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The Problem
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= Unsupervised pattern discovery: capturing
distinct temporal patterns in diverse domains
— Suitable computational models
— Appropriate content features.



Unsupervised Pattern Discovery

= Recurrent segments with consistent characteristics.
= Find an appropriate model of the temporal pattern;
= Locate segments that match the model.
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Unsupervised Pattern Discovery

= “Temporal” patterns exist in many different domains.
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Multimedia Patterns

Need unsupervised
discovery:

I Patterns/events
unknown a priori

I Annotation very
costly
(—10x real-time)
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Multimedia Pattern Discovery

= Discover meaningful patterns in diverse domains
= Incomplete domain knowledge

= Unsupervised non-interactive analysis

= Desired properties
= Versatile news, sports, surveillance, ...

8 s N ; jennings nasdaq ;, .
: .&: p Ez_. & = )'h tonight clinton]url

= Multi-modal .
= Meaningful g =“weather”, l(;i =“finance”
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Multimedia Pattern Discovery
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Outline

= The problem

= Unsupervised pattern

discovery
- temporal token generation

= HHMM
= Automatic feature grouping

= Finding meaningful patterns
- multi-modal token fusion

= Summary

+ Versatile

+ Multi-modal

+ Meaningful

? Knowledge-adaptive



Modeling Video Patterns

sparse deterministic

dense stochastic




Modeling Video Patterns with HHMM

[Fine, Singer, Tishby'98]
[Zweig 1997], [Ivanov’00]...

= Supervised Tracking, speech, DNA
sequence recognition ...

= Left-right Video clustering [Clarkson’99][Naphade’02]

= Unsupervised: (1) the model? (2) its size? (3) the features?
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[Fine, Singer, Tishby'98]

Hierarchical HMM [Murphy’01] [Xie et al. ICMEO3]

State-space representation DBN representation, unrolled in time

= Emission and transition parameters, {©,,,, ©,q}
= Inference and estimation in O(T)



The Need for Model Selection

= Different domains have different descriptive
complexities.



[Green95]

Model Selection with RJ-MCMC e
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Which Features Shall We Use?
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[Koller,Sahami’96] [Zhu et.al.’97]

Feature SeleCtIOn [Xing, Jordan’01] [Ellis,Bilmes’00]...

Goal: To identify a good subset of measurements in order to improve
generalization and reduce computation.
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Criteria: irrelevance and redundancy between the features X and the
target label Y.

3 Our problem:
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Feature Selection e
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o o : 1
0% 2 wrapper e 20 filter Tl 8o 2
° > >
%o ® e® © e® 3

Feature seguences A \
N\ BIC = L~ 7|©]|log(T)

«@l gl="“abaaabbb” Markov Blanket

Label sequences q2:“BABBBAAA” ?
qi |(q1,q2):1 x 1 Q | Xp
 — — . {x, Xb}
Q ///::\i\.\\ = g'="abaaabbb”
‘ Mutual information ,/\\ o X’ )o. N Xp}
Q@) = | | \ o ~sx, / | = gr="abaaabbb”
H(Q) + H(Q) - H(Q,Q") S~_e_Ths —> Eliminate X?




Results: on Sports Videos
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Results: on Baseball Videos

videos
baseball

—
—>

HHMM + feature selection

(1) dominant color ratio
%)C%) horizontal motion

(vertical motion)

2) audio volume
A0\ low-band energy

(3)

BIC
score

patterns

82.3%

52.4%

correspondence
with play/break



Results: Comparison

Fixed features {DCR, MI}, MPEG-7 Korean Soccer video

Model Supervised? | Model Selection |Correspondence w. Play/Break
HHMM N Y 75.28 1.3%
HHMM N N 75.08 1.2%
HMM Y N 75.58 1.8%
LR-HHMM N N 73.18 1.1%
K-Means N N 64.0 8 10.%

Automatic selection of both model and features

Test clip Feature Set # “events'' |correspondence w. Play/Break
Korea DCR,Mx 2~4 I -
Spain | DCR,Volume 2~3 B e

Baseball DCR,Mx 2 I c23%

* DCR=‘dominant-color-ratio’, MI="motion-intensity’, Mx="horizontal-camera-pan’

Bger®



Outline

= The problem

s Unsupervised pattern

discovery with HHMM
—> audio-visual token generation

= Finding meaningful patterns
- token fusion
= With text association

= By multi-modal fusion
= Summary

+ Versatile
+ Multi-modal
+ Meaningful

? Knowledge-adaptive
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Towards Meaningful Patterns

= Manual association feasible only if meanings are few
and known.

= Metadata come to the rescue.
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Assoclating Patterns with Text
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visual concepts:
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HHMM Labels and Words
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Likelihood ratio:

L(q,w) =

Co-occurrence
counts C(qg,w)

Language “X”

English words

>

“Translatior” between HHMM labels and words

—> CO-0ccurrence counts.

C(q,w)
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strong
correlation
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strong
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Refining the Co-occurrence Statistics

Story# 1 2 3 “true” cooc. “smoothed”
News Video | | ' 5 0 5 1
HHMM label d; : G2 [ 0O 2 ] [ 1 2 ]
ASR token W, W, W, W,

MT [Brown'93]  Her dog is typing on my computer.

// | | | | | Cl;ie\n e=‘computer’

Son chien dactylographie sur mon ordinateur.
dactylograph™
[Dyugulu et. al. 2002] mon/ma
ordinateur I
'mage son/sa
~ by, .., b} sur

> AW, e W) c(f,e)? t(fle)!




Translation between AV and Words

The problem:
Co-occurrence “un-smoothing”. Ly(q, w)

know: C(q,w); kc’fﬂiﬁ "‘géi‘f?.‘ﬁ&.tifﬂ
seek: t(w|q), t(qlw).
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Experiments

= TRECVID2003 news
= 44 30-min videos, ABC/CNN
= 12 visual concepts for each shot [1BM-TREC03]
= ASR transcript

= HHMM on concept confidence scores

= 10 models from hierarchical clustering in
feature selection, size automatically
determined

= Co-occurrence with story boundaries



HHMM vs. Kmeans

L(q,w)

1-59

labels q

1-39

labels g

tokens w = 001-155

HHMM:

more meaningful
associations, less
randomness.

strong oo
correlation

independenti 1

strong
exclusion



Example Correspondences

[Xie et al. ICIP'04]

HHMM Visual Words Topic
label Concept groundtruth
(6,3) people, storm, rain, forecast, flood, coast, El-nino’98

non-studio- | el, nino, administer, water, cost,
setting weather, protect, starr, north,
plane, ...
(9,1) outdoors, murder, lewinski, congress, allege, Clinton-Jones
news-subject- | jury, judge, clinton, preside, (Recall 459,
face, building | politics, saddam, lawyer, accuse, | Precision 15%)
independent, monica, charge, ... | lragqi-weapon
(Recall 25%o,
Precision 15%)
(m, g): Obtained with Lexicon obtained by shallow
model # m SVM classifiers parsing of keywords from
state # ( [1BM'03] speech recognition output.



Summary

= Statistical models for pattern discovery

= Unsupervised learning of temporal patterns with
hierarchical HMM

= Multi-modal fusion with statistical association and
layered mixture models
= Open issues

= Multi-modal fusion: when, why, how
= Early fusion vs. late fusion
« Single-modal tokens vs. multi-modal tokens
=« Bottom-up fusion vs. bi-directional propagation

= Model selection and validation
= Evaluation metric for multimedia patterns
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