
Observations 
Different methods behave 
differently. 
Each method gives different 
results under different parameters. 

Motivations 
Combine complementary 
information to improve performance. 
Capture visual patterns using 
superpixels generated by different 
methods with varying parameters. 
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Combine pixels and multiple/multi-scale segmentations by a 
bipartite structure. Using superpixels as grouping cues: 
Pixels in a superpixel tend to belong together. 
Similar neighboring superpixels tend to belong together. 
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Segmentations with different combinations of layers of superpixels. 
(3, MS&FH): use three over-segmentations from each method.  

Sensitivity of SAS w.r.t. the parameters. 

How to capture and model a variety 
of visual patterns simultaneously? 

Problem and Motivations Segmentation Results 

Segmentation is crucial for high-
level vision. It remains challenging 
due to visual ambiguity and variety. 
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Results on Berkeley segmentation database (BSDS) 

SAS takes 6.44s per image of size 481×321, where 4.11s for 
generating superpixels and 0.65s for Tcut. MNcut, MLSS, Ncut and 
TBES take more than 30s, 40s, 150s, and 500s, respectively. Codes 
of SAS are available at: www.ee.columbia.edu/dvmm. 

PRI: Probabilistic Rand Index; VOI: Variation of Information; 
GCE: Global Consistency Error; BDE: Boundary Displacement Error;   
BFM: Boundary-based F measure; RSC: Region-wise segmentation covering. 

If x = y, or if y is adjacent to x and is its nearest 
neighbor in feature space, or vice versa. 
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Steps 1&2 compute cuts on the induced 
superpixel graph on the small partite.  

Steps 3&4 transfer cuts from the small 
partite to the entire graph.  

Step 5 groups the pixels and superpixels.  

Group 1 Group 2 

Input FH 3 SAS without FH 3 SAS with FH 3 

Adaptively select layers of superpixels. 
Include large 
superpixels for 
complex images 
to suppress 
strong edges 
within objects.  
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