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� HW#2 due today
� HW#3 will be out by Wednesday

� Midterm on March 10th

� “Open-book”
� YES: text book(s), class notes, calculator
� NO: computer/cellphone/matlab/internet

� 5 analytical problems
� Coverage: lecture 1-6 

� intro, representation, color, enhancement, 
transforms and filtering (until DFT and DCT)

� Additional instructor office hours 
� 2-4 Monday March 10th, Mudd 1312

� Grading breakdown
� HW-Midterm-Final: 30%-30%-40%

announcements 



outline

� Recap of DFT and DCT

� Unitary transforms

� KLT

� Other unitary transforms

� Multi-resolution and wavelets

� Applications

� Readings for today and last week: G&W Chap 4, 
7, Jain 5.1-5.11



recap: transform as basis expansion



recap: DFT and DCT basis

1D-DFT

real(A) imag(A)

1D-DCT

AN=32



recap: 2-D transforms

2D-DFT and 2D-DCT are separable transforms.



separable 2-D transforms

Symmetric 2D separable transforms can 
be expressed with the notations of its 
corresponding 1D transform.

We only need to discuss 1D 
transforms



two properties of DFT and DCT

� Orthonormal (Eq 5.5 in Jain)
: no two basis represent the same information in the image

� Completeness (Eq 5.6 in Jain)
: all information in the image are represented in the set of basis
functions

minimized when 



Exercise

� How do we decompose this picture?
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What if black=0, does the transform coefficients look similar?
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Unitary Transforms

This transform is called “unitary” when A is a unitary matrix, 
“orthogonal” when A is unitary and real.

The Hermitian of matrix A is:

� Two properties implied by construction
� Orthonormality

� Completeness

A linear transform:



Exercise

� Are these transform matrixes unitary/orthogonal?
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properties of 1-D unitary transform

� energy conservation

� rotation invariance

� the angles between vectors are preserved

� unitary transform: rotate a vector in Rn, 
i.e., rotate the basis coordinates



observations about unitary transform

� Energy Compaction

� Many common unitary transforms tend to pack a large fraction of 
signal energy into just a few transform coefficients

� De-correlation

� Highly correlated input elements � quite uncorrelated output 
coefficients

� Covariance matrix 

display scale: log(1+abs(g))

linear display scale: g

f: columns of image pixels



one question and two more observations

� transforms so far are data-independent

� transform basis/filters do not depend on the signal being 
processed

� “optimal” should be defined in a statistical sense so 
that the transform would work well with many images

� signal statistics should play an important role

� Is there a transform with 
� best energy compaction
� maximum de-correlation  
� is also unitary… ?



review: correlation after a linear transform

� x is a zero-mean random vector in

� the covariance (autocorrelation) matrix of x

� Rx(i,j) encodes the correlation between xi and xj
� Rx is a diagonal matrix iff. all N random variables in x are 
uncorrelated

� apply a linear transform:
� What is the correlation matrix for y ?



transform with maximum energy compaction



proof. maximum energy compaction

a*u are the eigen vectors of Rx



Karhunen-Loève Transform (KLT)

� a unitary transform with the basis vectors in A being 

the “orthonormalized” eigenvectors of Rx

� assume real input, write AT instead of AH

� denote the inverse transform matrix as A, AAT=I
� Rx is symmetric for real input, Hermitian for complex input 

i.e. Rx
T=Rx,  Rx

H = Rx
� Rx nonnegative definite, i.e. has real non-negative eigen values

� Attributions 
� Kari Karhunen 1947, Michel Loève 1948
� a.k.a Hotelling transform (Harold Hotelling, discrete formulation 1933)
� a.k.a. Principle Component Analysis (PCA, estimate Rx from samples)



� Decorrelation by construction

� note: other matrices (unitary or nonunitary) may also de-correlate 
the transformed sequence [Jain’s example 5.5 and 5.7]

Properties of K-L Transform

� Minimizing MSE under basis restriction 
� Basis restriction: Keep only a subset of m transform coefficients 
and then perform inverse transform  (1≤ m ≤ N)

� Keep the coefficients w.r.t. the eigenvectors of the first m largest 
eigenvalues



discussions about KLT

� The good

� Minimum MSE for a “shortened” version

� De-correlating the transform coefficients

� The ugly

� Data dependent

� Need a good estimate of the second-order statistics

� Increased computation complexity

Is there a data-independent transform with similar performance?

data: 

linear transform: 

estimate Rx: 

compute eig Rx: 

fast transform: 



energy compaction properties of DCT

� DCT is close to KLT when ...
� x is first-order stationary Markov

� DCT basis vectors are eigenvectors of a symmetric tri-diagonal matrix Qc

[trigonometric identity  cos(a+b)+cos(a-b)=2cos(a)cos(b)]

� Rx and β
2 Rx

-1 have the 
same eigen vectors

� β2 Rx
-1 ~ Qc when ρ is 

close to 1



DCT energy compaction 

� DCT is close to KLT for

� DCT is a good replacement for KLT
� Close to optimal for highly correlated data

� Not depend on specific data

� Fast algorithm available

� highly-correlated first-order stationary Markov source



DCT/KLT example for vectors

fraction of 
coefficient values in 

the diagonal

0.0136

ρρρρ* = 0.8786x: columns of image pixels

1.0000

display scale: log(1+abs(g)), zero-mean

0.1055

0.1185

transform basis



KL transform for images

� autocorrelation function 1D � 2D

� KL basis images are the orthonormalized eigen-functions of R

� rewrite images into vector forms (N2x1)

� solve the eigen problem for N2xN2 matrix ~ O(N6)

� if Rx is “separable”

� perform separate KLT on the rows and columns

� transform complexity O(N3) 



KLT on hand-written digits …

1100 digits “6”
16x16 pixels

1100 vectors of size 256x1



The Desirables for Image Transforms

� Theory
� Inverse transform available

� Energy conservation (Parsevell)

� Good for compacting energy

� Orthonormal, complete basis

� (sort of) shift- and rotation invariant

� Transform basis signal-independent

� Implementation
� Real-valued

� Separable

� Fast to compute w. butterfly-like structure

� Same implementation for forward and 
inverse transform

DFT KLT
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Walsh-Hadamard Transform



slant transform

Nassiri et. al, “Texture Feature Extraction using Slant-Hadamard Transform”



energy compaction comparison



implementation note: block transform

� similar to STFT (short-time Fourier transform)
� partition a NxN image into mxn sub-images

� save computation: O(N) instead of O(NlogN)

� loose long-range correlation

8x8 DCT coefficients



applications of transforms

� enhancement

� (non-universal) compression

� feature extraction and representation

� pattern recognition, e.g., eigen faces

� dimensionality reduction
� analyze the principal (“dominating”) components



Image Compression

where P is average power and A is RMS amplitude. 



Gabor filters

� Gaussian windowed Fourier Transform
� Make convolution kernels from product of Fourier 
basis images and Gaussians

× =

Odd
(sin)

Even
(cos)

Frequency



Example: Filter Responses

from Forsyth & Ponce

Filter
bank

Input
image



outline

� Recap of DFT and DCT

� Unitary transforms

� KLT

� Other unitary transforms

� Multi-resolution and wavelets

� Applications



sampling (dirac) FT

STFT



FT does not capture discontinuities well





one step forward from dirac …

� Split the frequency in half means we can downsample by 2 to 
reconstruct upsample by 2. 

� Filter to remove unwanted parts of the images and add

� Basic building block: Two-channel filter bank

t

f

x x

analysis synthesisprocessing

h h

g g



orthogonal filter banks

1. Start from the reconstructed signal

� Read off the basis functions



orthogonal filter banks

2. We want the expansion to be orthonormal
� The output of the analysis bank is

3. Then
� The rows of ΦT are the basis functions

� The rows of ΦT are the reversed versions of the filters

� The analysis filters are



orthogonal filter banks

4. Since Φ is unitary, basis functions are orthonormal

5. Final filter bank



orthogonal filter banks: Haar basis







DWT

� Iterate only on the lowpass channel

t

f



wavelet packet

t

f



wavelet packet

� First stage: full decomposition



wavelet packet

Cost(parent)   < Cost(children)

� Second stage: pruning



wavelet packet: why it works

t

f

� “Holy Grail” of Signal 
Analysis/Processing 
� Understand the “blob”-like 
structure of the energy 
distribution in the time-
frequency space

� Design a representation 
reflecting that

Dirac basis
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� are we solving x=x?
� sort of: find matrices such that

� after finding those
� Decomposition

� Reconstruction

� in a nutshell
� if Φ is square and nonsingular, Φ is a basis and     is its dual basis

� if Φ is unitary, that is, Φ Φ* = I, Φ is an orthonormal basis and        
= Φ

� if Φ is rectangular and full rank, Φ is a frame and      is its dual 
frame

� if Φ is rectangular and Φ Φ* = I , Φ is a tight frame and      = Φ



overview of multi-resolution techniques



applications of wavelets

� enhancement and denoising

� compression and MR approximation

� fingerprint representation with wavelet packets

� bio-medical image classification

� subdivision surfaces “Geri’s Game”, “A Bug’s 
Life”, “Toy Story 2”
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