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ABSTRACT 

This work deals with the problem of event annotation in social 

networks. The problem is made difficult due to variability of 

semantics and due to scarcity of labeled data. Events refer to 

real-world phenomena that occur at a specific time and place, 

and media and descriptions are treated as facets of the event 

metadata. We are proposing a novel mechanism for event 

annotation by leveraging related sources (other annotators) in a 

social network. Our approach exploits event concept similarity, 

concept co-occurrence and annotator trust. We compute concept 

similarity measures across all facets. These measures are then 

used to compute event-event and user-user activity correlation. 

We compute inter-facet concept co-occurrence statistics from 

the annotations by each user. The annotator trust is determined 

by first requesting the trusted annotators (seeds) from each user 

and then propagating the trust amongst the social network using 

the biased PageRank algorithm. For a specific media instance to 

be annotated, we start the process from an initial query vector 

and the optimal recommendations are determined by using a 

coupling strategy between the global similarity matrix, and the 

trust weighted global co-occurrence matrix. The coupling links 

the common shared knowledge (similarity between concepts) 

that exists within the social network with personalized 

observations (i.e. concept co-occurrences) that the user trusts. 

Our initial experiments on annotated everyday events are 

promising and show substantial gains against traditional SVM 

based techniques.  

Categories and Subject Descriptors 

H.3.3 [Information Search and Retrieval] Information 

filtering, search process 

General Terms 

Algorithms, Experimentation, Human Factors 

Keywords 

Social networks, context, event annotation, images, content 
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1 INTRODUCTION 

In this paper we address the problem of event centric image 

annotation by exploiting activity correlation amongst members 

of a social network within a trusted context. The paper makes 

possible for members of a social network to effectively annotate 

images. The problem is important as online media sharing sites 

such as Flickr [1], are enormously popular (and more recently 

event centric media sites such as SEraja [2]) and yet since tags 

are still rare or sparse. In such systems, text is predominantly 

used to search for media, and the absence of robust annotations 

will preclude effective search. Developing robust concept 

classifiers for annotation of everyday images is very challenging 

problem, due to visual diversity of such images and tag scarcity.  

Why should a social network be helpful for image annotation? 

The key observation is that members of the social network have 

highly correlated real-world activities – i.e. they will participate 

in common activities together, and often repeatedly. We 

conjecture that the shared activities provides valuable context 

for both the images and the descriptions – they will be of shared 

events, images of mutual friends and the semantics of the tags 

used to describe them will be consistently understood within the 

social network.  

The identification of correlated (in the sense of activity 

semantics) members within the social network may lead to 

higher quality recommendations due to the pooling of 

observations (images and text tags) of the correlated members.  

From a pattern recognition point of view, the ability to pool 

images essentially increases the ground truth available per tag. It 

has the important benefit that the tags are likely to be used in the 

same context (i.e. share the semantics) as the user activity is 

correlated. 

1.1 Related work 

There has been recent interest in „folksonomy‟ [19,23]. It has 

been noted that a large number of ordinary untrained folk are 

tagging media as part of their everyday encounters with the web 

(http://del.icio.us), or with media collections [1]. The attraction 

of folksonomy lies in the idea that collective tagging can 

significantly reduce the time to determine media that are 

semantically relevant to the users, for example as part of a 

search.  

There has been prior work in using groups for the purposes of 

image annotation / labeling [3,22]. In  the ESP game [3], the 

authors develop an ingenious online game, in which people play 

against each other to label the image. In [22] the authors take 

into account browsing history with respect to an image search 

for determining the sense associated with the image. Both work 

aims at recovering one correct sense either shared by common 

knowledge or the user‟s own history. The context in which the 

annotation is used / labeled is not taken into account. In [25] the 

authors explore a collaborative annotation system for mobile 

devices. There they used appearance based recommendations as 

well as location context to suggest annotations to mobile users. 

In [16], the authors provide label suggestions for identities based 

on patterns of re-occurrence and co-occurrence of different 

people in different locations and events. However, they do not 

make use of user-context, or commonsensical and linguistic 

relationships and group semantics.  
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In [6,13], the authors use sophisticated classification techniques 

for image annotation. However, they do not investigate 

collaborative annotation within a social network. The image 

based classifier schemes run into two broad problems: (a) 

scalability – each tag, requires its own classifier, and (b) the fact 

that people may use a tag in very different senses makes the 

classifiers difficult to build.  

While there has been very little work on the role of trust for 

image annotation, there has been work on trust in the context of 

web-spam detection [9]. In this paper the authors develop an 

algorithm that that propagates trust from a small set of seed 

pages evaluated by an expert. Their main intuition is that good 

pages rarely point to bad pages. The web spam detection 

problem has similarities to image annotation in terms of cost. 

Today, spam is detected manually – it is expensive, but 

extremely important for web search engines to be able to filter 

out such sites to ensure high quality search results. Our work on 

annotator trust has been motivated by their problem formulation.  

A key limitation of prior work on image annotation is that there 

is an implicit assumption that there is one correct semantic 

associated with the image that needs to be uncovered by 

classification. In social networks the assumption of consistent 

labeling of images (thus implying semantic agreement) over the 

dataset may not hold over a diverse set of concepts. In prior 

work [17], we have observed that there is non-negligible 

disagreement among users, particularly on concepts that are 

more abstract rather than concrete. For example, people are 

more likely to disagree on abstract concepts such as “love”, 

“anger”, “anxiety” etc.  as compared to everyday concepts such 

as “pen”, “light bulb”, “ball” etc. The implication is that 

building a concept classifier to annotate an image, will not work 

well across all users, particularly for abstract concepts. 

1.2 Our Approach  

We are proposing an event-centric approach to media 

annotation, which incorporates social network trust. 

Specifically, we do not develop per-concept classifiers, to 

address the classifier scalability issue. Instead our approach to 

annotation is motivated by web search algorithms such as HITS 

[12] and PageRank [5]. In these algorithms, query-relevant 

documents are found through iterative mechanisms on the 

hyperlinked structure, instead of pre-classifying documents 

using concept classifiers. 

Our approach is grounded in observations of the tag distribution 

in the Flickr dataset (ref. Figure 1). We observe that the tag 

distribution follows the familiar power law distribution found in 

online social networks [4,20]. These observations have 

consequences for concept based annotation systems, in terms of 

learnability (not enough data for most tags), scalability (too 

many classifiers – this will become computationally expensive) 

and semantic variability (due to different user contexts).  

We define events to be a real-world occurrence, which may be 

described using attributes such as images, and facets such as 

who, where, when, what. A key idea is that media (including 

images and text) are event meta-data – i.e. they are description 

of the event, not the event itself [24]. We refer to event 

descriptions via the attributes of images and text as the event 

context – these set of attributes / facets that support the 

understanding of everyday events. 

Given a social network and events, we compute event concept 

similarity, concept co-occurrence and annotator trust. We 

compute concept similarity measures across all facets (who, 

where, when what and image) using ConceptNet [14] as well as 

low-level features. These measures are then used to compute 

event-event and user-user activity correlation. We compute 

inter-facet concept co-occurrence statistics from the annotations 

by each user. The annotator trust is determined by first 

requesting the trusted annotators (seeds) from each user and then 

propagating the trust amongst the social network using the 

biased PageRank algorithm. 

The recommendation algorithm is a variant of the well known 

HITS algorithm [12]. The optimal recommendations are 

determined by using a coupling strategy between the global 

Figure 1: The AME pool on Flickr, showing the familiar power-law distribution of the tags. The power law equation is  

y = 605.7x-1.03. 



 

similarity matrix, and the trust weighted global co-occurrence 

matrix. The trust is computed for each user, over the entire 

social network. The coupling links the common shared 

knowledge (similarity between concepts) that exists within the 

social network with personalized observations (i.e. concept co-

occurrences) that the user trusts. Our preliminary experimental 

results when compared to traditional concept classifiers are 

promising.   

The rest of this paper is organized as follows. In the next section 

we present some observations relating to image annotation. In 

Section 3, we introduce the idea of events. In Section 4, we 

discuss inter-facet distance and co-occurrence statistics. In 

Section 5, we develop the idea of annotator trust and follow that 

section with a section on generating concept recommendations 

for images. In Section 7, we present our experimental results, 

and then conclude the paper with our summary and conclusions.  

2 AN ANNOTATION PUZZLE 

In this section, we present some observations and challenges that 

occur in annotating images from everyday events.  

2.1 The long Tail 

The “long tail” [4] refers to a power law distribution of entities 

observed in online problem domains where large groups of 

people interact. We now present observations from a community 

pool in Flickr as well as statistics from Flickr.  

We begin with an analysis of the AME (Arts, Media and 

Engineering Program, the home institution of the first two 

authors) flickr pool. The pool distribution at the time of writing 

the paper (~1200 photos, ~575 unique tags, 41 members), shows 

the familiar power law distribution (y = 605.7x-1.03 , ref Figure 

1). An interesting observation is that only about 11% of the tags 

(67 / 575) contain more than 10 photos. Furthermore the top two 

tags are both names of a pool member, who by habit tags all of 

her photos by variants of her name.  

 

Figure 2: Flickr global pool distribution for the same 

tags as the AME pool. The figure shows that most tags 

occur frequently – note that the vertical axis is a 

logarithmic scale.  

We now examine the global Flickr pool of the same tags as in 

the AME pool (ref. Figure 2). The figure shows the frequency of 

occurrence (the vertical axis is logarithmic, for the sake of 

clarity) of the same tags in the global flickr pool. The data 

shows that most tags (~90%, 522/575) have at least 100 photos 

associated with them. We note that the global pool is data is not 

a power-law distribution because it is not a plot of all the global 

tags. Furthermore most of the photographs for the frequently 

occurring tags (e.g. 2006, trip, china) are highly visually diverse.  

2.2 Three Problems 

The long tailed distribution image tags on the community AME 

Flickr pool, and in Flickr in general, raises important questions 

training classifiers for generating recommendations. 

Specifically, there are concerns relating to concept learnability, 

classifier scalability and the role of context in concept learning. 

2.2.1 Concept Learnability 

The AME and global flickr pools show very different numbers 

of photos tagged with the same word. Given that most of the 

tags in the community have very few photos instances (only 

10% have more than 10 photos), it is very difficult to learn 

concept classifiers for most of the tags. While many of the tags 

in the AME do have many more positive instances in the global 

pool, they can be highly visually diverse, thus making the 

classifier weak.  

The main issue here is that the power-law distribution is 

fundamental characteristic of large datasets from online 

communities such as Flickr [4].  Then, the consequence of this 

observation is that most of the tags even in the global pool will 

have very few positive instances due to the power-law 

characteristic. This makes the construction of concept classifiers 

difficult, for most tags.  

2.2.2 Classifier Scalability 

Classifier scalability deals the issue of number of useful 

classifiers. While there has been attempts to develop a 

multimedia ontology (LSCOM [11], 449 concepts) for domains 

such as news video, this is a challenging problem in 

unstructured domains such as photographs from everyday 

events. Flickr has an extremely large number of tags, and 

learning a global concept classifier for each unique tag makes 

the automated image annotation problem computationally 

expensive. This is because we would need to test each trained 

classifier on the untagged image. We note that even in the AME 

group pool there are a total of 575 tags for only ~1200 

photographs.  

2.2.3 The role of Context 

Learning a classifier on a set of images tagged with the same 

keyword implicitly assumes that the photos share the same 

context in which the keyword is appropriate. An examination of 

both the AME flickr pool and the Global pool reveals that this is 

not accurate. For example in the AME flickr pool, there are 

photos tagged as “saguaro” – the photos exist in two contexts – 

the cactus, and the name of a lake. In the flickr global pool, there 

are thousands of photographs labeled as “yamagata” – some are 

of the town, some refer to the visual artist (Hiro Yamagata), 

while still others refer to the singer (Rachel Yamagata).  

What is missing from both the AME and the global flickr pools 

is the context in which tag makes sense for the author / annotator 

of the photo.  This lack of context makes it difficult to use one 

classifier per concept trained on all photographs in the Flickr 

pool, on a photograph whose context is not known. 

We are proposing an event-centric approach to media 

annotation, which incorporates social network trust. 

Specifically, we do not develop per-concept classifiers, to 

address the classifier scalability issue. Instead our approach to 

annotation is motivated by web search algorithms such as HITS 

[12] and PageRank [5]. We next discuss the notion of an event.  



 

3 WHAT ARE EVENTS? 

In this section we provide a formal definition of events and 

introduce the idea of the event context. 

3.1 Definition 

An event refers to a real-world occurrence, which may be 

described using attributes such as images, and facets such as 

who, where, when, what. Events may be spread over temporal 

and spatial attributes. For example an event “new year‟s eve 

celebration” can occur at multiple locations and at different 

times (due to time-zone differences). Events such as “John‟s 

party” may take place at a single location, but may be spread 

over a few hours.  Events may also have temporal structure – 

“Weekly Lunch discussion with Mary” etc. In this paper we 

have restricted our focus to events that occur over a single 

location and contiguous time – we do not consider event 

hierarchies or event temporal structures.  This was done for 

computational simplicity.  

Our understanding of events draws upon recent work by Jain 

and Westermann [24]. A key idea in that paper was the notion 

that media (including images and text) are event meta-data – i.e. 

they are description of the event, not the event itself. This is a 

reversal of the traditional relationship between media and 

events, where media (e.g. video / images) contain the event to be 

found. The Jain-Westermann approach suggests that media 

contain partial descriptions of the real-world event, and these 

descriptions need to be gathered to develop a full understanding 

of the event. A consequence of adopting this idea is that in our 

framework, events can contain multiple text tags, as well as 

multiple images, all of whom describe the event.  

3.2 Event Context 

We refer to event descriptions via the attributes of images and 

text as the event context – these set of attributes / facets that 

support the understanding of everyday events. 

The notion of “context” has been used in many different ways 

across applications [7]. Note that set of contextual attributes is 

always application dependent [8]. For example, in ubiquitous 

computing applications, location, identity and time are critical 

aspects of context [7]. In describing everyday events the who, 

where, when, what are among the most useful attributes, just as 

basic journalism would teach "3w -- who when where" as the 

basic background context elements for reporting any real-world 

event.  

4 SIMILARITY AND CO-OCCURRENCE 

In this section we present our approach to computing the 

similarity between any two concepts along a specific facet, as 

well as the role of the inter-fact co-occurrence matrix. Both 

similarity and co-occurrence are then used to compute the 

recommendations.  

Similarity and co-occurrence represent different forms of 

knowledge, which are used in our system. Similarity measures 

typically represent “global knowledge” used by the algorithm 

designer to address the content analysis problem – they are user 

independent. The co-occurrence matrix represents personal 

knowledge – i.e. assertions about two facts (e.g. where = “new 

york”, what = “fun”) that are useful perhaps only to one 

individual. Of course these assertions may also encode 

assertions that are widely shared.   

4.1 Intra-Facet Concept Similarity 

We now discuss the similarity measures for the different event 

facets. We first derive a new ConceptNet based event similarity 

measure for a pair of concepts. We then extend this similarity 

measure to two sets of concepts. Similarity measures over the 

context facets are then defined using the two above measures.  

4.1.1 The ConceptNet based semantic distance 

In this section, we shall determine a procedure to compute 

semantic distance between any two concepts using ConceptNet 

– a popular commonsense reasoning toolkit [14].  

ConceptNet has several desirable characteristics that distinguish 

it from the other popular knowledge network – WordNet [15].  

First, it expands on pure lexical terms to include higher order 

compound concepts (“buy food”). Secondly, it greatly expands 

on three relations found in WordNet, to twenty. The repository 

represents semantic relations between concepts like “effect-of”, 

“capable-of”, “made-of”, etc. Finally, ConceptNet is powerful 

because it contains practical knowledge – it will  make the 

association that “students are found in a library” whereas 

WordNet cannot make such associations. Since our research is 

focused on recommending annotations to images from everyday 

events, ConceptNet is very useful. 

The ConceptNet toolkit [14] allows three basic functions on a 

concept node [14]:   

 GetContext(node) – this finds the neighboring 

relevant concepts using spreading activation around 

the node. For example – the neighborhood of the 

concept “book” includes “knowledge”, “library”, 

“story”, “page” etc. ConceptNet terms this operation 

as “contextual neighborhood” of a node. 

 GetAnalogousConcepts(node) – Two nodes 

are analogous if they derive incoming edges (note that 

each edge is a specific relation) from the same set of 

concepts. For example – analogous concepts for the 

concept “people” are “human”, “person”, “man” 

etc. 

 FindPathsBetweenNodes(node1,node2) –  

Find paths in the semantic network graph between two 

concepts, for example – path between the concepts 

when 

where 

who 

what 

author 

image 

Figure 3: The figure shows two events (the two red 

dots) along a timeline, where each event is shown to 

last a contiguous period in time. The first event has two 

images associated with it, while the second event has 

two words in the “what” facet.  



 

“apple” and “tree” is given as apple [isA] fruit, fruit 

[oftenNear] tree.  

Neighbors of Concepts: Given two concepts e and f, the system 

determines all the concepts in the contextual neighborhood of e, 

as well as all the concepts in the contextual neighborhood of f. 

Let us assume that the toolkit returns the sets Ce and Cf 

containing the contextual neighborhood concepts of e and f 

respectively. The context-based semantic similarity sc(e,f) 

between concepts e and f is now defined as follows: 

| |
( , ) ,

| |

e f

c

e f

C C
s e f

C C





        

<1> 

where |CeCf| is the cardinality of the set consisting of common 

concepts in Ce and Cf and |CeCf| is the cardinality of the set 

consisting of union of Ce and Cf. 

Analogous Concepts: Given concepts e and f the system 

determines all the analogous concepts of concept e as well as 

concept f. Let us assume that the returned sets Ae and Af contain 

the analogous concepts for e and f respectively. The semantic 

similarity sa(e,f) between concepts e and f based on analogous 

concepts is then defined as follows: 

| |
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| |

e f

a

e f

A A
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A A


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
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where |AeAf| is the cardinality of the set consisting of common 

concepts in Ae and Af and |AeAf| is the cardinality of the set 

consisting of union of Ae and Af. 

Number of paths between two concepts: Given concepts e and f, 

the system determines the path between them. The system 

extracts the total number of paths between the two concepts as 

well as the number of hops in each path. The path-based 

semantic similarity sp(e,f) between concepts e and f is then given 

as follows: 

1

1 1
( , ) ,

N

p

i i

s e f
N h

           

<3> 

where N is the total number of paths between concepts e and f in 

the semantic network graph of ConceptNet and hi is the number 

of hops in path i. 

The final semantic similarity between concepts e and f is then 

computed as the weighted sum of the above measures. We use 

equal weight on each of the above measures (in the absence of a 

strong reason to support otherwise), and write the concept 

similarity CS the as follows: 

( , ) ( , ) ( , ) ( , ),c c a a p pCS e f w s e f w s e f w s e f          

<4> 

where wc=wa=wp=1/3.  

In the next subsections, we use ConceptNet distances to 

compute distances in the where and what facets of the user and 

event context, since these two facets are described with a free-

form natural vocabulary on which ConceptNet similarities are 

meaningful, while other facets such as who and when use 

quantitatively distances on time, or intersection on proper nouns. 

4.1.2 Similarity between two sets of concepts 

An event usually contains a number of concepts in a facet; 

therefore we also need a similarity measure between sets of 

concepts based on that between two individual concepts. We 

define the set similarity between two sets of concepts A and B, 

where A: {a1, a2, …} and B: {b1, b2, …}, given a similarity 

measure m(a,b) on any two set elements a and b in the following 

manner.  

  
| |

1

1
( , | ) max ( , ) ,

| |

A

H k i
i

k

S A B m m a b
A 
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This is the average of the maximum similarity of the concepts in 

set A with respect to the concepts in set B, where |A| is the 

cardinality of set A. The equation indicates that the similarity of 

set A with respect to set B is computed by first finding the most 

similar element in set B, for each element in set A, and then 

averaging the similarity scores with the cardinality of set A. SH 

is a variant of the familiar Hausdorff point set distance measure 

used to compare sets of image features [10] from which we 

adapt for measuring similarity. We average the similarity instead 

of using the min operator as used in the original Hausdorff 

distance metric, since averaging is less sensitive to outliers. Like 

the original Hausdorff distance metric, this similarity measure is 

asymmetric with respect to the sets: SH(A,B|s) ≠ SH(B,A|s).  

4.1.3  Similarity across event attributes 

We now briefly summarize the similarity measures used for 

each attribute of an event. This is useful in determining if one 

event is similar to another, as well as user to user similarity. Let 

us assume that we have two events e1 and e2. Note that measures 

are asymmetric and conditioned on event e2. 

 what: The similarity in the what facet is given as: 

1 2 1 2( , ) ( , | ),Hs A A S A A CS      <6> 

where A1 and A2 refer to the sets of concepts for the what facets 

of events e1 and e2 respectively.  

 who: The similarity s(P1,P2) for the who facet is defined as: 

1 2
1 2

2

| |
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P P
s P P

P


                       <7> 

where p1 and p2 are the set of annotations in the who facet of 

events e1 and e2.  

 where: The similarity s(l1, l2) for the where facet is given 

as: 

 1 2
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Where L1 and L2 refer to the sets of concepts for the “location” 

facets of events e1 and e2 respectively The equation states that 

the total similarity between L1 and L2 is the average of the exact 

location intersection with the modified Hausdorff similarity. 

 when: The similarity s(t1,t2) for the when facet is given as: 

 1 2
1 2 1 2

2

1 | |
( , ) , | ,

2 | |
H

t t
s t t S t t CS

t

 
  

 
   <9> 

where t1 and t2 are the event time text annotations, for the time 

facets of events e1 and e2 respectively. Since we are building an 

event annotation system, we wished to provide textual 

annotation such as “holidays” to describe the time of the event. 



 

We found in our preliminary experiments with users that they 

preferred this mode of notating time, rather than the time of the 

photo. Such annotations allowed them to describe time 

qualitatively (e.g. “happy”). Note that the time that the 

photograph was taken can be trivially obtained from the EXIF 

data of the image, and added as an annotation. 

 Image: In our work, the feature vector for images 

comprises of color, texture and edge histograms. The color 

histogram comprises of 166 bins in the HSV space. The 

edge histogram consists of 71 bins and the texture 

histogram consists of 3 bins. We then concatenate these 

three histograms with an equal weight to get the final 

composite feature vector. We then use the Euclidean 

distance between the feature histograms as the low-level 

distance between two images. 

The event similarity measure (ES) between two events can then 

be defined as a weighted sum of the similarity measures across 

each event attribute.  
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Where, si is the similarity measure of each attribute described in 

the preceding paragraph and i is the weight of each similarity 

measure.  

4.1.4 The global similarity matrix 

We now show how to compute the global similarity matrix Ms. 

Typically users will have varied annotations for all the event 

facets. Then:  

1. The dimensionality of the global matrix is determined 

by determining the number of unique attribute values 

across all users. Thus we have all the concepts, per 

facet that are in use in the social network. 

2. We compute similarity values only within each facet. 

The similarity is computed according to the specific 

formula for that facet. Each facet‟s similarity matrix 

then creates a sub-matrix within Ms.  

3. The matrix Ms is row-normalized, such that each row 

sums to unity. It is easy to see that the global 

similarity matrix is block-diagonal, with each block 

corresponding to the similarity sub-matrix from each 

facet. 

In this paper, the similarity between any two concepts forms a 

shared universal knowledge amongst all the people annotating 

events – i.e. we assume that the similarity values are shared. 

This is a simplifying assumption, and is used here for 

computational efficiency reasons. For example in [18] we show 

people can show semantic disagreement over the same image. 

We acknowledge that a more sophisticated system that allows 

for a personalized similarity measure would be very useful in 

this problem.  We next discuss the computation of the global co-

occurrence matrix.  

4.2 Co-occurrence 

This section presents our approach to exploiting inter-facet co-

occurrence. We cannot compute the similarly between two terms 

that appear in different facets. For example, if an event is 

annotated as “home” (where) and “John,” (who) then the notion 

of similarity between these terms is not very meaningful. What 

we can calculate is the joint probability of any two terms, given 

all the event annotations of a single person. Note that the joint 

concept probability distribution can be different across users. 

Co-occurrence can reveal personalized associations. Through 

the analysis of the joint distribution, we can determine highly 

specific, personalized associations – for example, if a user 

associated “business trip” (what) with “New York” (where), 

then for images that are likely to be labeled as New York, we 

should also recommend “business trip.” Clearly, the associations 

can differ across people.  

The concept co-occurrence matrix Mk
c is computed separately 

for each user k. Let us assume that the user has annotated an 

event with N concepts (spread over the facets who, where, when 

and what, and the event label). Then we have N2 pairs of 

concepts. The frequency count of each pair in the matrix Mk
c is 

then incremented by 1. In practice the co-occurrence matrix is 

sparse. 

The global co-occurrence matrix Mc is computed by using the 

co-occurrence matrixes of all the users. Typically users will 

have varied annotations for all the event facets. This implies that 

the dimensions of the each user‟s co-occurrence matrix may 

have unique attribute values. Then:  

4. The dimensionality of the global matrix is determined 

by determining the number of unique attribute values 

across all users.  

5. The frequency value for any element (i , j) of the 

global matrix is obtained by aggregating the number 

of observations across all users for the same tuple in 

their personal co-occurrence matrixes. For example, to 

compute the global frequency count of the tuple 

(where = “New York”, and what = “business trip”), 

we need to find all photos for all users what that have 

tagged their photos with this pair. 
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Where a and b represent attribute values (e.g. “New 

York” and “business trip”). The equation states that 

the frequency value of the global matrix, subject to the 

logical predicates (a, b), is the sum of the frequency 

counts over all individual user matrixes for the same 

predicate. Note that if for some user k, the predicate 

does not hold true, then the corresponding user will 

not contribute to the value of this cell.  

In this section we examined two different forms of knowledge – 

similarity (global) and co-occurrence (personal). We showed 

how intra-facet similarity can be computed using ConceptNet 

and low-level feature similarity. Then we determined the co-

occurrence matrix per person, and then showed how to create a 

global co-occurrence representation. We next explore the idea of 

social network trust. 

5 SOCIAL NETWORK TRUST 

In this section we show how to determine the trust distribution 

over a single user‟s social network. The trust vectors are 

different for each person in the network.  

It must be emphasized that the word “trust” is used in a narrow 

interpretation here. We clarify this issue, since the word “trust” 

has very broad semantic connotations. If there are two users, 

John and Mary and Mary can provide high quality annotations 



 

for John‟s photographs, then we say that “Mary is a trustworthy 

annotator” of John‟s photographs. 

5.1 Trusted Social Network Context  

Our approach to determining trust exploits both a priori 

knowledge from and data driven activity correlation.   

A user may have identified certain members of her social 

network that she trusts as good recommenders – for example, a 

person may have her spouse as the recommender. This trust 

cannot be easily inferred from the data, as the person-person 

relationship may be hidden in the image meta-data. Secondly, it 

is difficult to place a trust value on a specific relationship type – 

i.e. even if a photo tag suggests a specific relationship between 

two people (e.g. father-son), it is difficult to determine the trust 

value for this relationship.  

Trust is real valued number between 0 and 1. However, typically 

users prefer to specify either 0 or 1 for each member of their 

social network, suggesting either no trust, or complete trust. 

Hence the a priori trust vector for any user, over the entire 

network is binary valued. 

We compute an activity based trust between two users. The 

main idea is that if two people are highly correlated in terms of 

their real-world events, then this correlation has an effect on the 

event descriptors. In Figure 4, we show a sample social network. 

The red circles represent people, who participate in events 

(pentagons). The edges represent participation of a person in a 

specific event. The schematic shows that there exist two users 

whose show high activity correlation.  

In earlier work on image annotation [18], we showed that the 

members who belong to the same social network tend to agree 

more with each other than when the members did not belong to a 

social network. Hence by doing a data driven analysis of the 

event annotations for each user, we can determine people who 

are highly correlated to a specific user, in terms of event 

activity. These correlated users, would then be “trustworthy.” 

The activity correlation measure (U1,U2) between two users U1 

and U2 is then proportional to the Hausdorff event similarity 

with the similarity measure ES:  

1 2 1 2( , ) ( , | ).HU U S E E ES     

 <12> 

Note that it is important to explicitly compute event annotation 

similarity – co-participation in itself not enough. We need to 

further establish how people annotate events, including those 

that are shared.  

Now it is straightforward to develop the iterative mechanism to 

propagate trust in the network. For any given user k, the trusted 

cohorts in the network are computed as follows: 

1. We normalize the activity based trust with respect to 

each of the other members in the network, such that 

the sum of the trusts adds up to unity. 

2. The update equation: 

 (1 ) ,k    t = A t + p  <13> 

Where the t is the trust vector, A is the data driven, 

row-normalized activity correlation matrix, pk is the a 

priori trust vector due to the kth user and α is a 

weighting factor. Each dimension of the trust vector t 

is a real-valued positive number, indicating the degree 

of trust. The equation states that the trust vector for 

each user, is obtained through iteration over the 

weighted sum of the activity correlation matrix and the 

a priori user defined trust vector. Note that this is just 

the familiar page rank equation with bias vector pk 

[5,9]. In <13>, t is initialized to 0. 

The trust vector forms a trusted network context – i.e. each user 

only receives recommendations from the trusted sub-network. 

We next show how the trust vector can be combined with the 

similarity and co-occurrence matrixes to determine 

recommendations.  

6 GENERATING RECOMMENDATIONS 

We now discuss how to combine similarity and co-occurrence 

values with trust, to determine event annotations. Let us assume 

that we are trying to annotate an image for a specific user k. Let 

us further assume that the size of the entire social network is N. 

Our approach generalizes to a query on arbitrary facet, but we 

shall restrict ourselves to recommendations when the query is an 

image, as this is the familiar annotation scenario. Then we 

proceed as follows: 

1. Trust: We first compute the annotator trust for each 

member in the social network with respect to the user 

k. The user will provide the system with a priori trust 

estimates (these are binary values) for some of her 

friends. Then the system will estimate trust over the 

entire social network using the iterative procedure 

stated in equation <13>.  This will determine a real 

Figure 4: The figure shows how activity correlation can 

occur between members of the same social network, 

across events. The second and the last member are 

highly correlated (black lines used for emphasis.) 



 

valued number for each member of the social network 

thus creating the trust vector tk. 

2. Similarity: Compute the global similarity matrix Ms 

using the procedure outlined in section 4.1.4.  

3. Co-occurrence: Compute the global co-occurrence 

matrix Mc as follows: 
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Where, tk(i) is the trust of the ith user with respect to 

user k. Mc|(a,b) is derived similar to equation <11> 

except that the personal co-occurrence matrix of each 

user is modified by the trust of that user with respect 

to user k.  Note that in this equation the global co-

occurrence matrix is computed over the entire 

network, without thresholding the trust value. If there 

are scalability concerns in a large network, then the 

summation can be done over a subset of the network, 

where each member‟s trust with the user k exceeds an 

optimized trust threshold. 

Given the trust vector tk, and global similarity (Ms) and global 

co-occurrence matrix (Mc), we can now determine the 

recommendations for the query q as follows:  
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Where, q is the query vector, x and y represent the similarity and 

co-occurrence affinity vectors respectively.  

It is useful to review the composition of the query vector q and 

vectors x and y. All the three vectors have six parts – who, 

where, when, what, image, event (ref. Figure 5). Both vectors x 

and y are initialized to 0. The query vector q typically contains 

all zeros except for the query dimension, which is represented 

using 1. At the end of this iterative process, we can determine 

the recommended annotations per facet by picking the top L 

annotations per facet (these are the concepts that have the 

highest score at the end of the iterative process). The iterations 

are done n times, for reasons of computational efficiency. In our 

implementation n = 10. At this point, we have recommendations 

for each event facet using the user‟s trust vector and the 

statistical and co-occurrence matrices. 

The equation <15> is a variant of the well known HITS 

algorithm [12]. It suggests that the optimal recommendations are 

determined by using a coupling strategy between the global 

similarity matrix, and the trust weighted global co-occurrence 

matrix. The co-occurrence matrix Mi
c is weighted by the trust 

that the user k has with user i. The coupling links the common 

shared knowledge (similarity between concepts) that exists 

within the social network with personalized observations (i.e. 

concept co-occurrences) that the user trusts.  

After the user is given the recommendations and has annotated 

the event with the who, where, when and what fields or had 

added, the system updates the user‟s similarity and co-

occurrence matrices as well as the global similarity and co-

occurrence matrixes. The trust vector for this user is updated as 

the inter-user similarity (ref. equation <12>) will change 

slightly. Thus, as the users annotate more images, the 

recommendations will improve as the co-occurrence statistics 

will become more stable.  

7 EXPERIMENTS  

We now describe our experimental results. We built an event 

annotation system that allowed users to create events and then 

add descriptors to the event (event name, who, where, when 

what and images). We asked eight graduate students to 

participate in the experiment. They created 58 events over the 

course of two weeks, and added 250 images to the collection. 

Figure 6 shows the event creation page, and the media upload 

action.  

 

Figure 6: The upload page of our event annotation 

system. The user can create events, and add event 

meta-data – text keywords for the facets of who, 

where, when, what and images. Each image also has 

an author associated with it. 

In order to compare the efficacy of the proposed system, we 

compared it to a baseline SVM based image annotation system. 

The SVM‟s were trained using SVMLight [21] and an RBF 

kernel. In this paper, the query was always an image, though our 

approach can easily handle queries along each of the other 

facets, including the case when combinations of facets are 

specified as queries.  

We created two scenarios – global annotation and personal 

annotation. By global annotation, we imply that the images are 

annotated by pooling all the images in the social network – 

similar to what would happen in a Flickr group pool. By 

personal annotation, we plan to use the annotation framework 

designed separately per user. For each of the two scenarios, we 

can compare the SVM based annotation system with the social 

network based annotation system.  

We adopted a modified bagging strategy for each class (in both 

global and personal cases). Let us assume that we have N 

positive instances of the class. Then, we constructed five 

symmetric classifiers, for the same concept. For each such 

classifier, we picked N negative examples at random from the 

remainder of the training set, without replacement. Then we 

obtained average precision and recall for each such classifier 

and picked the one classifier that maximized the average F-

score. We compared this strategy with voting, as well as taking 

who where what when image event 

query 

Figure 5: The query vector q has six facets. The query 

can be along any of the six facets. Typically, we would 

query for an image, and the iterative process would 

retrieve top ranked annotations for the other five facets.  



 

the average of the five SVM classifier outputs, and this strategy 

seemed to give slightly better performance.  

In the global case, we trained SVM‟s only for those tags that had 

more than 10 images associated with them. We found that below 

this threshold, results were not reliable. This resulted in 31 

classifiers (combining classifiers over all facets). Specifically, 

the classifier breakdown was as follows: who:8, when: 6, where: 

10, what: 7. For the social network based annotation, we 

combined all the co-occurrence matrixes across the social 

network using uniform trust – this is equivalent to the case that 

everyone in the network is equally trustworthy annotator. 

 

For evaluation of the global case, we tested on 50 images, rather 

than the entire dataset due to computational efficiency reasons. 

We created a test set of 50 images. However, we tested on one 

image at a time, thereby having 249 training examples. The 

computational complexity arises due to the fact that we need to 

retrain SVM 31 classifiers per test image, using the bagging 

approach. In our coupling matrix approach with uniform trust, 

the computational complexity is low – per test image we only 

need to remove one row and one column for Ms, and adjust the 

statistics of the co-occurrence matrix Mc. 

Table 1 (Global): The table shows that the 

comparison of SVM with our approach for the global 

case for 50 images.. H: hits, M: Misses, X: no 

classifier exists, U: un-decidable. The coupling 

matrixes (CM) are used with uniform trust over the 

entire network.  

Facets SVM CM (uniform) 

 H M X U H M 

Who 13 23 5 9 22 28 

When 11 20 6 13 24 26 

Where 12 19 3 16 23 27 

What 13 21 8 8 31 19 

Event 10 12 22 6 22 28 

 

In addition to the familiar hits (H) and misses (M), we introduce 

two new testing parameters to make the comparisons to SVM‟s 

more nuanced. Since in the global case we can only train 31 

classifiers, there will be concepts that cannot be classified at all, 

due to the small number of samples for that concept. Whenever 

we encounter such a concept, rather than giving a negative result 

for SVM, we explicitly acknowledge it under the column X (X: 

no classifier exists). The other new category is un-decidable (U). 

This designation implies that all of the 31 classifiers give a 

negative result for this image. Note that traditionally, both 

categories X and U would be counted as a miss. We classify the 

output of an SVM or our coupling matrix based approach as a 

hit, when the concept is a match with one of the top three 

recommendations of the classifier / coupling matrix. Hence, for 

each image, we would generate three recommendations per facet 

and check if a match exists.  

The results in Table 1 are interesting. They reveal that for the 

social network, and for small datasets, the SVM is significantly 

outperformed by the coupling matrix based image annotation 

system. These results are for the global case, when we assign 

uniform trust. Note that in the coupling matrix case, since there 

are no explicit classifiers, we will never have categories X and U 

appear. In Figure 7, we see an example, where SVM based 

classifiers work well. 

    

 

In the personal case, we trained SVM classifiers per person in 

the network. Now, there are far fewer images per tag. 

Unfortunately, using the threshold of 10 for the personal case 

would have left us with just four classifiers over all facets over 

all the members. Instead we decided to train SVM‟s with five 

positive examples each. This way we ended up with 28 

classifiers. Specifically, the classifier breakdown was as follows: 

who:9, when: 4, where: 6, what: 9. We note these are totals, over 

all users. Note also that the number of classifiers is less than in 

the global case (28 vs. 31). This is because when we begin to 

construct the classifiers per user, there are fewer cases when the 

number of positive image examples needed to train a concept 

classifier exceeds five. 

Table 2 (Personal): The table shows that the 

comparison of SVM with our approach for the 

personal case for 250 images. The coupling matrixes 

(CM) are used with the trust vector corresponding to 

the owner of the image, over her entire network.  

 Facets SVM CM (network) 

  H M X U H M 

Who 45 81 62 62 183 67 

When 51 96 73 30 167 83 

Where 62 76 59 53 179 71 

What 72 89 23 66 204 46 

Events 0 0 250 0 153 97 

For the coupling matrix based approach, we computed the trust 

vector for the author of the test image and used it to compute 

trust adjusted global co-occurrence matrix (ref. eq. <14>). Then 

Figure 8: Photographs for which the coupling matrix 

based image annotation recommendations work well.  

Figure 7: Photographs for which SVM based global 

classifiers work well.  



 

as before, the system iterated until convergence and then three 

annotations were provided per facet.  

Table 2 shows the classification results aggregated over all the 

users. It shows that SVM‟s perform very poorly when compared 

to the coupling matrix case – this is not surprising for two 

reasons – the minimum number of images used to train an SVM 

classifier per concept is five. Hence some of the classifiers will 

not generalize well over the training data.  

For both the global and the personal cases, we see that the SVM 

based approach works poorly compared to the coupling matrix 

based approach. These are preliminary results, and we currently 

working to replicate these results on a larger dataset.  

8 CONCLUSIONS 

In this paper we discussed an event-centric approach to media 

annotation, which incorporated social network trust. We 

observed that the tag distribution for a photo pool in Flickr 

followed the familiar power law distribution found in online 

social networks. These observations had consequences for 

concept based annotation systems, in terms of learnability, 

scalability and semantic variability. Hence we did not develop 

per-concept classifiers. Instead, our approach to annotation was 

motivated by web search algorithms such as HITS and 

PageRank. 

We defined events to be a real-world occurrence, which may be 

described using attributes such as images, and facets such as 

who, where, when, what. A key idea was that media (including 

images and text) are event meta-data – i.e. they are descriptions 

of the event.. Given a social network and events, we showed 

how to compute event concept similarity, concept co-occurrence 

and annotator trust. Our image annotation algorithm was a 

variant of the well known HITS algorithm. The optimal 

recommendations were determined by using a coupling strategy 

between the global similarity matrix, and the trust weighted 

global co-occurrence matrix. The coupling links the common 

shared knowledge (similarity between concepts) that exists 

within the social network with personalized observations (i.e. 

concept co-occurrences) that the user trusts. Our preliminary 

experimental results when compared to traditional SVM based 

concept classifiers are promising.  We planning to extend this 

work with experiments on larger datasets as well as 

incorporating event hierarchies and semantic relations.  
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