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The Problem
financial 
news, CNN …anchor interviewee stock report footage 

Unsupervised pattern discovery: capturing 
distinct temporal patterns in diverse domains
→Suitable computational models
→Appropriate content features.
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Unsupervised Pattern DiscoveryUnsupervised Pattern Discovery

Recurrent segments with consistent characteristics.
Find an appropriate model of the temporal pattern;
Locate segments that match the model.

… ……
time



Unsupervised Pattern Discovery
“Temporal” patterns exist in many different domains.
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Multimedia Patterns

(sec)133.6 163.2 167.6

iraqnasdaq clintonjennings snowtonight
foodjuri comput damaglawyer

Need unsupervised 
discovery:

! Patterns/events 
unknown a priori

! Annotation very 
costly 
(~10x real-time)
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Multimedia Pattern Discovery

Discover meaningful patterns in diverse domains
Incomplete domain knowledge
Unsupervised non-interactive analysis

……

=“weather”,          =“finance”

shots, scenes, program guide …

news, sports, surveillance, …
nasdaqjennings

tonight clinton
juri

Desired properties
Versatile
Multi-modal
Meaningful
Knowledge-adaptive



Multimedia Pattern Discovery

… …

descriptionrepresentationraw media

asdfe
poiu … data mining, 

machine 
learning

vision 
audition 

NLP

videos
features 

X1:T

pattern 
label 

sequence
Q1:T Z1:T

statistical 
models

low-level tokens high-level tokens



Outline

The problem
Unsupervised pattern 
discovery 

temporal token generation
HHMM
Automatic feature grouping

Finding meaningful patterns
multi-modal token fusion

Summary

± Versatile
± Multi-modal
± Meaningful
? Knowledge-adaptive

… …



Modeling Video Patterns

deterministicsparse

dense stochastic √



Modeling Video Patterns with HHMM
[Fine, Singer, Tishby’98]Tracking, speech, DNA 

sequence recognition … [Zweig 1997], [Ivanov’00]…
Supervised

[Clarkson’99][Naphade’02]Video clusteringLeft-right

Unsupervised: (1) the model? (2) its size? (3) the features?

time

Top-level :
events

Bottom-level :
temporal variations 
within an event

attackcorner kick

net medium shotbird view playback close up



Hierarchical HMM [Murphy’01][Xie et al. ICME03]
[Fine, Singer, Tishby’98]

DBN representation, unrolled in timeState-space representation
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h11
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h32

h31

Emission and transition parameters, {Θtop, Θbot} 
Inference and estimation in O(T)



The Need for Model Selection

soccer

news

talk 
show

Different domains have different descriptive 
complexities.



[Green95]
[Andrieu99]

[Xie ICME03]Model Selection with RJ-MCMC

EM

proposal 
probabilities

Split

Merge
Swap

(move, state)=(split, 2-2)

new model
Accept proposal?

r = (eBIC ratio)·
(proposal ratio)·J
u∼U[0,1]
u · min{1, r} ?

next 
iteration

stop

Original HHMM

Reach the 
global optimum 
in probability



Which Features Shall We Use?

color histogram

edge histogram

MFCC
zero-crossing 

rate delta energy

nasdaqjennings
tonight lawyerclinton

juriaccus

tf-idf

Spectral 
rolloff

pitch

keywords

Gabor
wavelet 

descriptors

zernike
moments

outdoors?

people?

LPC 
coeff.

vehicle?

motion 
estimates

… ……
time

?

logtf-
entropyface?



Feature Selection [Zhu et.al.’97][Koller,Sahami’96]
[Ellis,Bilmes’00]…[Xing, Jordan’01]

Goal: To identify a good subset of measurements in order to improve 
generalization and reduce computation.

X1

… ……
X2

X3

X4

Criteria: irrelevance and redundancy between the features X and the 
target label Y.

Target 
concept Y1

3
2

4
Samples not i.i.d.

Temporal 
sequence

No canonical 
target concept

Our problem:

Unsupervised



Feature Selection [Koller’96] [Xing’01]
[Xie et al. ICIP’03]

Feature pool Multiple consistent
feature sets

1

3

Ranked feature sets with 
redundancy eliminated

2wrapper filter

Feature sequences

Label sequences

Mutual information

q1=“abaaabbb”
q2=“BABBBAAA”
I(q1,q2)=1

Markov Blanket

{X?, Xb} 
⇒ q1=“abaaabbb”
{Xb} 
⇒ q1’=“abaaabbb”

Eliminate X?



Results: on Sports Videos
features

HHMM
patterns

HHMM top-level 
label sequence

vs. play/break?

baseball

videos

audio: energies, 
zero-crossing rate, 
spectral rolloff

visual: dominant 
color ratio, camera 
translation estimates

soccer



Results: on Baseball Videos
videos
baseball

HHMM + feature selection

dominant color ratio
horizontal motion 
(vertical motion)

(1)

(2)

(3) …

audio volume 
low-band energy 

…

correspondence
with play/break

BIC
score

patterns

82.3%

52.4%



Results: Comparison
Fixed features {DCR, MI}, MPEG-7 Korean Soccer video

75.2§ 1.3%

75.0§ 1.2%

73.1§ 1.1%

64.0§ 10.%

75.5§ 1.8%

Correspondence w. Play/Break

Automatic selection of both model and features

75.2%

74.8%

82.3%

Correspondence w. Play/Break

* DCR=‘dominant-color-ratio’, MI=‘motion-intensity’, Mx=‘horizontal-camera-pan’



Outline

The problem
Unsupervised pattern 
discovery with HHMM

audio-visual token generation
Finding meaningful patterns

token fusion
With text association
By multi-modal fusion

Summary

± Versatile
± Multi-modal
± Meaningful
? Knowledge-adaptive

politics goal!snow
… …



Towards Meaningful Patterns

Manual association feasible only if meanings are few
and known.
Metadata come to the rescue.

… ……

? ??

???

time
iraq nasdaqclintonpeter jennings snowtonight

food
juri comput damagaccuslawyer

win

ASR



Associating Patterns with Text

HHMMvideos features patterns
news visual concepts: 

people, indoors … label-word 
associationwords from ASR 



HHMM Labels and Words
Likelihood ratio:

independent

strong 
correlation

strong 
exclusion 0

1

∞

damagenasdaq
dow

clinton
foodjennings compute

temparature
win

... ...
...

…
clinton

dam
age

food
grand

 jury……
nasdaq

report
snow

tonight
w

in…

word 
wlabel 

q

…

English words

Language “X”

Co-occurrence 
counts C(q,w)

“Translation” between HHMM labels and words
co-occurrence counts.



Refining the Co-occurrence Statistics
Story#
News Video
HHMM label
ASR token

q1 q2 q2
w2 w2w1

1 2 3 “smoothed”“true” cooc.

q1
w1

[Dyugulu et. al. 2002]

image 
≈ {b1, …, bn}
≈ {w1, …, wn}

MT [Brown’93] Her dog is typing on my computer.

Son chien dactylographie sur mon ordinateur.

e=‘computer’

chien

ordinateur

sur

mon/ma

son/sa

dactylograph*

f

c(f,e)? t(f|e)!



Translation between AV and Words
The problem: 
Co-occurrence “un-smoothing”.

Solve with EM [Brown’93]

independent

strong 
correlation

strong 
exclusion 0

1

∞

L=



Experiments

TRECVID2003 news
44 30-min videos, ABC/CNN
12 visual concepts for each shot [IBM-TREC’03]

ASR transcript
HHMM on concept confidence scores

10 models from hierarchical clustering in 
feature selection, size automatically 
determined
Co-occurrence with story boundaries



HHMM vs. Kmeans

independent

strong 
correlation

strong 
exclusion 0

1

∞

L=

HHMM: 
more meaningful 
associations, less 
randomness.



Example Correspondences [Xie et al. ICIP’04]

HHMM 
label

Visual 
Concept

Words Topic 
groundtruth

(6,3) people, 
non-studio-

setting

outdoors, 
news-subject-
face, building

storm, rain, forecast, flood, coast, 
el, nino, administer, water, cost, 
weather, protect, starr, north, 
plane, …

El-nino’98

(9,1) murder, lewinski, congress, allege, 
jury, judge, clinton, preside, 
politics, saddam, lawyer, accuse, 
independent, monica, charge, …

Clinton-Jones 
(Recall 45%, 

Precision 15%) 
Iraqi-weapon 
(Recall 25%, 

Precision 15%)
Lexicon obtained by shallow 
parsing of keywords from 
speech recognition output.

(m, q): 
model # m 
state # q

Obtained with 
SVM classifiers 

[IBM’03]



Summary
Statistical models for pattern discovery

Unsupervised learning of temporal patterns with 
hierarchical HMM
Multi-modal fusion with statistical association and 
layered mixture models

Open issues
Multi-modal fusion: when, why, how

Early fusion vs. late fusion
Single-modal tokens vs. multi-modal tokens
Bottom-up fusion vs. bi-directional propagation

Model selection and validation
Evaluation metric for multimedia patterns
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