Harmonic Loss Continuity Bounding Function Variation » Laplacian regularization seems problematic for classification [2];
€ How to measure the fit between a model and a graph? = Labeled data - absorbing states; f - absorption probabilities.
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Figure 1: Absorbing random walks on a 6-point graph.

Lemma 3.3. Normalize each function by its mass before comparison.

@ Objectives of this paper Definition 2.3 (Superlevel set). {i | /(i) = c} Proposition 2.6. = f drops alotacross a sparse cut.

= Analyze the harmonic structure; = Assume f(1) > f(2) > --- > f(n —1) > f(n). Ls(i) < 0= left-continuous:
= Answer open questions in various graph models; S; :={1,...,i}- superlevel set with level f(i)
* Provide guidelines for various applications. Lemma 2.4. £;(S;) > 0,i=1,.

[f the harmonic loss varies slowly, i.e.,
L¢(i) > 0 = right-continuous; f is harmonic almost everywhere,
L¢(i) = 0 = continuous. - conductance dominates variation of f .
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= At each move, a walker gets absorbed at current state S ' ; - : _
) 8@)% a valid kernel of commute times (CT); * The expected number of steps starting from one Lu = \,u L, = \yv TSP5 T ValeB | satmmee | meees [ ionosohore | s T ororem

with probability pi; = 755 o >0 A > 0. = (T fails to capture the graph topology [6]; vertex to hit others is dominated by the local ARW-N-INN | 879 | 802 777 673 771 918 | .589
* A= (aA+ L)~'aA - absorption probability matrix ; = { -first column of L . Assume structure around the targets [6]; Harmonic form: u(i) = — "y ) = ' ARW-1NN 445 | 733 030 595 099 D02 | 440
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starting from every vertex and getting absorbed at the Harmonic form: " Assume vertex n isthe target, and = If A\, <<1 (L“LU will enjoy a; significant harmonic structure; | Table 2: Ranking results (MAP) on USPS

first vertex. Assume p(1) > p(2) > --- > p(n). Y ' ’ : :

h(1) > h(2)>--->h(n—1)> h(n) =0 = This explains why eigenvectors of L, are preferred than those of L . Digits 0 1 2 3 4 5 6 7 9 | Al
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% ; Table 3: Classification accuracy on USPS.
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2] “Statistical analysis of semi-supervised learning: The limit of infinite unlabelled data”, Nadler et
"~ al, NIPS'09. HT(L — U) - From all

Table I: Classification accuracy on 9 datasets.
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= Setting of A in [3] is unnecessary; * L¢(S;) <1 and decreases very slowly in = £,(S;) isthe volume of S; . (a) PARW - from one to others; (b) PARW - from others to one;
: - N oy s T - : - : 4] “Local graph partitioning usi k ” And 1, FOCS'06.
* Arandom A performs equally well; large graphs, since £o(5;) — Le(Si+1) = 1/n. " Variation of / only depends on &(S;) (c) Arow of LT; (d) HT - from one to others; (e) HT - from others to one; Lt g B e o emmaecn mecs of s araph with application to

= Columns of A are informative, not rows; = This justifies its superiority in practice [5]. = Qur result is complementary to [6]. (f-g) Eigenvectors of L (mini{d;} = 0.0173); __ collaborative recommendation.” Fouss etal, TKDE, 2007. HT&%&@'S?&&“E
. [4_] is a special case with A = D . (h) An eigenvector OfLsym : (i-j) Eigenvectors of Ly . [6] “Getting lost in space: Large sample analysis of the commute distance.” Luxburg et al., NIPS’ 2010. hit all labeled points.

one unlabeled point.
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