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Announcements

= Midterm results today

= HW3 due next Monday

= question 1.4: reproduce the equivalence of the
following %energyloss-vs-index graph for the USPS
dataset.

100.00 —

10.00

% energy

Figure 5.18 Distribution of variances of the transform coefficients (in decreasing
order) of a stationary Markov sequence with N =16, p = 0.95 (see Example 5.9).



we have covered ...

Spatial Domain
processing

Image Transform
and Filtering

Image sensing

=)

Image Restoration




outline

What is image restoration

= Scope, history and applications

= A model for (linear) image degradation
Restoration from noise

= Different types of noise

= Examples of restoration operations
Restoration from linear degradation
= Inverse and pseudo-inverse filtering

= Wiener filters

= Blind de-convolution

Geometric distortion and its corrections



degraded images

Original image Blurred image

= What caused the image to blur?

= Can we improve the image, or “"undo” the
effects?




Original image Blurred image

= Image enhancement: “improve” an image subjectively.

= Image restoration: remove distortion from image in order
to go back to the “original” - objective process.



Image restoration

s started from the 1950s

= application domains
= Scientific explorations
= Legal investigations
=« Film making and archival
= Image and video (de-)coding

= Consumer photography

= related problem: image reconstruction in radio
astronomy, radar imaging and tomography

[Banham and Katsaggelos 97]



a model for image distortion

= Image enhancement: “improve” an image subjectively.
= Image restoration: remove distortion from image, to go

III

back to the “original” -- objective process

FIGURE 5.1 A
X model of the
flx.¥) image
degradation/
restoration
process.
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DEGRADATION RESTORATION

g(z,y) = H[f(z,y)] + n(z,y)



a model for image distortion

= Image restoration
=« Use a priori knowledge of the degradation
= Modeling the degradation and apply the inverse process
« Formulate and evaluate objective criteria of goodness

FIGURE 5.1 A
X model of the
flx.¥) image
degradation/
restoration
process.

Degradation
function
H

Restoration
filter(s)

flxy)

MNoise
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DEGRADATION

RESTORATION

g(z,y) = H[f(z,y)] + n(z,y)

— design restoration filters such that
f(z,y) is as close to f(x,y) as possible.



usual assumptions for the distortion model "~
= Noise S i e

= Independent of spatial location ®/ gﬁ%i
= Exception: periodic noise ... 7\
=« Uncorrelated with image
SPACE-INVARIENT RESPONSE - each point on image gives

= Deg radation function H e e

Blurred by Camera

. Input Image Rotation

= Linear N | o
- (CEET
N A7)

= Position-invariant 7(

i'LL

SPACE-VARIENT RESPONSE - each point on image gives
a different response

DEGRADATION

divide-and-conquer step #1: image degraded only by noise.



common noise models 11
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FIGURE 5.2 Some important probability density functions.

Gaussian

1 ()2 0_2
p@)= e

Rayleigh
p(2) = % (z—a)e " for z>a

Erlang, Gamma(a,b)

b_b-1
az

(b—a)!

Exponential

p(2)= e “, for 7220

p(z2) =ae ™, for z20

- additive noise

Salt-and-Pepper:
p(z) = Pud(z — a) + F,é6(z — b)

Speckle noise: a =agr + jay
l9(z, 1% = | f (@, )?]alz, v) |2 + n(z, v)

ar,a; zero mean, independent Gaussian
- multiplicative noise on signal magnitude
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the visual effects of noise

Gamma Exponential Uniform Salt & Pepper

Rayleigh
o l

=)
J

h i
k1
FIGURE 5.4 (Continued)

noise to the image in Fig. 5.3.

Gaussian
Images and histograms resulting from adding exponential, uniform, and impulse

abec
il o
FIGURE 5.4 Images and histograms resulting from adding Gaussian. Rayleigh. and gamma noise to the image

in Fig. 5.3,
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recovering from noise

= overall process
Observe and estimate noise type and parameters -
apply optimal (spatial) filtering (if known) - observe
result, adjust filter type/parameters ...

= Example noise-reduction filters [G&W 5.3]
= Mean/median filter family
= Adaptive filter family
= Other filter family
= e.g. Homomorphic filtering for multiplicative noise [G&W 4.5, Jain

8.13]
| FIGURE 4.31
. Homomorphic
- . A7 (o1 as -1 - - I
fry) B> o DF1 W(u,v) (DET) “xp g(x.¥) filtering approach




example: Gaussian noise

ab
cd

FIGURE 5.7

(a) X-ray image.
(b) Image
corrupted by
additive Gaussian
noise. (¢) Result
of filtering with
an arithmetic
mean filter of size
3 % 3.(d) Result
of filtering with a
geometric mean
filter of the same
size.

(Original image
courtesy of Mr.
Joseph E.
Pascente, Lixi,
Inc.)

R e

= 1HHHT
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example: salt-and-pepper noise

abc

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities P, = P, = 0.25. (b) Result of
filtering with a 7 X 7 median filter. (c¢) Result of adaptive median filtering with §, ., = 7.

15



Recovering from Periodic Noise °
[G&W 5.4]

Recall: Butterworth LPF Butterworth bandreject filter
1

— 1 H(u,v) = ,
H(u,v) = ? o)W o
(’Uz, '1) 1+ [D(u, ’L’)/DO]Qn 1 _l_ [Dg((;f;jf))_‘&)g]Qn

—v 05

abc
FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an

image. (c) Filter radial cross sections of orders 1 through 4.

/J LA \v ) / \2 ) /\
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abec
FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject

filters.
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FIGURE 5.16

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum of (a).
(c¢) Butterworth
bandreject filter
(white represents
1). (d) Result of
filtering.
(Original image
courtesy of
NASA.)

example of bandreject filter

17



notch filter

ab
cd

FIGURE 4.64

(a) Sampled
newspaper image
showing a

moiré pattern.
(b) Spectrum.

(c) Butterworth
notch reject filter
multiplied by the
Fourier
transform.

(d) Filtered
image.

18



outline

Scope, history and applications
A model for (linear) image degradation

Restoration from noise
» Different types of noise
» Examples of restoration operations

Restoration from linear degradation
= Inverse and pseudo-inverse filtering

= Wiener filters

=« Blind de-convolution

Geometric distortion and example corrections

19
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recover from linear degradation

= Degradation function
= Linear (eq 5.5-3, 5.5-4)
= Homogeneity
« Additivity
= Position-invariant (in cartesian coordinates, eq 5.5-5)
- linear filtering with H(u,v)
convolution with h(x,y) — point spread function

f(x.y)

DEGRADATION

RESTORATION ‘

Divide-and-conquer step #2: linear degradation, noise negligible.



point-spread function

ab

FIGURE 5.24
Degradation
estimation by
impulse
characterization.
(a) An impulse of
light (shown
magnified).

(b) Imaged
(degraded)
impulse.
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point-spread functions

Spatial domain

22

h(x y)

& [r

o

(a) One dimensional motion blur

h(x 0)

/0

y

(b) Incoherent diffraction limited system (lens cutoff)

hix, 0)

/o

y
(c) Average atmospheric turbulence

Figure 8.5 Examples of spatially invariant PSFs

Frequency
domain

(=) [11]

FIGURE 2  PSE of motion blur in the Foarier domain, showing | s, v, for
2 L=75andé =x(b) L=75and ¢ = w4

+11
1R 1

43
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sldlbeaiiial

(@) (b}

FIGURE 3 (a) Fringe chements of discrete out-of-focus blur that ane calcu-
lated by integration: (b) PSF in the Fourier domain, shawing | Dis, ¥H, far
R =25



= assume h is known: low-pass filter H(u,v)

= inverse filter

= recovered image F'(u,v) = G(u,v)H (u,v)
H(u,v)__
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[EE381K, UTexas]
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inverse filtering example

loss of \\
information

24
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inverse filtering under noise

= in reality, we often have
= H(u,v) = 0, for some u, v. e.g. motion blur
= noise N(u,v) #0

A (u,v) = 1/H(u,v) - Glu,v) = F(u,0)H(u,v) + N(u,v)

Plu0) = G0 Bwe) ¥ Flu) = Fluo)+ g

Guassian Noise (zero mean, o = 1)

20f
40
60
80
100
120

140

160 [

50 100 150

[EE381K, UTexas]
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FIGURE 5.25
Tllustration of the
atmospheric
turbulence model.
(a) Negligible

26

turbulence.

(b) Severe

turbulence,

k = 0.0025.

(c) Mild

turbulence,

k = 0.001.

(d) Low

turbulence,

k = 0.00025.

(Original image

courtesy of

NASA.)

e ‘: Restoring
Eq.(5.7-1).
(a) Result of
using the full
filter. (b) Result
with H cut off
4 outside a radius of
40; (c) outside a
radius of 70; and
(d) outside a
radius of 85.
remedy 1:

inverse filter with cut-off

1/H(u,v), |D(u,v)|<e

H(u,v) = 0, |1 D(u,v)| > ¢




pseudo-inverse filtering

cut-off based on fiter frequency
: _ ) 1/H(u,v), [H(u,v)|> ¢
H(u,v) = { 0. H(u,v)| < ¢

[Jain, Fig 8.10]
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back to the original problem

FIGURE 5.1 A
i model of the
flx.y)  image
degradation/
restoration
process.

Degradation
function
H

Restoration
filter(s)

flxy)

n(x, ¥)

RESTORATION

Inverse filter with H(u,v) = { 1/H(u,v), |D(u,v)[<e
cut-off: O, |D(u,v)| > ¢

Pseudo-inverse filter: _ | 1/H(u,v), |H(u,v)|>e¢
H(u,v) = { 0, |H(u,v)| < ¢

= Can the filter take values between 1/H(u,v) and zero?
= Can we model noise directly?
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Wiener filter

FIGURE 5.1 A
model of the

Degradation

Restoration

flx. ) function - . fx,¥) image
: - filter(s : : = .
H mer degradation/
. restoration
Noise process
n(x.v)
DEGRADATION RESTORATION
W (u,v)

goal: restoration with minimum mean-square error (MSE)
min e? = E{(f — f)?}
optimal solution (nonlinear):
F(x,y) = BE{f(z,y)|g(m,n),¥(m,n)}
restrict to linear space-invariant filter
flx,y) = w(z,y) * g(x,y)
find “optimal” linear filter W(u,v) with min. MSE ...

29
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Wiener filter

= goal: restoration with minimum mean-square error (MSE)

min e* = E{(f - f)*}

W
f(z,y) = w(x,y) * g(x,y)

= find “optimal” linear filter W(u,v) with min. MSE

> orthogonal condition E{g(f — f)} =0
> correlation function  Ryy(x,y) = w(z,y) * Rgg(x,y)

- wide-sense-stationary (WSS) signals
WSS
Reg(x1,y1,72,92) = E{f(x1,y1)9(x2,y2)} — Rps(x1 — 22,91 — ¥2)

-> Fourier Transform: from correlation to spectrum
ng(u” 1}) — f{ng(%, y)}a S_qg(U, U) — f{Rgg(wa y)}

oy Srgwe) | H(w0)Sy(u0)
:> W (u,v) Sgq(u,v) |H(“>’U)|25ff(u,v)—I—Sqm(u,v)

Sy and Sy, are the power spectra of the signal
and noise, respectively




observations about Wiener filter

H*(u,v)S(u,v)

W —
(u,v) |H(’U,,’U)|2Sff(’u,,’l)) _I_ Sqm(u,v)
1
— | S
H(“? U) I H*(u,n’:)Sff

. _1
= If nonoise, 5,20  w(u,v)lg, 0= { ey H(uw,v) 70

0, H(u,v) =0
- Pseudo inverse filter

= If no blur, H(u,v)=1 (Wiener smoothing filter)
1 _ SNR(u,v)

1L+ Syn(u,v)/Ssr(u,v) " SNR(u,v) +1

- More suppression on noisier frequency bands

W (u,v)|g=1 =

31



1-D Wiener Filter Shape Wiener Filter implementation *

W (. 0) H*(u,v)S¢p(u,v)

| H (u, @)‘stf(u, v) + Syn(u,v)
H*(u,v)
| H (u,v)|2 +
H*(u,v)
H(u,v)* + K

Stf

Where K is a constant (w.r.t. u
and v) chosen according to our
knowledge of the noise level.

T bly ——

ib} Deblurring
Figure 8.11  Wiener filter characteristics.

[Jain, Fig 8.11]
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Wiener Filter example

H (u,v)
H(u, V)\2 +K

W(u, V) =

G(u,v), K=0.02

K=0.02

e
e
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[EE381K, UTexas]



Wiener filter example

abc

FIGURE 5.28 Comparison of inverse- and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(h).

(b) Radially limited inverse filter result. (¢) Wiener filter result.

= Wiener filter is more robust to noise, and
preserves high-frequency details.

34
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Wiener filter example

Ringing effect visible, too many high
frequency components?

(a) Blurry image (b) restored w. regularized pseudo inverse
(c) restored with wiener filter

[UMD EE631]



Wiener filter: when does it not work?

How much de-blurring is just enough?

image ‘blurrl’ wiener filter restored license plate

[Image Analysis Course, TU-Delft]
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improve Wiener filters

= geometric mean filters

- l-«
H*(u,v)]a H*(u,v)
W(u,v) =
9= a2 1,02 + 30

= Constrained Least Squares

= Wiener filter emphasizes high-frequency components,
while images tend to be smooth

min |g - Hf|? 4 alCf|?

f: the estimate for undegraded image
C'f: a high-passed version of f

37



degraded inverse-filtered Wiener-filtered 38
= .

motion blur
+ noise

noise*10-!

noise*10>

abc

FIGURE 5.30 Results of constrained least squares filtering. Compare (a), (b), and (¢) with the Wiener filtering
results in Figs. 5.29(c), (f), and (i), respectively.
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geometric distortions

= Modify the spatial
O I e S a Ia Corresponding
tiepoints in two

image segments.

relationships between
pixels in an image

= a. k. a. “rubber-sheet” w
transformations

= Two basic steps
/_\\

= Spatial transformation T v
u GraY'Ievel interpOIatlon .\ / Nearest neighbor to (x', ¥)

P, /
\_//
I flx v Gray-level assignment glx’y)
' =r(z,y) (e
FIGURE 5.33 Gray-level interpolation based on the nearest neighbor concept.

y' = s(z,y)
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geometric/spatial distortion examples

l

i

(a) Original (&) Pincushion distortion {c) Barrel distortion

FIGURE 14.2-1. Example of geometric distortion.



recovery from geometric distortion

ab

cd

e f

FIGURE 5.34 (a) Image showing tiepoints. (b) Tiepoints after geometric distortion.
(c) Geometrically distorted image, using nearest neighbor interpolation. (d) Restored
result. (e) Image distorted using bilinear interpolation. (f) Restored image.
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recovery from geometric distortion

;
i
]
|
]

)

(@) (b)

Fig. 5. (c) Image produced by a Computar 2.5mm lens and a Computar 1/3” CCD board camera. ( b) Distortion parameters recovered via the minimization of & are used
to map (a) to perspective image. Notice that straight lines in the scene, such as door edges, map to straight lines in the undistorted images.

Rahul Swaminathan, Shree K. Nayar: Nonmetric Calibration of Wide-Angle Lenses and Polycameras. IEEE Trans.
Pattern Anal. Mach. Intell. 22(10): 1172-1178 (2000)
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estimating distortions

= calibrate
= use flat/edge areas
= ... Oongoing work

a. Original - b. Out-of-focus
BlurExtent = 0.0104 BlurExtent = 0.4015

c. Oigina d. Linear-motion
BlurExtent = 0.0462 BlurExtent = 0.2095

http://photo.net/learn/dark_noise/ [Tong et. al. ICME2004]



summary

a image degradation model
restoration from noise

restoration from linear degradation

= Inverse and pseudo-inverse filters, Wiener filter, constrained
least squares

geometric distortions

readings
= G&W Chapter 5.1 — 5.10, Jain 8.1-8.4 (at courseworks)

= M. R. Banham and A. K. Katsaggelos "Digital Image Restoration",
IEEE Signal Processing Magazine, vol. 14, no. 2, Mar. 1997, pp.
24-41.
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who said distortion is a bad thing?

blur ...

geometric ...
© Declan Mccullagh Photography, mccullagh.org

noise ...
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