
Extracting Semantics from Multimedia Content:
Challenges and Solutions

Lexing Xie, Rong Yan

Abstract Multimedia content accounts for over60%of traffic in the current inter-
net [74]. With many users willing to spend their leisure time watching videos on
YouTube or browsing photos through Flickr, sifting through large multimedia col-
lections for useful information, especially those outside of the open web, is still
an open problem. The lack of effective indexes to describe the content of multi-
media data is a main hurdle to multimedia search, and extracting semantics from
multimedia content is the bottleneck for multimedia indexing. In this chapter, we
present a review on extracting semantics from a large amount of multimedia data
as a statistical learning problem. Our goal is to present the current challenges and
solutions from a few different perspectives and cover a sample of related work.
We start with an system overview with the five major components that extracts and
uses semantic metadata: data annotation, multimedia ontology, feature representa-
tion, model learning and retrieval systems. We then present challenges for each of
the five components along with their existing solutions: designing multimedia lex-
icons and using them for concept detection, handling multiple media sources and
resolving correspondence across modalities, learning structured (generative) mod-
els to account for natural data dependency or model hidden topics, handling rare
classes, leveraging unlabeled data, scaling to large amounts of training data, and
finally leveraging media semantics in retrieval systems.

1 Introduction

Multimedia data are being captured, stored and shared at an unprecedented scale,
yet the technology that helps people search, use, and express themselves with these
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media is lagging behind. While no statistics is available about the total amount of
multimedia content being produced, the following two statistics can provide us with
an intuition about its scale : there are about 83 million digital still cameras sold in
2006 [37], and video already account for more than half of the internet traffic, with
YouTube alone taking10%[2, 74, 30]. A typical internet user actively gleans infor-
mation from the web with several searches per day, yet their consumption of video
content mostly remains passive and sequential, due to the inefficacy of indexing into
video content with current practices. As an article onWiredovertly put: “Search en-
gines cannot index video files as easily as text. That is tripping up the Web’s next
great leap forward.” [3] The key to indexinginto image and video files lies in the
ability to describe and compare the media content in a way meaningful to humans,
i.e. the grand challenge of closing the semantic gap [80] from the perceived light
and sound to users’ interpretations.

One crucial step that directly addresses the semantic indexing challenge is to
extract semantics from multimedia data. The advance in storage and computation
power in recent years has made collecting and processing large amounts of im-
age/video data possible – thus has shifted the solutions to semantic extraction from
knowledge-drive to data-driven, similar to what has been practiced in speech recog-
nition for several decades [72]. Algorithms and systems for data-driven semantics
extraction are embodiments of statistical pattern recognition systems specialized in
multimedia data. They learn a computational representation from a training data cor-
pus labeled with one or more known semantic interpretations (such as face, human,
outdoors). Statistical learning of multimedia semantics has significantly advanced
performance and real-world practice in recent years, which made possible, for ex-
ample, real-time face detectors [95].

This paper is intended to survey and discuss existing approaches on extracting
multimedia semantics in a statistical learning framework. Our goal is to present the
current challenges and solutions from a few different perspectives and cover a sam-
ple of related work. The scope of this chapter has two implications: (1) since the
size of target semantics from media is usually very large (e.g., objects, scene, peo-
ple, events, . . . ), we put more emphasis on algorithms and systems designed generic
semantics than those specialized in one or a few particular ones (e.g., faces); (2) we
focus more on the new challenges for model design created by the scale of real-
world multimedia data and the characteristics of learning tasks (such as rare classes,
unlabeled data, structured input/output, etc.). Within this scope, the semantic ex-
traction problem can be decomposed into several subproblems: the general process-
ing steps of going from media data to features and then to semantic metadata; the
semantic concept ontology, and how to leverage it for better detection; the chal-
lenge of dealing withmulti-media, i.e. how to use a plurality of input types; dealing
with real-world annotated training dataset: rare semantics, sparseness of labels in an
abundance of unlabeled data, scaling to large datasets and large sets of semantics;
accounting for the the natural dependencies in data with structured input and output,
and using semantics in search and retrieval systems.

This said, learning to extract semantics from multimedia shall be of much broader
interest than in the multimedia analysis community. Because (1) the abstract learn-
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ing problems are very similar to those seen in many other domains: stream data
mining, network measurement and diagnosis, bio-informatics, business processing
mining, and so on; (2) multimedia semantics can in turn enable better user ex-
periences and improve system design in closely related areas such as computer-
human interaction, multimedia communication and transmission, multimedia au-
thoring, etc. This work is also distinct from several other surveys on multimedia
indexing [80, 84, 76, 110, 11] in that we present an in-depth discussion on semantic
extraction, an important component in an entire indexing system, from an algorith-
mic perspective. For completeness, we briefly cover feature extraction and retrieval
in Sections 2 and 7, leaving detailed discussion to the above-mentioned surveys.

The rest of this paper is organized as follows: Section 2 gives an overview to the
entire workflow from multimedia content to media semantics; Section 3 discusses
the design and use of a large multimedia lexicon; Section 4 studies strategies for
multimodal fusion; Section 5 presents models for structured input, output, as well
as hidden dimensions; Section 6 addresses three challenges in real-world training
data; Section 7 contains examples for using multimedia semantics in search systems;
Section 8 concludes the chapter with a brief discussion and outlook.

2 From Multimedia Content to Multimodal Semantics

Multimedia semantic extraction tried to answer the following question: does media
clip x contain semantic conceptc? Many systems that answer this question consist of
five broad conceptual components, as shown in Figure 1. The components include:
the image or video datafor training or classification, the definition of amultimedia
lexiconcontaining the target semantics, the extraction ofcontent features, the design
and learning of computationalmodelsthat map features to the target lexicon, as
well as theapplicationthat will make use of the resulting semantic metadata being
extracted.

Typical algorithmic components for semantic concepts detection include low-
level feature extraction (box c) and feature-based model learning (box d). In this
chapter we are mainly concerned with concept-independent designs of both compo-
nents, i.e. generic feature extraction and learning paradigms that work for a wide-
range of target semantics. Whenever warranted by need and performance, domain
knowledge and constraints can be incorporated to build and improve specialized
detectors, such as the events and highlight detectors for sports discussed in Chap-
ter [107].

While not always considered part of the algorithm design for a semantic extrac-
tion system, the data domain and the target lexicon are essential design components
that set the fundamental requirements for the system. These requirements include:
what are the salient semantics in the domain, do they exist in the dataset being
worked on, are they useful for content indexing and other applications, and are they
detectable with the current design of algorithmic components. Answers to these
questions apparently vary among the wide range of multimedia data domains such



4 Lexing Xie, Rong Yan
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Fig. 1 Basic building blocks of a concept detection system. See section 2.

as web images, aerial photographs, consumer videos, broadcast content, instruc-
tional archive, or medical imagery. Domain knowledge plays an important role in
coming up with good answers.

The rest of this section contains a brief overview of the two algorithm compo-
nents: Section 2.1 reviews popular features in different content modalities, and Sec-
tion 2.2 covers an effective baseline model using the support vector machine (SVM),
adopted as the basic building block by numerous systems in the literature [36, 20,
82, 16]. Sections 3–7 present specific challenges originated from each of the five
components alongside their current solutions, as annotated in Figure 1.

2.1 Features

Multimedia features are extracted from media sequences or collections, converting
them into numerical or symbolic form. Good features shall be able to capture the
perceptual saliency, distinguish content semantics, as well as being computation-
ally and representationally economical. Here we briefly summarize commonly used
features for completeness, and direct readers to respective surveys on image, video,
speech and audio features for more details [33, 50, 80, 21].

2.1.1 Extracting features

Low-level features aim to capture the perceptual saliency of media signals. The pro-
cedures for computing them do not change with respect to the data collection, or the
target semantics being detected. Mid-level features and detectors are computed us-
ing raw signal and/or low-level features. Their computation usually involve signal-
or data-domain dependent decisions in order to cope with the change in the data do-
main and target semantics, sometimes training is needed. We now review low-level
features by media modality and list a few examples of popular mid-level features.

• Visual features. Still images are usually described in three perceptual categories,
i.e. color, texture, and shape [80]. While image sequences introduce one more
dimension of perceptual saliency, i.e., motion. Color features are popular due to
their ability to maintain strong cues to human perception with relatively less com-
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putational overhead. The main concern in reliably extracting color information
is to choose from a variety of color spaces and achieve perceptual resemblance
and color constancy over different scene and imaging conditions. Local shapes
capture conspicuous geometric properties in an image, this is among the most-
studied image features, since psycho-visual studies have showed that the human
visual system performs the equivalence of edge detection [39]. Local shapes are
often computed over local gray-scale or color derivatives. Texture loosely de-
scribes an image aside from color and local shape, it typically reflects structure
and randomness over a homogeneous part of an image. Filter families and sta-
tistical models such as Gabor filters and Markov analysis are popular choices
for capturing texture. Motion provides information about short-term evolution in
video. 2-D motion field can be estimated from image sequences by local appear-
ance matching with global constraints, and motion can be represented in various
forms of kinetic energy, such as magnitude histogram, optical flows and motion
patterns in specific directions. Although color, shape, texture and motion can be
described separately, there are features that provide integrated views such as cor-
relogram [41] (color and texture) or wavelets (texture and local shape).

• Audio features. Audio signals can be characterized by a number of perceptual
dimensions such as loudness, pitch, timber. Loudness can be captured by the
signal energy, or energy in different frequency bands. Primitive pitch detection
for monophonic tonal signals can be done with simple operations such as auto-
correlation. Timber is typically captured by the amplitude envelop of spectro-
grams, i.e., the relative strength of different harmonics for tonal sounds. A num-
ber of simple features in the time or the STFT (Short Time Fourier Transform)
domain has been effective in describing everyday sound types with one or more
perceptual aspects. For instance, the zero-crossing rate in waveforms can both re-
flect pitch for monotonic sounds and reflect the voiced-ness of a speech segment;
spectral centroid and entropy summarizes the timber and . More elaborate and
robust features for modeling each of these aspects abound, such as robust pitch
extractors [56, 26], LPC (linear prediction coefficients) [72], frequency-warped
spectral envelops such as MFCC (mel-frequency cepstral coefficient) [33], as
well as the dynamic aspects of timber such as sound onset and attack.

• Text features. Text information is often available alongside the image/video/audio
content, features can be extracted from the transcripts obtained with automatic
speech recognition (ASR) or closed caption (CC), optical character recogni-
tion (OCR) and production metadata; Techniques for extracting such features
are similar to those in text retrieval, such as word counts in a bag-of-words repre-
sentation. In addition to text-only features, speech signals have additional timing
information upon which speaking rate and pause length can also be computed.

• Metadata. Metadata, sometimes called surface features, are additional informa-
tion available to describe the structure or context of a media clip aside from the
audio, visual, or textual part of the content itself. Examples include the name,
time stamp, author, content source, the duration and location of video shots, and
so forth. While not directly relevant to what are presented in the content, they can
provide extra information on the content semantics. Useful metadata features are
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usually coupled with suitable distance-metrics tailored to the nature of the spe-
cific data field, such as geographic proximity of GPS coordinates [59], semantic
distances between locations [79].

Mid-level features capture perceptual intuitions as well as higher-level seman-
tics derived from signal-level saliency. Examples of mid-level features and detec-
tors include: tracked objects and segmented object parts [118], visual concepts per-
taining objects, scenes and actions, such as people, airplane, greenery [90]; audio
types, such as male/female speech, music, noise, mixture [77]; named entities ex-
tracted from text passages [24]. There are also mid-level features that are specific
to a data domain, such as the crowd cheering detector, goal post detectors in sports
videos [29].

Most approaches reviewed in this chapter uses low-level features, while mid-
level features can be commonly found in domain-specific approaches for high-level
events, such as in Chapter [107].

2.1.2 Feature aggregates

Feature aggregates are derived from content features and detectors, the purpose of
the aggregate is to incorporate the inherent spatial-temporal structure in the media
and align the features generated over different content units such as pixels, local
regions, frames, short-time windows or text passages. The outcome of the aggregate
is usually represented as numbers, vectors or sets, providing the data structure re-
quired by most statistical pattern recognition models while preserving the saliency
of the target semantics. In practice, this aggregation is usually done with one or a
combination of the following operations:

• Accumulative statistics such as histogram [87] and moments [89] provide sim-
ple yet effective means for aggregating features over space and time. They have
the advantages of being insensitive to small local changes in the content, as well
as being invariant to coordinate shift, signal scaling and other common transfor-
mations. While the associated disadvantage is in the loss of sequential or spatial
information.

• The selection of possible feature detectors from candidate portions of the original
signal aims to preserve perceptual saliency, provide better localization of impor-
tant parts. Tracking and background substraction can be viewed as one type of
selection, as well as extracting salient parts and patches [55], silence detection in
audio, or removing stop words.

• Features in an image or a image sequence can also be aggregated into sets. The
sets can be unordered, e.g. bag of words, bag-of-features, or ordered in sequences
or more general graph structures.



Extracting Semantics from Multimedia Content: Challenges and Solutions 7

2.2 Learning semantics from features

The simplest semantic model can be a mapping function from features to the pres-
ence or absence of content semantics. One of the most common learning algorithms
is support vector machines(SVMs) [47, 94], being preferred in the literature for its
sound theoretical justifications and good generalization performances compared to
other algorithms [13]. Built on the structural risk minimization principle, SVMs
seek a decision surface that can separate the training data into two classes with the
maximal margin between them. The decision function takes the form of a general-
ized linear combination of training samples:

y = sign

(
M

∑
i=1

yiαiK(x,xi)+b

)
, (1)

wherex is the d-dimensional feature vector of a test example,y ∈ {−1,1} is the
class label representing the absence/presence of the semantic concept,xi is the
feature vector of theith training example,M is the number of training examples,
K(x,xi) is a kernel function representing the similarity measure between exam-
ples, the support vector weightsα = {α1, ...,αM} and offsetb are the parame-
ters of the model. The kernel function can take many different forms, such as the
polynomial kernelK(u,v) = (u · v+ 1)p, the Radial Basis Function (RBF) kernel
K(u,v) = exp(−γ‖u− v‖2) or kernels on structured data such as the string kernel.
The RBF kernel is widely used due to its flexibility to model non-linear decision
boundaries of arbitrary order and the perceived good performance on testing data.
Note however, that the setting for the hyper-parameterγ in RBF kernels often ex-
ert significant influence to the model performance, therefore it is usually chosen
empirically with cross-validation [40].

Besides SVMs, there are a large variety of other models that have been in-
vestigated for multimedia semantics extraction, including Gaussian mixture mod-
els(GMM) [4, 98], hidden Markov models(HMM) [71], k Nearest Neighbor(kNN) [85],
logistic regression [35], Adaboost [119] and so on. In Section 5 we will discuss mod-
els other than SVMs that cater to (1) structured input, especially temporal sequences
(2) the natural buthiddentopics in broadcast content collections.

Note that additional domain knowledge can be of great help to customize model
design and improve performance for specific concepts such as faces, cars and sport
events. Detailed methodologies of such design is outside the scope of this chapter,
and we refer the interested readers to discussions in relevant literature [95, 75] and
Chapter [107].

Before delving into examples and method variations in the rest of this chapter,
we briefly define the evaluation measures used in this chapter and found in com-
mon benchmarks [91]. A decision function for a binary classification task, such as
Equation 1, assigns a real-valued confidence score. We sort the test set at descend-
ing order of confidence scores, and evaluations of the scoring scheme concerns the
number of correctly and incorrectly returned entries at any depthr. Denote asrel(r)
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Concept Avg Prec Positive Concept Avg Prec Positive

PERSON 0.8531 31161 ROAD 0.2481 2665
FACE 0.7752 17337 M ICROPHONE 0.1947 2659

OUTDOOR 0.7114 15290 INTERVIEW 0.3019 2619
STUDIO 0.7541 4743 INTERVIEWSEQ 0.5237 2523

BUILDING 0.3048 4177 CAR 0.3151 2492
FEMALE 0.2632 3887 MEETING 0.1708 2262

WALKING 0.1635 3828 ANCHOR-STUDIO 0.8247 2392
URBAN 0.1127 3586 ARTIFICIAL -TEXT 0.6783 2373
LEADER 0.1822 3033 TREES 0.2522 2152

POLITICIANS 0.2782 2850 SPORTS 0.4481 1249
ASIAN-PEOPLE 0.4247 2776 MAPS 0.4816 610

Table 1 Example semantic detection results for 22 most frequent LSCOM concepts [61]. The
SVM models are learned from the TRECVID-2005 development set with color moment features.
For each concept, the column “positive” indicates the number of positive examples out of 55,932
keyframes, and the “Avg Prec” column is the average precision based on 2-fold cross validation.

the binary relevance indicator for the media clip at depthr, i.e. rel(r) = 1 iff. the
clip contains the target semantic,0 otherwise. For return list of sizeN, the precision
P(N), recallR(N) and average precisionAP(N) are defined as follows:

P(N) = ∑N
r=1 rel(r)

N
(2)

R(N) = ∑N
r=1 rel(r)

∑∞
r=1 rel(r)

(3)

AP(N) = ∑N
r=1P(r)× rel(r)

∑∞
r=1 rel(r)

(4)

Average precision is a summary measure over a range of depths. It puts emphasis
on returning more correct entries earlier, and has been shown to be more stable than
other measures in common retrieval tasks [12].

As an example, Table 1 shows detection performances for twenty-two frequent
concepts in multi-lingual broadcast news, and Figure 2 shows typical top-scored
shots for four concepts. These detectors are trained on one visual feature (color
moments) using SVMs. The performance measure shows that the basic strategy
discussed in earlier parts of this section is indeed effective in extracting semantics
even from visually diverse domains such as broadcast news.

3 The construction and use of multimedia ontology

Multimedia semantics do not exist in isolation. There are usually multiple concur-
rent semantics associated with any media clip, and the usage of semantics and their
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Fig. 2 Top detection result for conceptsbuilding, people, crowd, road on TRECVID 2005 broad-
cast news test set.

correlations often differ for collections of clips in different content domain. For
example, the semantic annotations for a consumer photograph can be “outdoors,
mountain, vegetation, flower”, and those for a broadcast news keyframe be “studio,
face, female anchor, computer or television screen”. Between these two domains,
the likelihood that we are seeing each tag is different, e.g.,female anchoris rare in
consumer photos, and we typically see lessflower in news; which tags tend to oc-
cur together also changes, e.g., we can see more instances ofvehicletogether with
outdoorsandmountainin news.

Given these observations, defining suitable ontologies for multimedia, as well
as using them to help semantic extraction has become important tasks in order for
multimedia analysis to be useful and realistic.

3.1 Making a visual lexicon

The process of developing a good multimedia lexicon involve several steps: (1)
defining a list of semantic concepts from prior knowledge; (2) ground these con-
cepts on a database by finding examples; (3) build detectors for the the lexicon.
These steps are sometimes iterated in order to obtain good results.

As a example, the TRECVID benchmark [90] started with ten semantic concepts
in 2002:Outdoors, indoors, face, people, cityscape, landscape, text overlay, speech,
instrumental sound, and monologue. This list only covered a subset of the impor-
tant semantics in video, so in TRECVID-2003 the list was enlarged to 831 semantic
concepts on a 65-hour development video collection, 17 of which were selected
for benchmarking the detection performance. These annotation were collected in a
common annotation forum, and the annotation tool, VideoAnnex [53], allowed each
user to add/edit the ontology independently. TRECVID 2005 and after adopted a
fixed lexicon for concept annotation, partly to address the lack of convergence in
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user-assigned free text labels. This effort has lead to a Large-Scale Concept Ontol-
ogy for Multimedia (LSCOM) [61], and an interim result of this has resulted in 39
high-level features (concepts) definitions and annotations dubbed LSCOM-lite [60].

The LSCOM-lite concepts went through the three step life cycle mentioned
above. (1) The broadcast news domain were first divided into seven major categories
using domain knowledge, these categories are: program category, setting/scene/site,
people, object, activity, event, and graphics. Several representative concepts are then
selected from each category, where the selection involved mapping them to real-
world query logs and the semantic knowledgebase WordNet, as well as validating
with past TRECVID queries [1]. (2) A collaborative annotation effort is then car-
ried out among participants in the TRECVID 2005 benchmark, with human subjects
judging the presence or absence of each concept in the key frame, producing annota-
tions for the 39 concepts on the entire TRECVID 2005 development set (over 60,000
keyframes from more than 80 hours of multi-lingual broadcast news). (3) Ten of the
LSCOM-Lite concepts were evaluated in the TRECVID 2005 high-level feature de-
tection task, twenty of them were evaluated at TRECVID 2006, and another twenty
were evaluated at TRECVID 2007 on a different content domain (documentary).

The full LSCOM effort has developed an expanded multimedia concept lexicon
well-beyond the previous efforts. Concepts related to events, objects, locations, peo-
ple, and programs have been selected following a multi-step process involving input
solicitation, expert critiquing, comparison with related ontologies, and performance
evaluation. Participants include representatives from intelligence community, ontol-
ogy specialists, and researchers in multimedia analysis . In addition, each concept
has been qualitatively assessed according to the following three criteria:

• Utility, or a high practical relevance in supporting genuine use cases and queries;
• Observability, or a high frequency of occurrence within video data sets from the

target domain;
• Feasibility, or a high likelihood of automated extraction considering a five-year

technology horizon.

An annotation process was completed in late 2005 by student annotators at Columbia
University and Carnegie Mellon University. The first version of the LSCOM annota-
tions consist of keyframe-based labels for 449 visual concepts, out of the 834 initial
selected concepts, on the TRECVID 2005 development set [1]. Here are sample
concept definitions in LSCOM, note their emphasis on visual salience, and their
wide coverage in many multimedia domains.

• Waterscape-Waterfront: Shots depicting a waterscape or waterfront
• Mountain: Shots depicting a mountain or mountain range with the slopes visible.
• Sports: Active sports scenes included jogging/running and players performing

sport; excluded: fans at sporting events (including benched players); sports in
music; video sports equipment; celebrating after/before sporting event.

• People-Marching: Shots showing one or more people marching
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3.2 Multimedia ontology and semantic extraction

A multimedia ontology de-isolatessemantics in two different ways: (1) putting con-
cepts in context with each other with pre-defined semantic relationships such as
those found in WordNet and Cyc; (2) linking concepts with their join presence in
multimedia datasets. The extraction of multimedia semantics can in turn use the re-
lated semantic interpretations along with the co-occurrence patterns in image/video
collections to improve the detection of each semantic concepts. For example, when
the concept “bus” is observed in a video, we know that its hypernym “vehicle” is
also valid, concept “wheel” is likely to be visible since wheels are parts of a bus;
the concept “road” have high likelihood to appear, while the concept “office” is less
likely to co-occur.

These two types of concept relationships are commonplace in multimedia collec-
tions, and they can be useful in two complementary ways, i.e., using multi-concept
relationship to improve the concept detection accuracy, and using correlated context
from data to construct, refine, or discover semantic relationships in a video collec-
tion. The rest of this section will briefly review several approaches on using and
constructing semantic knowledge.

Pattern recognition techniques has been used to automatically exploit multi-
concept relationships. For example, Naphade et al. [62] explicitly modeled the link-
ages between various semantic concepts via a Bayesian network, where the semantic
ontology were encoded in the network topology, and data correlations were captured
in the model parameters. Snoek et. al. [82] used a multi-concept “context link”
layer for the same purpose in the MediaMill concept detection architecture. This
link aims to filter raw concept detector outputs by either learning a meta-classifier
or with ontological common sense rules. Hauptmann et al. [35] constructed an ad-
ditional logistic regression classifier atop uni-concept detection results, to capture
the inter-concept causations and fuse the multi-concept predictions. Amir et al. [4]
concatenated concept prediction scores into a long vector called model vectors and
used a support vector machine as the meta-classifier. Wu et. al. [100] proposed an
ontology-based multi-classification algorithm, attempting to model the possible in-
fluence relations between concepts based on a predefined ontology hierarchy. Yan
et al. [116] described several approaches for mining the relationship between video
concepts with several probabilistic graphical model representations. We have exper-
imented the effect of a large lexicon on concept detection performance, as shown
in Figure 3. This experiment uses naive-Bayes classifiers to model the relationship
between target concept ground-truth and concept detection scores. We can see that
concept detection performance can be improved for more than10% using statis-
tical models on cross-concept relationship, the improvement saturates around 200
concepts, similar to what was observed by Snoek et. al. in video retrieval [81].

There are several recent studies on discovering and refining semantic relationship
from data, esp. on the broadcast news ontology [1] where a complete labeling of
several concepts is available. Kender [51] analyzed the dependencies and redundan-
cies in the LSCOM ontology, confirmed several intuitive ontological relationships
and suggested a few revisions based on the concept co-occurrence in the data. Xie
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Fig. 3 The effect of a large concept ontology on concept detection performance on TRECVID
2007 test data. X-axis: number of concepts in the ontology, randomly selected from a total of 556
concepts; Y-axis: relative mean-average precision over 20 concepts, with respect to that of visual-
only single-concept detectors. See [17] for details.

and Chang [101] found that co-occurrence and temporal precedence are effective in
correlating concepts, and the discovered concept tuples either confirm generic onto-
logical rules or reflect data domain characteristics. The problem of reliably mining
large-scale relations from data remains a challenging one, and the progress of which
can be facilitated with creating large annotated datasets in multiple domains, as well
as more research efforts into the mining and analysis methodologies.

4 Multimodality: information fusion and cross-modal association

To detect semantics from multimedia streams, it is almost always beneficial to com-
bine detection outputs from multiple modalities that provide complementary infor-
mation(Figure 4(b)). For example, the presence of “Bill Clinton” (without perform-
ing face recognition), usually involves one or more persons in the image, and the
word “Clinton” in the spoken content; and the visual concept “clear sky” can be
identified by both its color (blue with gradient) and texture (very smooth). Note
however, more does not easily lead to better. The challenges of multi-modal fusion
mainly lies in the broad diversity among the modalities, which can be summarized
into the following three aspects: (1) Representation difference, e.g. bags-of-words
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Fig. 4 Semantic concept modeling problems brought up by multi-modality and structured in-
put/output. (a) Basic concept learning architecture, as described in Section 2.2. (b) Concept learn-
ing from multimodal cues, described in Section 4. (c) Concept Learning with structured models,
described in Section 5.

for text or filter responses off image patches for texture; (2) Distribution diversity,
e.g., word distributions are typically multinomial, while color and texture features
are mostly modeled with one or more Gaussians (3) Domain dependency of the un-
derlying modalities, e.g., the color variations over one news program is much larger
than those in a typical surveillance video. For multimodal fusion, efforts has been
devoted to answering three important questions:whento combine,whatto combine,
andhow to combine. While a lot of progress has been made in the recent years, the
definite answer is still open, and there is very likely more than a few good answers.

The rest of the section contains two parts – we first review several general learn-
ing approaches for multi-modal fusion and discuss their strengths and weaknesses,
we will then cover models for a cross-modal association: a special case of multi-
modal learning widely seen in real-world image collections and their surrounded
text annotations (e.g. web images, or Flickr).

4.1 Multimodal Fusion

Multi-modal fusion approaches can be categorized into two families, i.e., early fu-
sion and late fusion, with a dichotomy onwhento combine. The early fusion meth-
ods merge multi-modal features into a longer feature vector before it is used as the
input of classifiers. In contrast, the late fusion methods directly fuse detection out-
puts after multiple uni-modal classifiers are generated. Neither of the fusion methods
are perfect [83]. Early fusion can implicitly model the correlations between different
feature components by combining them into a long feature. However, early fusion
be caught in trouble if the feature constitution of different modalities is too het-
erogeneous with skewed length distribution and numerical scales. This is less of a
problem for late fusion, since the features from each modality will not interact with
each other before the final fusion stage. Moreover, late fusion allows the system to
adopt various detection techniques according to specific feature types. Also, it usu-
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ally requires less computation power compared with the early fusion counterpart.
Therefore, late fusion techniques appear to be more popular and more extensively
studied than early fusion techniques in the literature.

The confidence scores and features generated from different modalities/models
usually need to be normalized before fusion. Typical normalization schemes in-
clude rank normalization [115], range normalization, logistic normalization [69],
and Gaussian normalization [4]. The final detection results are then produced by
merging the normalized confidences. Forwhatto combine in late fusion, this merge
step can operate on one or more types of inputs: 1) combine multiple detection mod-
els, 2) combine the detection models of the same class with different underlying
features, or 3) combine the models with the same underlying features but differ-
ent parameter configurations. To addresshow to combine, approaches range from
pre-define combination rules based on domain knowledge, to a large body of ma-
chine learning methods aiming for further performance improvement. For example,
Amir et al. [4] studied min, max and unweighted linear combination function for
multi-modality and multi-model fusion. Among the machine learning approaches,
simple models such as linear combinations and logistic regressions [35] has been ex-
plored, super-kernel fusion [99], as an example extension of simple discriminative
models, constructs a hierarchy of kernel machines to model the non-linear decision
boundaries. Yang et al. [117] specifically consider the problem of detecting news
subjects in news video archives by linearly combining the multi-modal information
in videos, including transcripts, video structure and visual features. The weights
are learned from SVMs. Snoek et al. [83] compare the early fusion and late fusion
methods with SVMs as the base classifiers and meta-level classifiers for fusing text
and images. Their experiments on 184 hours of broadcast video and 20 semantic
concepts show that late fusion on average has slightly better performance than early
fusion for most concepts, but if the early fusion is better for a concept, the improve-
ment will be more significant than later fusion.

4.2 Cross-modal association and image annotation

Viewing semantic concepts as binary detection on low-level multi-modal features
is not the only way for multimedia semantics extraction. An emerging direction
for (image/video) concept detection is to jointly model the associations between
annotated concept words and image features. This scenario has very wide appeal
since the image+text data model fits many real-world image collections: profes-
sional stock photo catalogues, personal pictures, images on the web with surround-
ing HTML text, or images on media-rich social sites such as Flickr and Facebook.
These approaches typically assume that words and image features are generated by
one set of hidden information sources, i.e. the hidden semantics. Hence, image fea-
tures and concepts are no longer marginally independent to each other. Once image
features are given, associated words can be inferred by the information flow passed
through the hidden layer. Actually, most of these approaches have been designed
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under a slightly different name called “image annotation”, which aims to match the
associating keywords to their corresponding images, and automatically predict new
keywords for a given image.

A number of learning algorithms have been applied in the task of automatic im-
age annotation, such as machine translation models [5], relevance language mod-
els [44], graphical models [6] and graph random-walk methods [67]. Barnard et
al. [5] interpreted regions in images and the words in annotation as aligned bi-text
and used machine translation models to learn their joint probabilities (with and with-
out word orderings) in order to uncover their their statistical correspondence. Blei
et al. [6] developed a gaussian-multinomial latent Dirichlet allocation(GM-LDA)
model and a correspondent latent Dirichlet allocation(GM-LDA) model that simul-
taneously capture the information from image regions and associated text keywords
via a directed graphical model. Jeon et al. [44] used the framework of cross-lingual
retrieval to formulate the image/video annotation. They proposed an annotation
model called cross-media relevance model(CMRM) which directly computed the
probability of annotations given the image. It was shown to outperform the trans-
lation models in the image/video annotation task. By representing the terms and
image features in a unified graph, Pan et al. [67] proposed a random walk with
restart(RWR) approach to capture the correlation between words and images. Jin et
al. [45] proposed a coherent langauge model for image annotation that can model the
word-to-word relationship in the annotation process. This approach allows the anno-
tation length to be automatically determined and the annotated number of examples
to be reduced by using active learning technique. Iyengar et al. [42] described a
joint text/image modeling approach for video retrieval that allows the full interac-
tion between multi-modalities to result in a considerable performance improvement
in TRECVID datasets.

5 Structured Models

Semantic modeling as discussed in Section 2 and 3 treats each data instance as an
independent unit, and models there learn a direct mapping function from the input
features to the target class. In many real-world scenarios, however, the problems
calls for structured models (Figure 4(c)). And the resulting model structure accounts
for either the natural data dependencies, such as those in temporal data streams, e.g.
a foul in soccer usually leads to a throw-in in the next few shots; or inherent structure
in the data collection, e.g. arrow charts and maps are recurrent visual themes in news
programs and they can mean “financial news”,“weather report”, “war coverage” or
“natural disaster”.
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5.1 Models for semantics in temporal sequences

Graphical models are natural choices as stochastic representations for temporal
evolutions in streams, or intuitive dependencies in data. Hidden Markov Models
(HMMs) [73] is one of the most popular graphical models due to its simple structure
and available efficient inference algorithms. HMMs are used by Schlenzig, Hunter
and Jain [78] to recognize four types of gestures from continuous recordings, and
by Starner, Weaver and Pentland [86] to recognize American Sign language from
wearable computers. In produced video streams features reflect both the content
and the production conventions, such as segmenting stories in news programs [18],
or detecting plays in sports broadcast [102]. Flavors of Dynamic Bayesian Net-
work (DBN) are extensions of HMM used to encode more complex dependencies.
Brand, Oliver and others [9, 66] develop coupled HMM (CHMM) to account for
multiple interacting streams for multi-object multi-agent action recognition. Zhang
et al. [57] analyze multi-camera/microphone meeting captures for group interac-
tion events such as discussion, monologue, presentation + note-taking. Two-layer
HMM is used to infer individual action and group action in cascade, each state in
the HMMs are assigned domain-specific meanings and the parameters are learned
from data.

The ability of graphical models to capture the data dependency can be used in
conjunction with discriminant models, such as kernel-based classifiers, to improve
detection performance on known semantics. For instance, for the problem of distin-
guishing shots that do or do not contain a generic event (e.g.,airplane landing, riot),
Ebadollahi et al. [31] use SVM on representations generated from HMM likelihoods
and parameters from input feature streams; Xu and Chang [106] use bag-of-features
representation of temporal streams, compute similarity metric among shots using
earth mover’s distance (EMD) or pyramid match kernel, and then resort to SVM for
the final decision; Xie et al. [104] use multiple kernel learning in the final decision
stage to optimally combine multiple input streams.

5.2 Uncover the hidden semantic layer with unsupervised learning

Most semantic extraction algorithms learn a direct mapping from annotated data to a
pre-defined list of semantic concepts. While simple and effective, these approaches
does not make full use of the inherent data distributions and latent structures.

The idea of latent structures and hiddentopicswas first explored in in text re-
trieval. There, each documentd in collectionD consists of wordsw in vocabulary
W . The text data in a collection are summarized into a feature matrixMD×W con-
taining the word counts for each document, i.e., the bag-of-words representation,
with D = |D | andW = |W |. The algorithms then findsK latent topicsZK×W to
best representM. Latent semantic indexing (LSI) [27] considers each document
Md = [md1, . . . ,mdW] as a linear combination of latenttopicsMd = ∑k wdkZk, where
Zk = [zd1, . . . ,mdW] being thekth topic vector denoted by the relative strength of
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each feature (word), andWd = [wd1, . . . ,wdK]T being the mixing weights for doc-
umentd. The hidden topics and weights are then uncovered with singular value
decomposition:

M = USZT ≈MK = UKSKZT
K

. This provides a rand-K approximation to matrixM with minimum least-square
error, with the rows ofZK represent theK topics, and thedthrow of UKSK being
topic weightsWd for each document. There are a few probabilistic extensions to LSI.
Probabilistic latent semantic indexing (pLSI) [38] expresses the joint probability of
a wordw and a documentd as

p(d,w) = p(d)∑
z

p(w|z)p(z|d),

with z the unobserved topic variable, andp(z|d) taking the role of the top-mixing
weights. The mixture of unigrams model [7] is a special case of pLSI where each
document is associated with only one topic. The latent Dirichlet allocation (LDA)
model [7] offers even more flexibility by modeling the top-mixing weights as ran-
dom variables observingprior distributions.

Topic models has been extended to handle multimedia data. Gemert [93] applied
LSI to capture the joint latent semantic space of text and images. Blei and Jordan
[6] have extended the mixture of unigrams and the LDA model into a Gaussian-
multinomial mixture (GM-Mix) and a Gaussian-multinomial LDA (GM-LDA) to
model captioned images. Hierarchical HMM model(HHMM) [103] is another vari-
ant of directed graphical models that captures latent topic structures with temporal
dependencies. Undirected graphical model has also been explored. Thedual-wing
harmonium(DWH) model for multimedia data [105] can be viewed as an undirected
counterpart of the two-layer directed aspect models such as LDA, with the topic
mixing as document-specific and feature-specific combination of aspects rather than
via a cumulative effect of single topic draws. Inference on DWH is fast due to the
conditional independence of the hidden units, although the offline learning process
could take longer due to an intractable normalization factor.

We illustrate the effectiveness of learning the latent semantic topics in Fig 5. Each
topic is described by the top 10 words and the top 5 key images with highest con-
ditional probabilities on the latent topic. Intuitively, the first three topics correspond
to scenes of Weather News, Basketball and Airplane, respectively, the formation of
which is based on the evidence from both words and images. The fourth topic (a
CNN anchor person) is very consistent in the visuals, and diverse in the words, it
is likely to be primarily determined by image similarities. The last topic is mainly
driven by word similarities – its interpretation is not obvious at the first sight, due
to its apparent visual diversity in weather and sports reports. However scanning the
top words tells us that mentions of places (york, jersy), numbers (six), and certain
verbs (stoping, losing) are indeed common across these two topic themes.

The uncovered hidden topics and multimodal concepts can be used to help se-
mantic extraction in three ways: (1) presented as topics in themselves [103, 6], (2)
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Topic 1
storms, gulf, hawaii, low, forecast, southeast, showers, rockies, plains, alaska,

Topic 2
rebounds, 14, shouting, tests, guard, cut, hawks, blew, cassell, minutes,

Topic 3
engine, fly, percent, thousands, say, hour, aerodynamic, asia, asteroid, craft,

Topic 4
safe, cross, red, sure, dry, providing, services, they’re, lyn, stay,

Topic 5
losing, jersey, sixth, antonio, david, york, orlando, rate, twelve, stopping,

Fig. 5 Illustration of five latent topics learned from broadcast news videos with DWH [105]. The
top 10 words and the top 5 images associated with each topic are shown.

used as intermediate representations for supervised classification [105], (3) used to
initiate the labeling and user feedback process in supervised learning.

6 Training data

Although multimedia semantics extraction can be formulated as a straightforward
supervised learning problem, not every supervised learning algorithm is directly ap-
plicable in this scenario. The difficulty partly stems from several distinct properties
of training data in multimedia domains, such as unbalanced training distribution,
limited positive labels and a large number of general examples. In this section we
provide a brief overview and discussion on three directions to address these issues,
which includes methods for predicting rare classes (Figure 6(a)), leveraging unla-
beled data (Figure 6(b)) and scaling to large datasets (Figure 6(c)).

6.1 Predicting rare classes

Standard machine learning algorithms often assume that positive/negative data has
a balance distribution, however, multimedia collections usually contain only a small
fraction of positive examples for each concept. For example, only less than 8%
of all shots are labeled as cityscape and less than 3% labeled as landscape in the
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Fig. 6 Semantic concept modeling challenges brought up by data characteristics. (a) Learning a
rare class, as described in Section 6.1. (b) Learning with unlabeled data, as described in Section 6.2.
(c) Scaling to large amounts of training data, as described in Section 6.3.

TRECVID’02 development data. This is because the positive examples of a seman-
tic concept is typically a coherent subset of images (e.g. cityscape, landscape and
sunrise), but the negative class is less well-defined as “everything else” in the col-
lection. Unfortunately, many learning algorithms will get into trouble when deal-
ing with imbalanced datasets [70]. For instance, when the class distribution is too
skewed, SVMs will generate a trivial model by predicting everything to the major-
ity class. Japkowiczaz [43] shows that the data imbalance issue can significantly
degrade prediction performance, especially when training data are non-linearly sep-
arable. Therefore, it is of crucial importance for us to address the rare data problem
in the context of semantic extraction.

To date, there have been a few attempts to address the rare class problems in
several applications, such as fraud detection [19], network intrusion, text catego-
rization and web mining [49]. Two of the most popular solutions are named “over-
sampling” which replicates positive data, and “under-sampling” which throws away
part of negative data. They were designed to balance the data distribution and thus
mitigate the data skewness problem in the training collection [97]. Although it is still
an open question if artificially varying the training distribution can improve predic-
tion performance with theoretical guarantee, Foster [97] provided some insights and
qualitative analysis of the effectiveness on why tuning training distribution can be
beneficial. To demonstrate, we apply over-sampling to the TRECVID’02 data us-
ing SVMs, altering the positive data distribution from 10% - 60%. Figure 7 shows
the detection performance for “cityscape” with respect to precision, recall and F1-
measure. We observe that SVMs always predict test examples as negative and thus
yields zero precision/recall until the size of rare class examples is roughly compa-
rable to the size of negative class examples. This observation again suggests that
balancing training distribution is useful to improve the detection performance.

However, both under-sampling and over-sampling bear known drawbacks. Under-
sampling is likely to eliminate some of the potentially useful examples and such loss
of information may hurt the classification performance. Over-sampling, on the other
hand, significantly increases the number of training data and thus consumes more
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Fig. 7 The effect of modifying training distributions. Performance of theCityscapeconcept clas-
sifier on TRECVID-2002 collection.

time in the learning process. This problem is critical to SVMs , since the training
time complexity for SVMs is empirically close to quadratic of the number of support
vectors, and cubic in the worse case [46]1. In addition, overfitting is more likely to
occur with replicated minor examples [97].

As an alterative to modifying skewed data distribution, ensemble-based ap-
proaches have been proposed in recent studies, of which the basic idea is to com-
bine multiple individual classifiers on balanced data distributions. In [19], a multi-
classifier meta-learning approach has been devised to deal with skewed class distri-
butions. Joshi et al. [49] provided insights into the cases when AdaBoost, a strong
ensemble-based learning algorithm, can achieve better precision and recall in the
context of rare classes. It was found that the performance of AdaBoost for rare class
is critically dependent on the learning abilities of the base classifiers. To bring the
strengths of under-sampling and over-sampling together, Yan et al. [111] proposed
an ensemble approach that first partitions negative data into small groups, constructs
multiple classifiers using positive data as well as each group of negative data, and
finally merges them via a top-level meta-classifier. Various classifier combination
strategies are investigated including majority voting, sum rule, neural network and
hierarchical SVMs. Experimental results show that this approach can achieve higher
and more stable performance than over/under-sampling strategies in the TRECVID
datasets.

Beyond augmenting learning algorithms, we can also consider modifying the
training data sets. For example, it is possible to perturb the original positive ex-
amples (by adding white noises or information from other modalities) and create a

1 Although linear-time algorithm has been derived for linear SVMs with an alternative formula-
tion [48], no speedup of general SVMs is known.
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larger set of synthetic positive examples so as to balance the data distribution. In
this scenario, however, how to produce semantically correct but visually distinctive
examples will become a major problem to address.

6.2 Leveraging Unlabeled Data

Successful concept detection outputs usually rely on a large annotated training cor-
pus that contains a sufficient number of labeled image/video samples. In practice,
however, the number of labeled video samples is usually few for most semantic
concepts, since manual annotation is such a labor-intensive process. For instance,
annotating 1 hour of broadcast news video with a lexicon of 100 semantic concepts
can take anywhere between 8 to 15 hours [53]. This problem is further worsened
given a large number of infrequently-appearing semantic concepts in video collec-
tions.

As a remedy for the label sparseness, a variety of semi-supervised learning al-
gorithms have been developed in an attempt to leverage additional unlabeled data
in the training collection. Moreover, multiple modalities in video streams further
prompt us to consider multi-view learning strategies which can explicitly split the
feature space into multiple subsets, or views. Combining semi-supervised learn-
ing and multi-view setting offers powerful tools to learn with unlabeled data and
these approaches are generally called “multi-view semi-supervised learning”. Co-
training [8] is one of the most well-known multi-view semi-supervised learning
algorithms. It starts with two initial classifiers learned from separate views. Both
classifiers are then incrementally updated in every iteration using an augmented
labeled set, which includes additional unlabeled samples with the highest classifica-
tion confidence in each view. Co-EM [65] can be viewed as a probabilistic version of
co-training, which requires each classifier to provide class probability estimation for
all unlabeled data. Collins and Singer [25] introduced the CoBoost algorithm which
attempts to minimize the disagreement on the unlabeled data between classifiers of
different views. This class of co-training type algorithms has been successfully ap-
plied to a variety of domains, including natural language processing [68], web page
classification [8], information extraction [25] and visual detection [52].

Although identified as a potential application domain by the original co-training
authors [8], applying co-training as-is yields poor performance in video concept de-
tection. After examining the real-world video data, we realized that the failure of
co-training in this domain can be partially attributed to the violation of its underly-
ing assumptions which requires that each view be sufficient for learning the target
concepts. For example, when color histograms are used to learn the video concept
“airplane” of two video frames that have the same color histogram (e.g. white/gray
on blue backgroun), one can contain an airplane but the other may contain an eagle.
Therefore, the view from low-level color features alone will not be sufficient to learn
the underlying concepts. Empirically, Yan et. al. [113] found that co-training tends
to produce lower average precision with more unlabeled data introduced with noisy
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labels. In the domain of natural language processing, Pierce et al. [68] also observed
the similar degradation of the co-training algorithm if the labeled data introduced by
the other view is not accurate enough.

Fig. 8 Illustration of co-training in multi-modal learning.

Better semi-supervised learning algorithms should be able to guarantee that unla-
beled data will at worst result in no significant performance degradation and at best
improve performance over the use of the labeled data sets alone. Yan et al. [113]
proposed a more effective algorithm called semi-supervised cross feature learn-
ing(SCFL) for concept detection. Unlike co-training which updates each classifier
by incorporating the selected unlabeled data to augment the labeled set, SCFL learns
separate classifiers from selected unlabeled data and combines them with the classi-
fiers learned from noise-free labeled data. One advantage of the proposed approach
is that it can theoretically prevent its performance from being significantly degraded
even when the assumption of view sufficiency fails.

If further manual annotation is possible, we can enhance the semi-supervised
learning by iteratively inquiring a human annotator to review and provide the cor-
rect labels for some selected unlabeled data. This type of problem is called “active
learning” [22] or “selective sampling” [15] in the literature. An active learner be-
gins with a pool of unlabeled data, selects a set of unlabeled examples to be man-
ually labeled as positive or negative and learn from the newly obtained knowledge
repetitively. Typically, the unlabeled examples can be selected by means of either
minimizing the learner’s expected error [15] or maximizing the information gain
or version space reduction [92]. The effectiveness of active learning for reducing
annotation cost in semantic concept detection has been demonstrated by a number
of investigations [22, 63, 109, 92]. Note that active learning and co-training can be
combined, e.g., corrected co-training [68] and co-testing [58], which require users
to annotate the selected unlabeled data from the co-training algorithm. Applying
corrected co-training [112] to semantic concept detection shows a considerable per-
formance improvement over initial classification results.
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6.3 Scalability

Real-world multimedia collections easily contain hundred thousands or even mil-
lions of data. For example, photo sharing site Flickr.com has 3500∼4000 new pho-
tos every minute, translating to 5 million per day, and 2 billion per year. Moreover,
the target lexicon is scaled from a few concepts to several hundred concepts, just
as the research and development has progressed in the past few years [34, 1]. The
computational requirements for concept detection are increasing significantly un-
der the dual growth of data×concepts. However, most of the existing algorithms do
not scale well to such a high computational demand. For example, current support
vector machine(SVM) implementations have a learning time ofO(mn2) and a pre-
diction time ofO(mn) on a non-linear kernel, withm the feature dimensions andn
the dataset size. Therefore, the computational resources needed to learn millions of
data will be prohibitive even after negative data are down sampled. A simultaneous
focus on learning and classification efficiency is needed to perform detection over
the large lexicon of concepts, it should be at a speed at least an order of magnitude
faster than the current processing without compromising the detection accuracy.

To speed up machine learning process without performance degradation, one ap-
proach is to exploit the information redundancy in the learning space. There are a
large body of previous work on reducing the computational complexity of SVMs,
such as [28, 14, 54]. The attempt is to either reduce the number of training samples
offered to the learner, sample the large number of support vectors that are generated
by the learner, or create new learning functions to approximate the current predic-
tion function without losing the generalization ability or accuracy. Along another
line, researchers also proposed several efficient ensemble learning algorithms based
on random feature selection and data bootstrapping. Breiman has developedran-
dom forest[10], which aggregates an ensemble of unpruned classification/regression
trees using both bootstrapped training examples and random feature selection, out-
performing a single tree classifier in experiments. Ensemble learning approaches are
not limited to tree classifiers. For instance, asymmetric bagging and random sub-
space classifiers [88] were used in an image retrieval task, with a strategy similar to
that of random forest.

To further reduce the information redundancy across multiple labels, Yan et
al. [114] proposed a boosting-type learning algorithm called model-shared subspace
boosting (MSSBoost). It can automatically find, share and combine a number of
random subspace models across multiple labels. This algorithm is able to reduce the
information redundancy in the label space by jointly optimizing the loss functions
over all the labels. Meanwhile, this approach enjoys the advantage of being built
on small base models, learned on a small number of bootstrap data samples and a
randomly selected feature subspace. The experimental results on a synthetic dataset
and two real-world multimedia collections have demonstrated that MSSBoost can
outperform the non-ensemble baseline classifiers with a significant speedup on both
the learning and prediction process. It can also use a smaller number of base models
to achieve the same classification performance as its non-model-shared counterpart.
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7 Retrieval with semantic concepts

By introducing semantic concepts as intermediate layer in multimedia retrieval, a
new retrieval approach called concept-based retrieval has recently emerged. It uti-
lizes a set of semantic concepts to describe visual content in multimedia collections,
and maps the user queries to identify the relevant/irrelevant concepts for combina-
tion. Since semantic concepts can serve as a bridge between query semantics and
content semantics, concept-based retrieval is able to capture the information needs
in a more effective way and thus improve the retrieval performance. In the following
discussion, we briefly describe the use and utility of semantic concepts in assisting
multimedia retrieval.

7.1 The utility of semantic concepts

Semantic concepts can be categorized into two types. One type consists of general
concepts with frequent appearances and sufficient training examples to represent
their characteristics. These concepts can often be learned with a reasonable predic-
tion accuracy. For instance, in broadcast news collection,anchor person, outdoors,
cars and roadsbelong to this type of concepts. In contrast, the other type of con-
cepts consists of more specific concepts with less frequent occurrence. Thus, the
number of their training examples is usually insufficient and less representative. In
some sense, the detection of rare concepts is similar to a retrieval problem (with few
training examples) rather than a classification problem.Prisoner, physical violence
are two examples of this type of semantic concepts.

The distinctions between these two concept types consequently suggest different
utilities in the retrieval task [23]. For instance, the common semantic concepts often
have universal predictive powers over a large number of queries, and their associ-
ation with query topics can probably be learned from a large training collection.
On the other hand, the usefulness of rare semantic concepts is limited to merely
a small number of domains. Therefore, they are more appropriate to be applied in
domain-specific queries.

7.2 Use of semantic concepts for automatic retrieval

To illustrate how semantic concepts can be used in multimedia retrieval, we discuss
four most common types of concept-based retrieval methods. The simplest approach
is to match each concept name with query terms. If a concept is found to be relevant,
its detection outputs can be used to refine the retrieval results. For example, the
concept “building” will be helpful for retrieving the query of “finding the scenes
containing buildings in New York City”. This method is intuitive to understand and
simple to implement. However, it is unrealistic to expect a general user to explicitly
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indicate all related concepts in a query description. For example, the concept of
“outdoor” could be useful for the query of “finding people on the beach”, but it does
not show up in the query directly.

To extend the power of simple query matching, we can follow the idea of global
query analysis in text retrieval, which attempts to enrich query description from
external knowledge sources, such as WordNet [32]. These approaches have shown
promising retrieval results [96, 64] by leveraging extra concepts. However, these
approaches are also likely to bring in noisy concepts, and thus lead to unexpected
deterioration of search results. Moreover, even when the subset of relevant concepts
are perfectly identified, it remains a challenge to derive a good strategy to combine
semantic concepts with other text/image retrieval results.

As an alternative, we can leverage semantic concepts by learning the combination
strategies from training collections, e.g., learning query-independent combination
models [4] and query-class dependent combination models [115]. These approaches
can automatically determine concept weights and handle hidden semantic concepts.
However, since these learning approaches can only capture the general patterns that
distinguish relevant and irrelevant training documents, their power is usually limited
by the number of available training data.

Finally, we can also consider local analysis approaches that adaptively leverage
semantic concepts on a per query basis. The essence of local, or re-ranking strate-
gies is to utilize initial retrieved documents to select expanded discriminative query
concepts to improve the retrieval performance. For example, we proposed a retrieval
approach called probabilistic local context analysis (pLCA) [108], which can auto-
matically leverage useful high-level semantic concepts based on initial retrieval out-
put. However, the success of these approaches usually relies on reasonably accurate
initial search results. If initial retrieval performance is unsatisfactory, it is possible
for local analysis approaches to degrade the retrieval results.

A more complete survey for multimedia retrieval can be found at [110]. To sum-
marize, all four types of approaches have proved to be successful in utilizing high-
level semantic concepts for video retrieval, despite their own limitations. Moreover,
the these methods are not mutually exclusive, a composite strategy usually pro-
duces better results than any single approach. How to automatically determine the
best strategy or strategies to incorporate high-level concepts into video retrieval is
an interesting direction for future exploration.

8 Discussions and summary

In this chapter we presented the general approaches and active research directions to
semantic extraction from multimedia. We discussed the five main components in se-
mantic modeling, followed by a selection of challenges and solutions in real-world
media processing tasks for each component: the design of a multimedia lexicon and
the use of it to help concept detection; handling multiple sources of input and a
special case of resolving correspondence between images and text annotations; us-
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ing structured (generative) models to account of natural data dependency or model
hidden topics; handling rare classes, leveraging unlabeled data, and scale to large
amounts of training data; finally the use of media semantics in automatic and inter-
active retrieval systems.

At the end of this review, we would like to present our views on a few chal-
lenges ahead: (1) Scale concept detection with high accuracy to massive amounts
of training data and a large number of concepts. Currently some concepts have no-
tably higher performance than others, for instance,people, face, outdoors, nature
typically have very accurate top results, whilecourt, desert, glacierare yet to im-
proved due to their diverse appearance lack of sufficient labeled examples., In order
to scale to thousands of concepts, the algorithms and the computational architecture
also need to evolve and keep up the pace, this may mean both new paradigms for se-
mantic learning and efficient parallel computing structures. (2) Generalize semantic
extraction to many data domains. Currently the tight coupling of training and test-
ing data makes lengthy cycles for learning and deploying semantic models. Clever
algorithms are called for in deciding which concepts will generalize well, and how
to quickly adapt to domain characteristics. (3) Effective use of unstructured media
and structured metadata. Media semantics do not exist in isolation, neither do the
people who capture and consume them. Successful use of structured metadata, such
as time, location, author or social relationships should mitigate semantic diversity
and alleviate the problem of insufficient training data.
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