Unsupervised Pattern Discovery for Multimedia Sequences

Lexing Xie, Shih-Fu Chang

Digital Video Multimedia Lab Columbia University

In collaboration with Dr. Ajay Divakaran and Dr. Huifang Sun (MERL)

The Problem

- Unsupervised pattern discovery: capturing distinct temporal patterns in diverse domains
 → Suitable computational models
 - \rightarrow Appropriate content features.

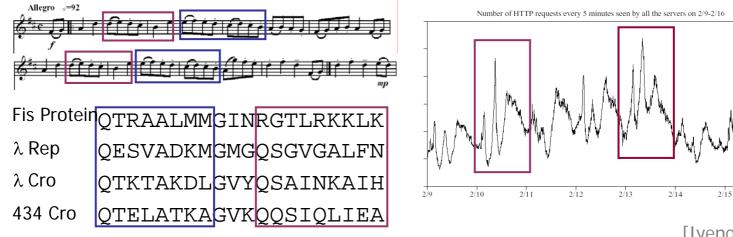
Unsupervised Pattern Discovery

- Recurrent segments with consistent characteristics.
- Find an appropriate model of the temporal pattern;
- Locate segments that match the model.



Unsupervised Pattern Discovery

"Temporal" patterns exist in many different domains.

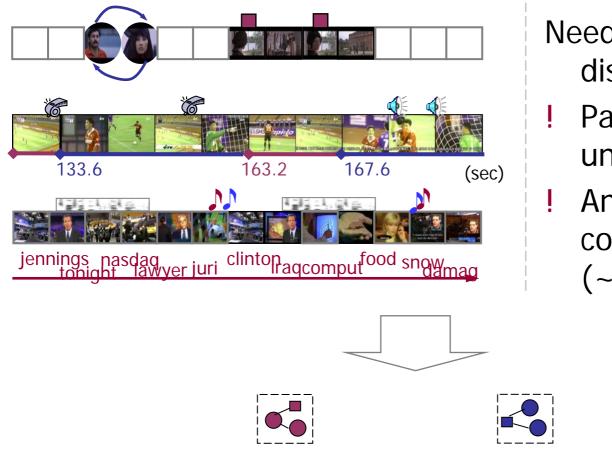


[lyengar99] [www.music-scores.com][Purdue Stat490B]

2/16

Multimedia Patterns

. . .



Need unsupervised discovery:

- Patterns/events unknown a priori
- I Annotation very costly

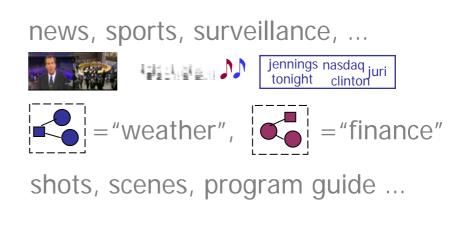
. . .

(~10x real-time)

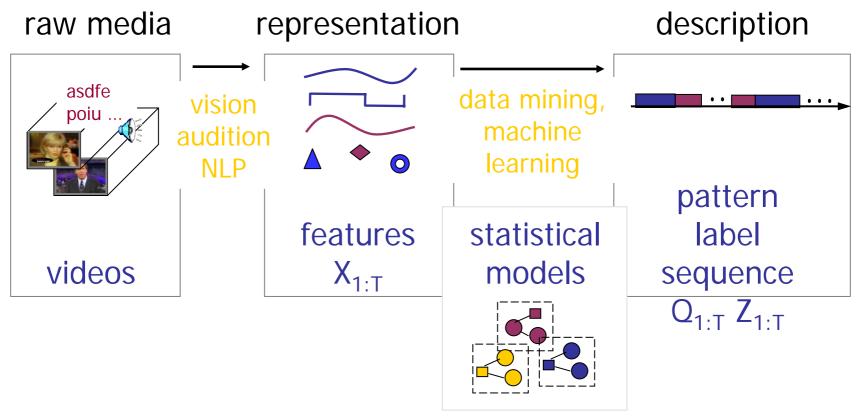
time

Multimedia Pattern Discovery

- Discover meaningful patterns in diverse domains
 - Incomplete domain knowledge
 - Unsupervised non-interactive analysis
- Desired properties
 - Versatile
 - Multi-modal
 - Meaningful
 - Knowledge-adaptive



Multimedia Pattern Discovery

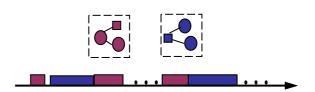


low-level tokens high-level tokens

Outline

- The problem
- Unsupervised pattern discovery
 - \rightarrow temporal token generation
 - HHMM
 - Automatic feature grouping
- Finding meaningful patterns
 → multi-modal token fusion
- Summary

- ± Versatile
- ± Multi-modal
- ± Meaningful
- ? Knowledge-adaptive



Modeling Video Patterns

Modeling Video Patterns with HHMM

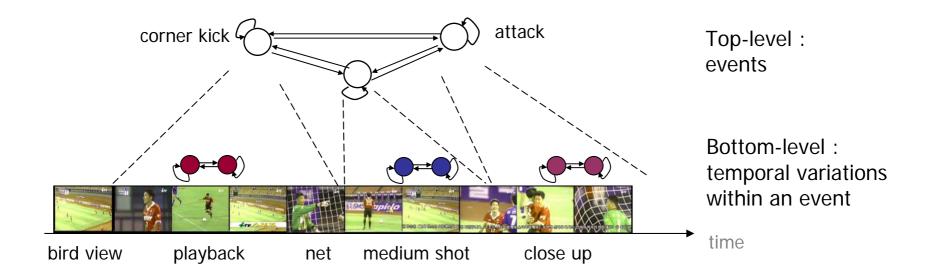
Supervised Tracking, speech, DNA sequence recognition ...

[Fine, Singer, Tishby'98] [Zweig 1997], [Ivanov'00]...

Left-right Video clustering

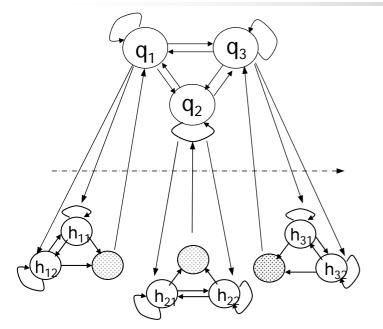
[Clarkson'99][Naphade'02]

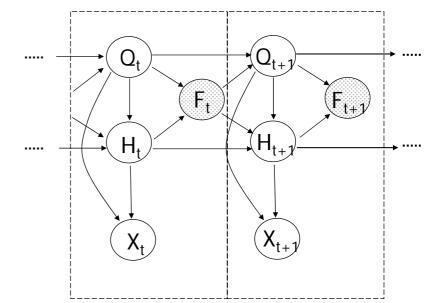
Unsupervised: (1) the model? (2) its size? (3) the features?



Hierarchical HMM

[Fine, Singer, Tishby'98] [Murphy'01] [Xie et al. ICME03]



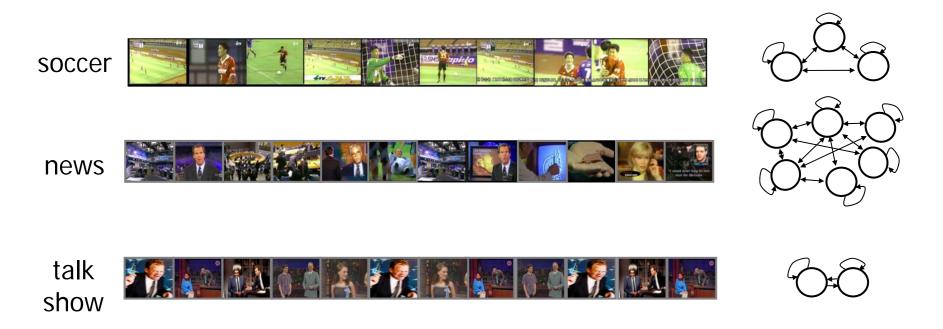


State-space representation

DBN representation, unrolled in time

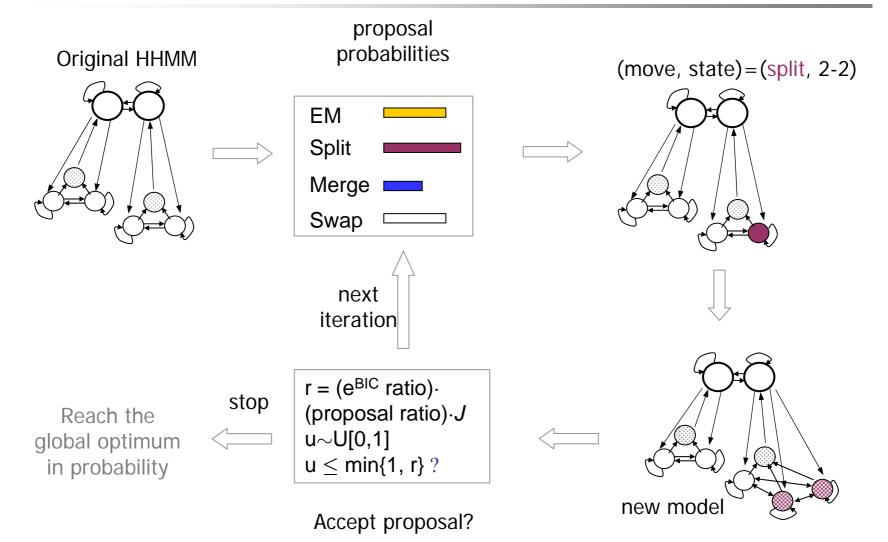
- Emission and transition parameters, $\{\Theta_{top}, \Theta_{bot}\}$
- Inference and estimation in O(T)

The Need for Model Selection



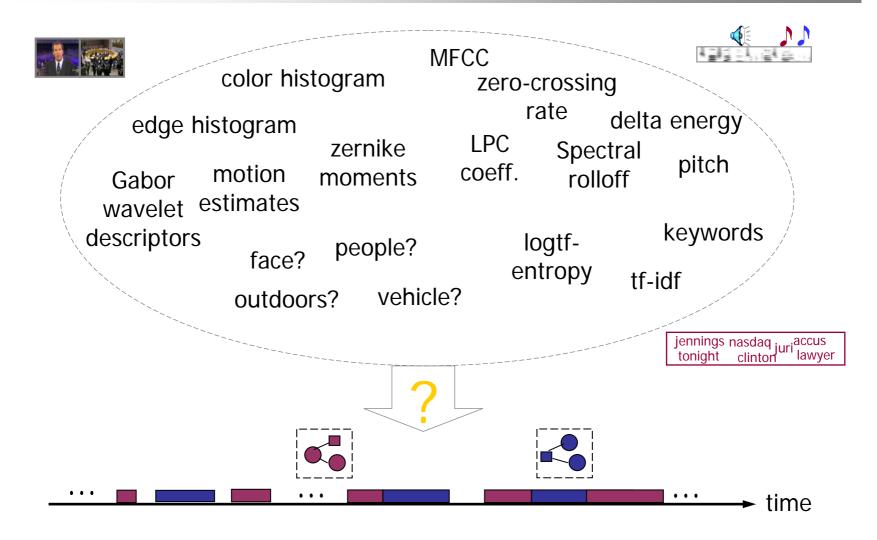
Different domains have different descriptive complexities.

Model Selection with RJ-MCMC



[Green95] [Andrieu99] [Xie ICME03]

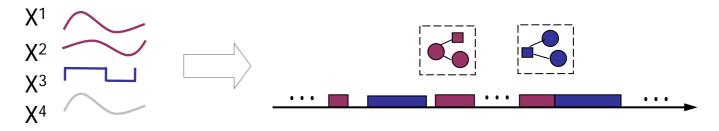
Which Features Shall We Use?



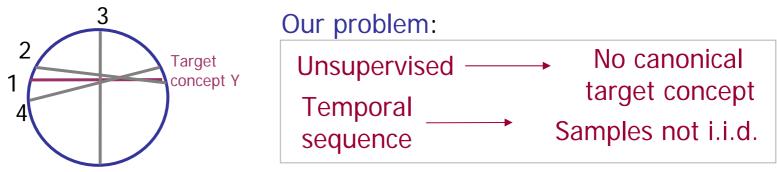
Feature Selection

[Koller,Sahami'96] [Zhu et.al.'97] [Xing, Jordan'01] [Ellis,Bilmes'00]...

Goal: To identify a good subset of measurements in order to improve generalization and reduce computation.

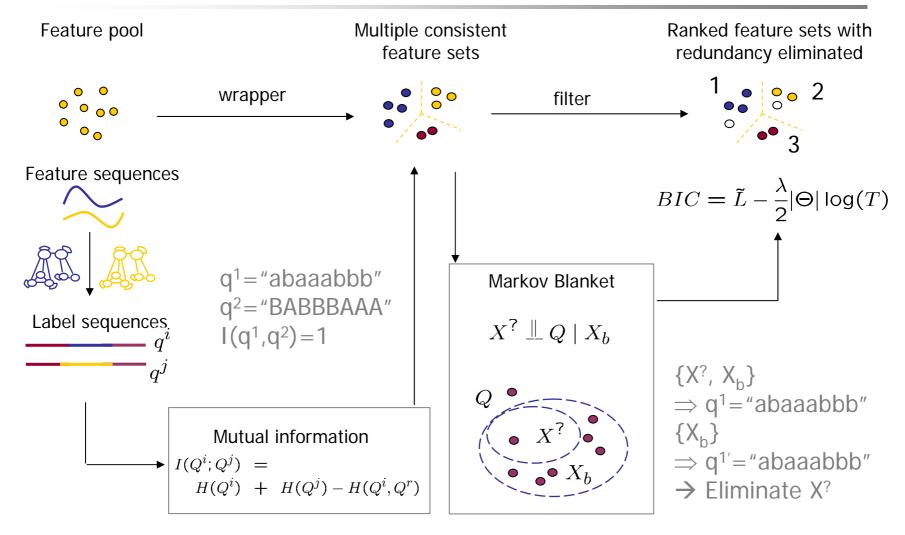


Criteria: irrelevance and redundancy between the features X and the *target label* Y.

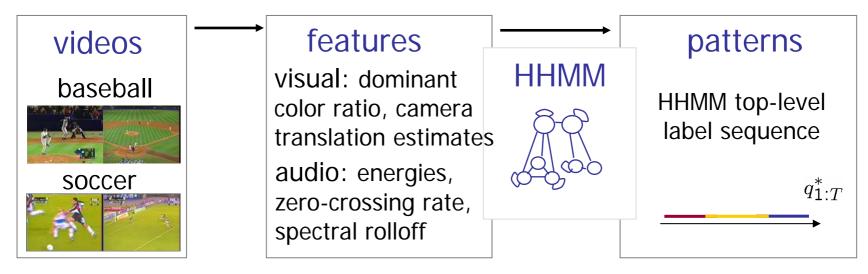


Feature Selection

[Koller'96] [Xing'01] [Xie et al. ICIP'03]

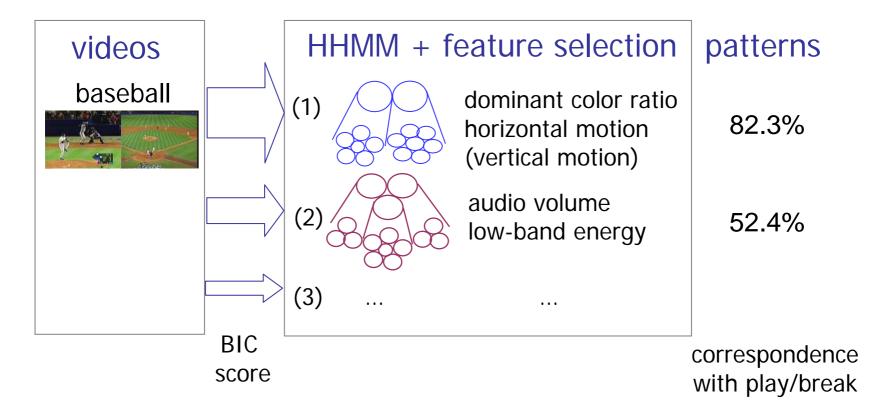


Results: on Sports Videos



vs. play/break?

Results: on Baseball Videos



Results: Comparison

Fixed features {DCR, MI}, MPEG-7 Korean Soccer video

Model	Supervised?	Model Selection	Correspondence w. Play/Break
HHMM	N	Y	75.2 § 1.3%
HHMM	N	N	75.0 § 1.2%
HMM	Y	N	75.5 § 1.8%
LR-HHMM	N	N	73.1 § 1.1%
K-Means	N	N	64.0 § 10.%

Automatic selection of both model and features

Test clip	Feature Set	# "events"	Correspondence w. Play/Break
Korea	DCR,Mx	2~4	75.2%
Spain	DCR,Volume	2~3	74.8%
Baseball	DCR,Mx	2	82.3%

* DCR='dominant-color-ratio', MI='motion-intensity', Mx='horizontal-camera-pan'

Outline

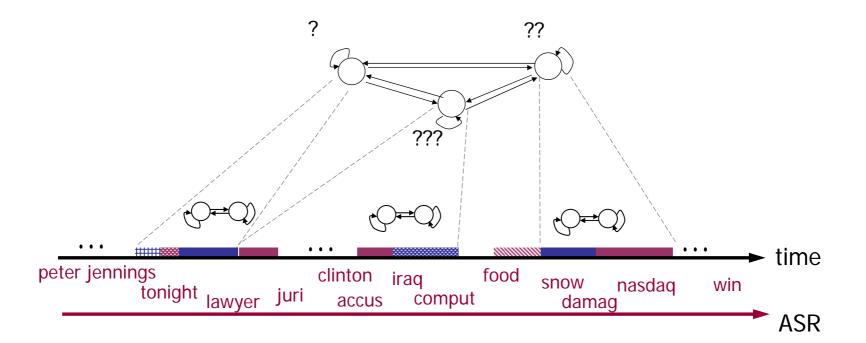
- The problem
- Unsupervised pattern discovery with HHMM
 audio-visual token generation
- Finding meaningful patterns
 token fusion
 - With text association
 - By multi-modal fusion
- Summary

- ± Versatile
- ± Multi-modal
- ± Meaningful
- ? Knowledge-adaptive



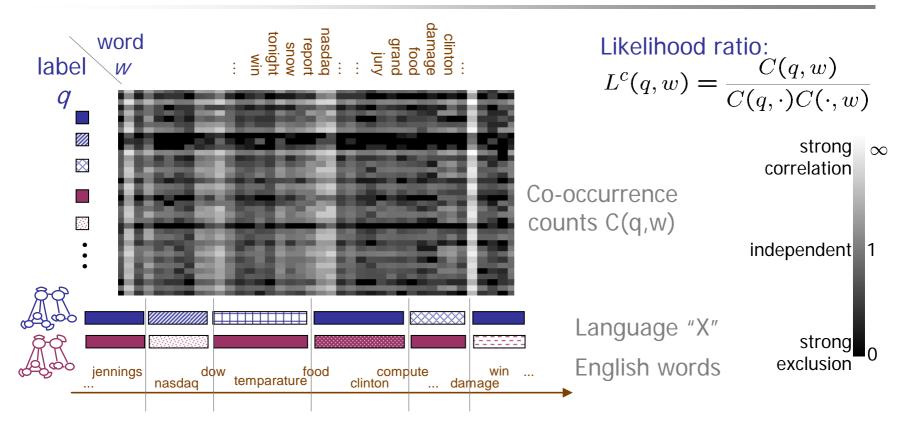
Towards Meaningful Patterns

- Manual association feasible only if meanings are *few* and *known*.
- Metadata come to the rescue.



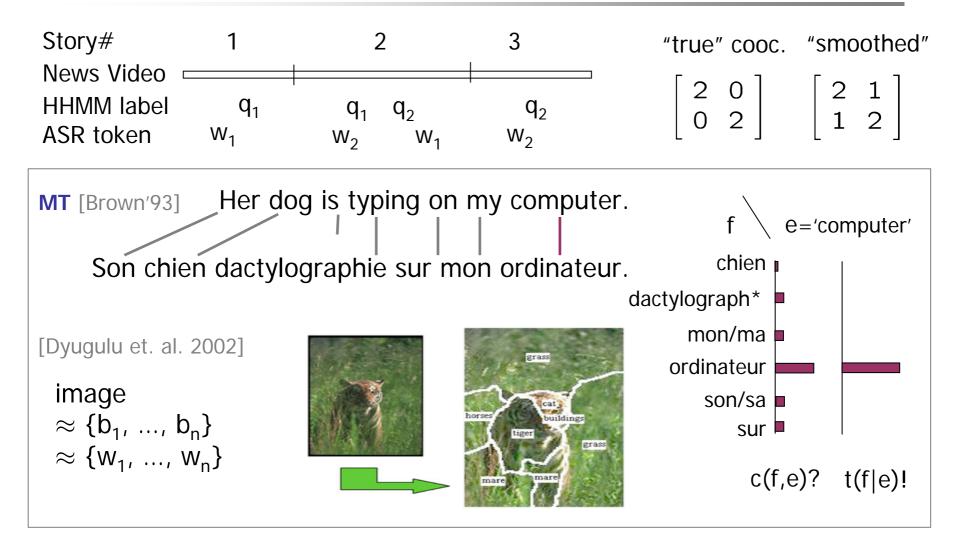
Associating Patterns with Text

HHMM Labels and Words



"*Translation*" between HHMM labels and words \rightarrow co-occurrence counts.

Refining the Co-occurrence Statistics

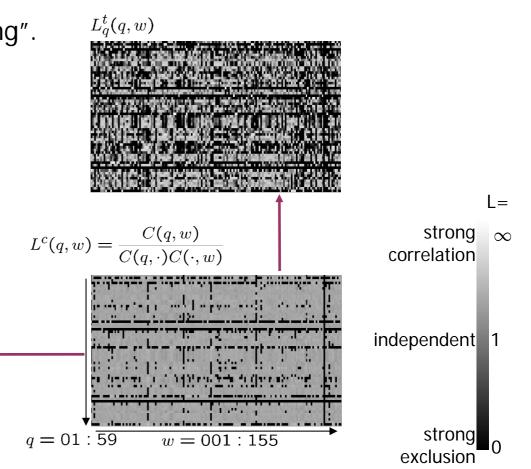


Translation between AV and Words

The problem: Co-occurrence "un-smoothing". know: C(q, w); seek: t(w|q), t(q|w).

Solve with EM [Brown'93]

 $L_w^t(q,w)$



Experiments

TRECVID2003 news

- 44 30-min videos, ABC/CNN
- 12 visual concepts for each shot [IBM-TREC'03]
- ASR transcript
- HHMM on concept confidence scores
 - 10 models from hierarchical clustering in feature selection, size automatically determined
 - Co-occurrence with story boundaries

HHMM vs. Kmeans

$L^{c}(q,w)$



L =

 ∞

tokens w = 001-155

Example Correspondences

[Xie et al. ICIP'04]

HHMM	Visual	Words	Topic
Iabel	Concept		groundtruth
(6,3)	people, non-studio- setting	storm, rain, forecast, flood, coast, el, nino, administer, water, cost, weather, protect, starr, north, plane,	El-nino'98
(9,1)	outdoors, news-subject- face, building	murder, lewinski, congress, allege, jury, judge, clinton, preside, politics, saddam, lawyer, accuse, independent, monica, charge,	Clinton-Jones (Recall 45%, Precision 15%) Iraqi-weapon (Recall 25%, Precision 15%)
(m, q):	Obtained with	Lexicon obtained by shallow	
model # m	SVM classifiers	parsing of keywords from	
state # q	[IBM'03]	speech recognition output.	

Summary

Statistical models for pattern discovery

- Unsupervised learning of temporal patterns with hierarchical HMM
- Multi-modal fusion with statistical association and layered mixture models
- Open issues
 - Multi-modal fusion: when, why, how
 - Early fusion vs. late fusion
 - Single-modal tokens vs. multi-modal tokens
 - Bottom-up fusion vs. bi-directional propagation
 - Model selection and validation
 - Evaluation metric for multimedia patterns