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announcements

= HW#2 due today
= HW#3 will be out by Wednesday

= Midterm on March 10th
= Open-book”
= YES: text book(s), class notes, calculator
= NO: computer/cellphone/matlab/internet
= 5 analytical problems

= Coverage: lecture 1-6

= intro, representation, color, enhancement,
transforms and filtering (until DFT and DCT)

= Additional instructor office hours
= 2-4 Monday March 10t Mudd 1312

= Grading breakdown
= HW-Midterm-Final: 30%-30%-40%



outline

Recap of DFT and DCT
Unitary transforms

KLT

Other unitary transforms
Multi-resolution and wavelets
Applications

Readings for today and last week: G&W Chap 4,
/7, Jain 5.1-5.11



recap: transform as basis expansion
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recap: DFT and DCT basis

1D-DCT 1D-DFT
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recap: 2-D transforms

M-1N-1 M—-1N-1

gu,v) = 3 >, flm,n)aw(m,n), flm,n)= 3 > g(u,v)Guw(m,n)

m=0 n=0 u=0 v=0

the transform is separable,
when ayy(m,n) = ay(m)by(n).

by
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2D-DFT and 2D-DCT are separable transforms.



separable 2-D transforms

when a=b, M = N
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Symmetric 2D separable transforms can _
be expressed with the notations of its —  We only need to discuss 1D
corresponding 1D transform. transforms




g(u)

f(n)

two properties of DFT and DCT

N-1 _ "
= Y f)ayp Ay = A%

n=0
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> g(u) ay’
u=0

= Orthonormal (Eq 5.5 in Jain)
: no two basis represent the same information in the image

Y aftay" = 6(u—v)
n

= Completeness (Eq 5.6 in Jain)
: all information in the image are represented in the set of basis

functions 3" aiMai™ = §(m — n)
u

=

for Q@ < N, let fo(n) = Y95 g(u)aien
of = Y1 L () = fo(m)]? minimized when §(u) = g(u)
f—fQZO, ifF. Q:N




Exercise

= How do we decompose this picture?

DCT2
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What if black=0, does the transform coefficients look similar?




Unitary Transforms

A linear transform:

RN _, RN g=ANf, fF=A g

The Hermitian of matrix A is: Al = AT

This transform is called “unitary” when A is a unitary matrix,
“orthogonal” when A is unitary and real.

A7l = A0 AaH = A AT =1
= [wo properties implied by construction
= Orthonormality
> affai" = 6(u—v)
mn

= Completeness
> aftay"t = 6(m —n)
u



Exercise

= Are these transform matrixes unitary/orthogonal?
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properties of 1-D unitary transform

= energy conservation ||g||2 = || f||2

gl = |Af12 = (A T(Af) = pTAaTAf =T =|f)?

= rotation invariance
= the angles between vectors are preserved

J1- /o
cost) = g1-92 =g = (Af1))TAfo=f1- >
| f1]l]] f2]]
= unitary transform: rotate a vector in R", S

e., rotate the basis coordinates

€o



observations about unitary transform

= Energy Compaction

= Many common unitary transforms tend to pack a large fraction of
signal energy into just a few transform coefficients

s De-correlation

= Highly correlated input elements - quite uncorrelated output
coefficients

« Covariance matrix Rg = cov(g) = E{(g — E{9})(g — E{g})*"}
let g =g — E{g}, then Rmn = E{gmdn}
f: columns of image pixels g = DCT(f)
f1,f2, -+, feoo cov(f) 91,92, ---, ge0oo  cov(g)

linear dlsplay scale: g

display scale: log(1+abs(g))



one question and two more observations

= Is there a transform with
= best energy compaction
= maximum de-correlation
= iS also unitary... ?

= transforms so far are data-independent

« transform basis/filters do not depend on the signal being
processed

= optimal” should be defined in a statistical sense so
that the transform would work well with many images

= Signal statistics should play an important role



review: correlation after a linear transform

= X is a zero-mean random vector in RN
FElx] =0
= the covariance (autocorrelation) matrix of x
Ry = cov(x) = Elzz!]
= R(i,j) encodes the correlation between x; and x;

= R, is a diagonal matrix iff. all N random variables in x are
uncorrelated

= apply a linear transform: y = Ax
= What is the correlation matrix fory ?

Ry = cov(y) = Eyy"] = E[Az(Az)"]
= E[Azz AY] = AE[z2M)AY = AR AH



transform with maximum energy compaction
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proof. maximum energy compaction
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Karhunen-Loeve Transform (KLT)

= a unitary transform with the basis vectors in A being
the “orthonormalized” eigenvectors of R,

y= Alz, == Ay,
with A € RVXN A = [ag,...,an_1]

Rxau:Auau, 'U/:O,,N_l

= assume real input, write AT instead of AH

o denote the inverse transform matrix as A, AAT=I

= R, is eymmetnc for real input, Hermitian for complex input
i e R, RH=R

X’ X

= R, nonnegatlve definite, i.e. has real non-negative eigen values

Attributions
= Kari Karhunen 1947, Michel Loeve 1948
= a.k.a Hotelling transform (Harold Hotelling, discrete formulation 1933)
= a.k.a. Principle Component Analysis (PCA, estimate R, from samples)



Properties of K-L Transform

= Decorrelation by construction

Ry = Elyy’] = AR, AT =| M

AN—1
= nhote: other matrices (unitary or nonunitary) may also de-correlate
the transformed sequence [Jain’s example 5.5 and 5.7]
= Minimizing MSE under basis restriction

= Basis restriction: Keep only a subset of m transform coefficients
and then perform inverse transform (1< m < N)

- Keep the coefficients w.r.t. the eigenvectors of the first m largest
eigenvalues

v = ATu w = Inv z = Bw 1

u A v I w B z
— — il . SR
N XN 1=m=N NXN 0

Figure 5 16 KL transform basis restriction



discussions about KLT

= The good
= Minimum MSE for a “shortened” version
= De-correlating the transform coefficients
= The ugly
=« Data dependent
= Need a good estimate of the second-order statistics
= Increased computation complexity
data:  1,...,2p € RV estimate R O(MN)

o 3
linear transform: o(arN) compute eig R,;:  ~ O(N?)

fast transform:  O(Mlog N)

Is there a data-independent transform with similar performance?



energy compaction properties of DCT

s DCT is close to KLT when ...

= X s first-order stationary Markov &, = px,_1 + 2n, 2zn ~N(0,02), |p| < 1

,, __ 2 __ 2.2 — . |n
—  Blapag_1] = po2, Elanty_s] = p%02, ... 7(n) = pl"
1 P pz

— R, = p 1 p
2 & P pn—1 1
Y = R, and p? R, ! have the
a 2 L l1—pa —a same eigen vectors

1+e — 1 —a O
—  pr;l= = P2RL~ Q. whenpis

0 o —a 1 — pa close to 1

= DCT basis vectors are eigenvectors of a symmetric tri-diagonal matrix Q.

l—-a —a 0 ... ap = const.
— 1 —
Qe = “ “ m3u mu(2N — 1)

ay x |1, cos s ..., COS
2N

0 —a 1 —«w

— Qcau — Auau [trigonometric identity cos(a+b)+cos(a-b)=2cos(a)cos(b)]



DCT energy compaction

= DCT is close to KLT for
= highly-correlated first-order stationary Markov source

= DCT is a good replacement for KLT
= Close to optimal for highly correlated data

= Not depend on specific data
« Fast algorithm available



DCT/KLT example for vectors

fraction of
coefficient values in
the diagonal

X: columns of image pixels p* = 0.8786

|

abs(DFT1p(x)) | | Rppr(z)

L1,L2, ..., 00

0.0136

0.1055

transform basis

0.1185 .

1.0000

Ry

KLTyp(x)

display scale: log(1+abs(g)), zero-mean



KL transform for images

= autocorrelation function 1D - 2D
z(1:n) Rz(n1,m2)
x(l:m, 1:n) Rz(m1, mo,n1,n5)
= KL basis images are the orthonormalized eigen-functions of R
= rewrite images into vector forms (N2x1)
= solve the eigen problem for N2xN2 matrix ~ O(N°)

= if R is "separable”
Rg(my,mo,n1,n2) — r(my,mp) - r(ng,no)
= perform separate KLT on the rows and columns
= transform complexity O(N3)



igits ...

-written d

KLT on hand
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The Desirables for Image Transforms
DFT DCT KLT

= Theory
= Inverse transform available v v v
= Energy conservation (Parsevell) v v v
= Good for compacting energy ? ? v
= Orthonormal, complete basis v v v
= (sort of) shift- and rotation invariant v v ?
= Transform basis signal-independent

= Implementation
= Real-valued X v v
= Separable v v ¥
= Fast to compute w. butterfly-like structure v v X
= Same implementation for forward and v v X

inverse transform
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Walsh-Hadamard Transform
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slant transform
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Nassiri et. al, “Texture Feature Extraction using Slant-Hadamard Transform”



Variance ¢?

energy compaction comparison
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Figure 5.18 Distribution of variances of the transform coefficients (in decreasing
order) of a stationary Markov sequence with N =16, p= 0.95 (see Example 5.9).
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implementation note: block transform

= Similar to STFT (short-time Fourier transform)
= partition a NxN image into mxn sub-images
= save computation: O(N) instead of O(NlogN)
= loose long-range correlation




applications of transforms

enhancement

(non-universal) compression
feature extraction and representation
pattern recognition, e.g., eigen faces

dimensionality reduction
= analyze the principal ("dominating”) components



Image Compression

, A
SNR({:IB) — ].{] lﬂglﬂ (?m) — 2{] lﬂglﬂ ( l.g;l]ﬂ-l)

where P is average power and A is RMS amplitude.



Gabor filters

= Gaussian windowed Fourier Transform

= Make convolution kernels from product of Fourier
basis images and Gaussians

Frequency

Odd
(sin)

Even
(cos)




Example: Filter Responses

Filter
bank

from Forsyth & Ponce



outline

Recap of DFT and DCT
Unitary transforms
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Other unitary transforms
Multi-resolution and wavelets
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1807: Fourier upsets the French Academy....

f(t) A

=/\/\/+/\/\/+’\/\/

Fourier Series: Harmonic series, frequency changes, f, 2f,, 3f;, ...

sampling (dirac) FT

Frequency

Time Time

STFT

frequency
A

time



FT does not capture discontinuities well

But... 1898: Gibbs’ paper 1899: Gibbs’ correction

11 M

Orthogonality, convergence, complexity
\
&.\
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1910: Alfred Haar discovers the Haar wavelet
“dual” to the Fourier construction

f(t)
I/\ VANRYANYAN .
VRV

= L o+ T s
Haar series:

» Scale changes S, 25, 45, 85, ...
e orthogonality

iJ
|

frequency

W A

>
time



one step forward from dirac ...

= Split the frequency in half means we can downsample by 2 to
reconstruct upsample by 2.

= Filter to remove unwanted parts of the images and add

= Basic building block: Two-channel filter bank .

analysis processing synthesis Time
h ()
U o/
X —
Oy
U




orthogonal filter banks

] v ) g
_|_
R v 4 h

1. Start from the reconstructed signal

Trec = Ty tITw = Z Qkgn—2k + Z Brhpn—2k

kel kel
... go ho O O 0O O aQ
... g hy O O 0 O Bo
= ... g2 ho go hg 0O O a1 = X
.. g3 ha g1 h O O . b1
. 94 ha g2 ho go ho ... ap

= Read off the basis functions

® = {prtrez = {v2k 2k+1}tkecz = {92k b2k ke



orthogonal filter banks

2. We want the expansion to be orthonormal o7 = ;
= The output of the analysis bank is
X = &'z = o
3. Then
= The rows of ®T are the basis functions 19-2&h-—2kirez
= The rows of ®T are the reversed versions of the filters

ap = (g._2k %) = (g—n*Tn)2k & a = Pz,
B = (h_opg,x) = (h_pn*zn)y & B = dfz

= The analysis filters are

gn = G-—n, hn - h—n



orthogonal filter banks

2. Since & is unitary, basis functions are orthonormal

(9.—2k,9) = O,
(h._op,h) = &,
<h-—2kag> - 0.
5. Final filter bank
gd—n { t g



orthogonal filter banks: Haar basis

Solve for the filter h explicitly.
1

gn = ﬁ (On 4+ dp—1) -

Given that h, must be of norm 1 and of same
the length as gn,

hn = (cosa)dn + (sina)d,,_1.
Computing the inner product (h._o;,g) = O:

1 ) The solution to the above is:
—Q(COSa +sina) = O.

V2 Sina = —COS« = a = Imr—%.

hop = ¥(x) For k = 0, a solution to hy is:

ﬂ l { hn = i(571_571—1)-
1 V2

o = ¥(22) f=d2x-1) The above pair and their even translates trans-

| : lates constitute an ONB for ¢2(Z) and are called

gL ‘ 1 { the Haar filter pair.

rp = P x) b =da-l) g =da-d) =)

1 U -1 -1 -1 a
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Goal: efficient representation of signals like

f(t) Scaling functions

time
_——+— Noise

IVAVANLY e
\Y% / Vo JU (B\)

Wavelets Lowpass filters and scaling functions reproduce polynomials

where: + |terate of Daubechies L=4 lowpass filter reproduces linear ramp
e Wavelet act as singularity detectors

« Scaling functions catch smooth parts .
NI g o P o1 /\ 1 scaling
* “Noise” is circularly symmetric \

s ] function
Note: Fourier gets all Gibbs-ed up! o5/ \\ |

o M= //\\k

-0.05& -
0

0.2F a

500 .
0ol , linear

300+ b ram p
200 >/ |

100 X

-100 \/ g

_200 I 1 I 1 I I
0 50 100 150 200 250 300 350 400 450

Scaling functions catch “trends” in signals



DWT

= Iterate only on the lowpass channel

f 4
— I




wavelet packet
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wavelet packet

= First stage: full decomposition




wavelet packet

= Second stage: pruning




wavelet packet: why it works

= Holy Grail” of Signal
Analysis/Processing

<> = Understand the “blob”-like
[ structure of the energy

d /> distribution in the time-

frequency space

= Design a representation
< reflecting that

v



] 0



= are we solving x=x?
= sort of: find matrices suchthat z = Iz = $d*x

« after finding those
= Decomposition X = d*p
= Reconstruction r = dX = OP*y

= in a nutshell
« if ® is square and nonsingular, ® is a basis and & is its dual basis
= if ® is unitary, that is, ® &* = I, ® is an orthonormal basis and
=
= if @ is rectangular and full rank, ® is a frame and & is its dual
frame
= if @ is rectangular and ® ®* =1, & is a tight frameand & = @



overview of multi-resolution techniques

Property Orthonormal Biorthogonal Tight General

Basis Basis Frame Frame
Expansion S ={pi}i, ¢ ={pi}} ¢ = {pi}]", ¢ ={pi}j*,
Set o ={a:} 4 @ ={gi}i",

p; € C™ p; € C™ p; € C™ p;, €eC*, m>n p, €eC* @, €eC*, m>n
Self-Dual Yes No Yes No
Linearly Yes Yes No No
Independent
Orthogonality (ps,05) = 05— (i, Pj) = 6i—j None None
Relations
Expansion x =251 (pir ) T =351 (Pi, L) pi T =20 (pis ) x =20 (Pi, x)p
Matrix P of size n X n P of size n X n P of size n x m P of size n X m
Representation @ unitary @ full rank rows of @ orthogonal ® full rank

o7 =T =1 T =1, 0= (¢T)"1 o7 =1 T =1
Norm Yes No Yes No
Preservation z||* = > i I, ©i)|? » orthonormal bases (e.g. Fourier series, wavelet series)

. e biorthogonal bases
Successive Yes No e overcomplete systems or frames
Approximation &%) = £(k=1) 4 (z 0 )y R ¢ = @
! Po @1 1 €
Redundant No No -
e € = @o €0 = Po
Py (7)0 L2
oB BOB UTF




applications of wavelets

enhancement and denoising

compression and MR approximation

fingerprint representation with wavelet packets
bio-medical image classification

subdivision surfaces “Geri's Game”, “A Bug'’s
Life”, “Toy Story 2"
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