“clouds”. Figure 4 shows a few
more examples of images which are misleadingly tagged with
“bird”. Semantic Field successfully eliminates these samples
as positive examples, as the surrounding tags such as “art”,
“drawing” and “cars” do not show strong enough consistency
with the semantic field of concept “bird”.

bird mountain house rock brown home bear national alaska sheep ruins highway cliff eagle wolf grizzly drive arm symbol anchorage shack 
blue yellow city reflection black street colors old bird car colorful texture brasil cars high contrast paint streets speed classic auto eagle vehicle engine ford machine wheels cutout cores negro muscle 

white art birdforest friends paper mushrooms porcupine original framed art bird bear drawing artist beards arts sketch sketchbook

Figure 4: Examples of images which are mislead-
ingly tagged with “bird”, but successfully marked as
negative samples by Semantic Field.

Figure 2 further details the AP of 81 concepts by the three
tested approaches. Almost all the 81 concept classifiers using
Semantic Field can achieve better performance than key-
word based approach, especially for generic concepts such
as “clouds”, “animal” and “nighttime”. For some of the rare
concepts such as “tatoo” and “earthquake”, Semantic Field
is less effective, since in these cases, robust classifiers are dif-
ficult to train even using manually labeled samples. Over-
all, there is still a performance gap between Semantic Field
and Oracle. For concepts such as “leaf” with large intra-
class variation, there are insufficient and erroneous training
samples. When the amount of noisy images surpasses the
correct samples, effective learning of classifiers becomes dif-

ficult. On the other hand, for concepts such as “moon” and
“snow”, we achieve near-optimal. This is mainly due to the
fact that the training images of these concepts are visually
consistent. Even if the pseudo training samples are contami-
nated with noises, the classifiers can still be quite effectively
learnt.

(a) true exemplar (b) false positive by 
Semantic Field 

(c) false positive by 
Keyword

Figure 5: True and false positive examples for con-
cept “surf”.

It is interesting to note that some noisy samples are indeed
helpful. Figure 5 shows some pseudo training samples for the
concept “surf”. While Semantic Field samples some images
tagged with “ocean” such as 5(b) as training examples of
“surf”, these images provide contextual cues and are useful
for learning concept “surf”. Compared to the false positives
such as 5(c) sampled by Keyword, Semantic Field has better
capability in selecting relevance of samples to a concept.

4.2.2 Effect of Noise Level
Table 3 details the quality of pseudo samples generated by

Semantic Field and Keyword. We use two measures, noise
level (NL) defined in [9] and MAP, to assess the quality
of relevance ranking by both methods. NL is defined as
NL = 1− F1, where F1 is defined as

F1 =
2× Precision×Recall

Precision+Recall
(8)

which takes into account the precision and recall of train-
ing images. Precision measures the proportion of pseudo



training examples which are correctly labeled, while recall
measures the fraction of true positives which are included
as training examples. The mean NL (or MNL) is further
computed by averaging NL of different concepts. Note that
the list of pseudo training images is ranked according to the
probability of a concept in the images. Thus, we also use
MAP to assess ranking of Semantic Field and Keyword. Ba-
sically, AP considers the ranking of training examples, while
NL simply assesses the percentage of true samples. Train-
ing set with lower MNL value contains more positive samples
and less noise, and the set with higher value of MAP ranks
more true positives than noises at the top of list.

Table 3: Quality of pseudo training samples mea-
sured via MAP (the higher, the better) and MNL
(the lower, the better).

Categories
MAP MNL

Semantic
Keyword

Semantic
Keyword

Field Field
people 0.6610 0.5360 0.4940 0.5530
objects 0.6440 0.5740 0.4700 0.5200
scene/location 0.5700 0.5180 0.5700 0.6400
event/activities 0.4380 0.3650 0.6530 0.7000
program 0.7650 0.2790 0.3620 0.8220
graphics 0.1510 0.0000 0.8750 1.0000
all concepts 0.5870 0.5150 0.5360 0.6030

As indicated in Table 3, Semantic Field is able to offer
higher MAP and lower MNL compared to Keyword. The
improvement is consistent across all the six categories of con-
cepts. The results basically indicate that Semantic Field is
able to include more positive samples and rank them higher
than Keyword. A typical example is the concept “animal”,
where Semantic Field can recall most positive samples al-
though the samples are not tagged with “animal”. Another
example is“whales”, Semantic Field can assign a higher score
for the images with tags “whales”, “ocean”or “sea”which are
more convincing to concept “whales”, thus the MAP is im-
proved from 0.5850 to 0.7080.

Table 4: Performance of concept detection by re-
placing 0%, 25%, 50% and 75% of the ground-truth
positive samples with noisy ones.

Categories
MAP

0% 25% 50% 75%
people 0.2090 0.1740 0.1430 0.0940
objects 0.1960 0.1720 0.1310 0.0710
scene/location 0.2840 0.2620 0.2170 0.1450
event/activities 0.1100 0.0900 0.0650 0.0360
program 0.1350 0.1080 0.0710 0.0140
graphics 0.1800 0.1130 0.1280 0.0070
all concepts 0.2220 0.1980 0.1590 0.0970

To further investigate the effectiveness of our proposed
method, we conduct another experiment by replacing a part
of the ground-truth positive samples with randomly chosen
negative samples. Three new positive training sets are there-
fore generated, and each set has respectively 25%, 50% and
75% of false samples. In other words, the MNL (mean noise
level) of these new pseudo training sets are 0.25, 0.5 and
0.75 respectively. Table 4 shows the simulation results. As
expected, the MAP performance degrades when the percent-
age of noisy samples increases. For comparison, as shown in
Table 2, our Semantic Field method produces a MAP of
0.1660 with a noisy level of 0.5360 (about 54% noisy sam-
ples) in terms of MNL, while here when only 50% of noisy

samples are used, the performance drops to 0.1590. This
again shows the advantage of Semantic Field, which is able
to pick up contextually relevant images. As shown in Figure
5, the contextually relevant images, though not completely
noise-free, are helpful for concept detection in many cases.

4.3 Detection with Fixed Number of Positive
Samples

In practice, the number of positive samples is very hard to
predict. In addition, negative training examples also need
to be carefully sampled. In this experiment, we adopt one
of the most common approaches in sampling pseudo posi-
tive and negative samples. The setting is as following. For
each target concept, the 161,789 training images are ranked
according to their relevancy. A fixed number of 1,000 top-
ranked images are then picked as pseudo positive samples,
while another 5,000 images are collected as pseudo negative
examples from the bottom of the list.

Table 5: Concept detection performance with fixed
top-1000 ranked images as pseudo-positive training
samples. Note that K indicates the number of near-
est neighbors considered by Voting.

Categories
MAP

Semantic
Keyword

Voting Voting
Field (K=1000) (K=2000)

people 0.1428 0.1317 0.1046 0.1082
objects 0.1480 0.1052 0.0806 0.0781
scene/location 0.2035 0.1607 0.1566 0.1527
event/activities 0.0280 0.0100 0.0190 0.0177
program 0.0550 0.0250 0.0290 0.0225
graphics 0.0255 0.0007 0.0290 0.0220
all concepts 0.1543 0.1163 0.1048 0.1021

We compare Semantic Field to two different approaches:
Keyword and tag voting (Voting) [16]. Similar to the previ-
ous sub-section, Keyword prepares training samples by col-
lecting web images which are tagged with the target con-
cepts. The images are sorted according to the rank list given
by Flickr’s search engine. Positive and negative training ex-
amples are then sampled respectively from the list for learn-
ing SVM classifiers. Voting is a simple yet effective scheme
proposed in [16] for assessing the relevancy of a tag to an
image. The tag relevancy is determined by accumulating
the neighbor votes received from visually similar training
images. For instance, a testing image receives 4 votes for
tags “bridge” if four of its nearest neighbors are tagged with
“bridge”. Given a target concept, Voting ranks the testing
images according to the neighbor votes received from the
161,789 tagged training images. In our implementation, two
global features, color moment and wavelet texture, are used
for searching the visually similar neighbors. We experiment
two settings, with 1,000 and 2,000 nearest neighbors eligible
for voting respectively. In [16], it is suggested the number
of neighbors can be set between 200 and 20,000, and 1,000
shows the best performance in their experiment.

Table 5 shows the experimental results. Semantic Field
outperforms Keyword and Voting with large margins consis-
tently across all of the six categories of concepts. Compared
to the result with the number of positive samples assumed
to be known (see Table 2), the performance of Semantic
Field drops by about 8%. Considering the more practical
setting adopted here that the number of positive samples
per concept is unknown, the performance of Semantic Field
is quite appealing. From our analysis, the 8% performance



drop can be attributed to the fact that fixing training size
to 1,000 samples is not appropriate for all types of concepts.
Among the 81 concepts, there are 42 concept classifiers with
performance degradation. These classifiers include 19 con-
cepts with the number of ground-truth positives less than
1,000, and 15 concepts with the number more than 3,000.
One example is the concept “surf”, which only has 124 pos-
itive samples according to the ground-truth annotation. As
a result, its AP drops from 0.1970 to 0.0120 when 1,000
training images are sampled. On the other hand, Voting
produces the worst performance. From our observation, vi-
sual search gives rise to excessive number of noisy neighbors,
which greatly limit the performance of neighbor voting.

Table 6: Quality of the top-1000 ranked pseudo-
positive samples, measured by both MAP and MNL.

Categories
MAP MNL

Semantic
Keyword

Semantic
Keyword

Field Field
people 0.7090 0.6520 0.6350 0.6650
objects 0.6510 0.5820 0.5710 0.6070
scene/location 0.6130 0.5450 0.7170 0.7390
event/activities 0.3930 0.3430 0.6960 0.7000
program 0.7700 0.2790 0.3620 0.8140
graphics 0.1200 0.0520 0.9320 0.9760
all concepts 0.6040 0.5300 0.6490 0.6810

Table 6 further lists the quality of the top-1000 pseudo
training examples sampled by the tested approaches∗. Com-
paring Semantic Field to Keyword, although the MNL from
Semantic Field is only about 3% lower, the detection perfor-
mance is 32% better than Keyword. This again gives clue
that Semantic Field samples more useful samples for con-
cept learning. On the other hand, as indicated in Table 6,
Semantic Field shows better quality of pseudo training ex-
amples in terms of MAP. This indicates that Semantic Field
has a better capability in ranking relevant training images.
In this paper, we have not considered the ranking order in
classifier training. We believe that by considering ranking,
for instance assigning higher weights to higher ranked im-
ages, the detection performance can be further boosted.

5. CONCLUSION
We have presented our analytical studies on the sampling

of web images and the quality of pseudo training samples for
classifier learning. One general guideline for boosting detec-
tion performance is by minimizing the noise level of pseudo
training examples. In addition, when assessing the quality
of training samples, one aspect should be taken into account
is the ability of collecting more typical samples. Even when
the noisy samples are falsely included as positive samples,
it does not necessarily mean that the learning effectiveness
will be degraded, as long as the noisy samples can provide
useful contextual clue to a target concept. In other words,
the capability of ranking pseudo training samples according
to their typicality is a plus in addition to the ability of sam-
pling positive examples. One important problem deserving
in-depth future study is how to decide the right number of
training examples to be sampled.
On the other hand, we have also presented our approach in

predicting the semantic field of tag lists for effective image
sampling. Compared to the baseline keyword-based sam-
pling, Semantic Field shows better capability in generat-
ing pseudo training set with lower noise level and higher

∗We do not list the MNL and MAP of Voting since its predic-
tion is not by SVM but based on K nearest neighbor.

ranking ability. By using three knowledge sources, the pro-
posed approach shows its great capability in recovering con-
cepts which are not tagged, disambiguating tags of multiple
senses, and excluding misleading tags. Currently, our ap-
proach considers only the semantic field of a tag list and
not the visual aspect of an image. Future work includes the
joint consideration of semantic field and visual information
for more objective sampling. In addition, the ranking of
training images, specifically the significance of images, can
be incorporated into classifier learning to alleviate the effect
of noisy samples.
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