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Image Transforms and Image
Enhancement in Frequency Domain

Lecture 5, Feb 25, 2008

Lexing Xie

EE4830 Digital Image Processing
http://www.ee.columbia.edu/~xIx/ee4830/

thanks to G&W website, Mani Thomas, Min Wu and Wade Trappe for slide materials

= HW clarification

= HW#2 problem 1
= Show: f- V2f ~ Af— B blur(f)

= A and B are constants that do not matter, it is up to you
to find appropriate values of A and B, as well as the
appropriate version of the blur function.

= Recap for lecture 4
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2D-DFT definitions and intuitions
DFT properties, applications
pros and cons

= DCT

the return of DFT

= Fourier transform: a continuous WMWY
signal can be represented as a JATAVAVATAVAVATATAVATATA
(countable) weighted sum of VAVAVAVAVAVAN
sinusoids.

FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.




warm-up brainstorm

= Why do we need image transform?
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why transform?

Better image processing
= Take into account long-range correlations in space

= Conceptual insights in spatial-frequency information.
what it means to be “smooth, moderate change, fast change, ..

Fast computation: convolution vs. multiplication t -
&

Alternative representation and sensing

= Obtain transformed data as measurement in radiology images
(medical and astrophysics), inverse transform to recover image

=

= Energy compaction
= Pick a few “representatives” (basis)
= Just store/send the “contribution” from each basis

Efficient storage and transmission i




outline

= Why transform

= 2D Fourier transform
= a picture book for DFT and 2D-DFT
= properties
= implementation
= applications

= discrete cosine transform (DCT)
= definition & visualization
= Implementation

next lecture: transform of all flavors, unitary
transform, KLT, others ...

1-D continuous FT

= ID-FT . N g(ww) — e—jQﬂ'wm
__ = —j27wx
Fe)= [ f@e

real(g(wx)) imag(g(wx))
= 1D — DFT of length N e

o =0

N-1 —j2TuUn
Fu) =5 Y f(n)e 5 NN N
n=0




1-D DFT in as basis expansion

—j27un

N-1
Flu) =% > f(n)e ~
n=0

Forward transform

N-1 _
y(u) = \/Lﬁngox(n)a(u’n) g real(A) imag(A)

Inverse transform V \J\
oy = iNz_:ly(u)b(u ” W A DA
VN ’ A AVAYAYAYAYA

basis

e 12T AVAVAVAVAVAVANAVAVAVAVAVA
un un
26 o) ey AN AN
cos( 7rN) jsin( 7rN) u=7
L — L —

a(u,n)

1-D DFT in matrix notations

1 N-1
y(u) = \/—Nngox(n)a(u,n) .
a(u,n) = e IR

un .
cos(zwﬁ) B Jsm(zﬁﬁ) real(A imag(A
(A) 9(A)

vw=0,1,...,N—1 P o i

. SO O
y = Az AVAVAVAVAVAVAVAVA
NN

r = A_ly




1-D DFT of different lengths

y = Ax a(u,n) = eijQﬂ—% U=O,1,...,N—1
r = A_ly = 608(271'%) — jsin(Qﬂ-%)
real(A) Imag(A)

N=16 |':'::E::':'|
ity

" o

S b b b b 0O S 0 0 = L5 6 b 4L 000 0 o =
L6 6 b b L6 bbb
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performing 1D DFT

z(n) a(u,n) = e~I2m

4 L )
y = Az

—_
real(y) = real(A) xz  imag(y) = imag(A) *x

real-valued input

Note: the coefficients in x and y on this slide are only meant for illustration purposes, which are not numerically accurate.




another illustration of 1D-DFT

real (A'(%))
;z:(n) ! Yy = Ax
E imag(A'(2)) N1
AVARER s = v = o X amatun)
| LI —
= i
= B -
real-valued input - - | |
= i real(y(u))
- imag(y(u))
= |
] =
= L}
Note: the coefficients in x and y are not numerically accurate
from 1D to 2D
1D 2D
z(n) z(m,n)
a(u,n) a(u,v, m,n)
i —i2m (R4
y(w) y(u,v)
LY atmatun) LN et v,
= — z(n)a(u,n = — xz(m,n)a(u,v,m,n
\/ano Nm=0 n=0
y = Az

?




Computing 2D-DFT

M—-1N-1 .
327rum —j2mun
oFt  y(u,v) = ﬁ > Y z(m,n)e e N
m=0 n=0
M—-1N-1

] 27rum j j2mun

> Y y(u,v)e ™ N

u=0 v=0

IDFT w(m, ’I’L)

= Discrete, 2-D Fourier & inverse Fourier transforms are implemented
in ££t2 and ifft2, respectively

= fftshift: Move origin (DC component) to image center for display
= Example:

>> I = imread(‘test.png’);
>> F = fftshift (£f£ft2(1));
>> imshow (log(abs(F)), [1);
>> imshow (angle(F), []);

2-D Fourier basis

real e~ 12 (R imag e~ 12m (R +5)

: GRSSs=Een| : NEsSsSSEzag )
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real(e j2mr M)

. um
imag(e 27”7)




real-valued

2-D FT illustrated

a(u7v7m? n) _ 6_32,”_((1,7”_}_’(1”)
z(m,n) real — y(u,v)
Tow —| 1 ESSSsssEE real(y(u, )
S R N BN ST e e o
: NSS==%
CRUTVRATT A .
SRR F e imag
mmme r- - E
AT TN Egmmmﬂ’ '
: MBHm==S = sS=S=zep | .
: BUZEES : waNS=Z200 - imag(y(u, v))
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notes about 2D-DFT

Output of the Fourier transform is a complex humber

= Decompose the complex number as the magnitude and phase
components

In Matlab: u = real(z), v = imag(z), r = abs(z), and

theta = angle(z)

Some useful FT pairs:
Impulse sx, y) = 1
Gaussian AVTmae 7)o ge 2’
sin(7ua) sin{mwvbh)
Rectangle rect[a,b] < ab raa) () Jm{ua+ut)
Cosine cos(2mtgx + 2wnyy) <
=[8(e + g v + ) + 8w — g v — vy)]

Sine sin(27ugx + 27py) =

jé [8(u + g, v + vy) — 81 — 1y, v — vy)]

" Assumes that functions have been extended by zero padding.




Explaining 2D-DFT

fft2

1) |F()] Al
. AK ed
ifft2 M FIGURE 4.2 (a) A
. discrete function
K points of M points, and
(b) its Fourier
spectrum. (¢) A
discrete function
- . ‘ o —+u  Wwith twice the
M points 1 t M points 1 number of
nonzero points,
) and (d) its Fouricr
24K spectrum.
MY
: 5 T 1)
FrTeeen (m T T
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|t e
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M points s } M points g
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= 5w,

L

FIGURE 4.36 Left:
convolution of
two discrete
functions. Right:
convolution of the
same functions,
taking into
account the
implied
periodicity of the
DFT. Note in (j)
how data from
adjacent periods
corrupt the result
of convolution.

circular convolution and zero padding

a fim)
£lm) £(m) b
a
FIGURE 4.37
Result of
performing
i Jconvolution with | |
Iy O e L
hm) h(m) functions.
) ) s )
h(-m)

Il = m)

() )

———

zero padded filter and response

abc

de f

gh

FIGURE 4.36
(a)An M X N
image, f.

(b) Padded image,
f,ofsize P x Q.
(c) Result of
multiplying f, by
[CRIMES

(d) Spectrum of
F,. (e) Centered
Gaussian lowpass
filter, H, of size

P XQ.

(f) Spectrum of
the product HF,.
(g) 8 the product
of (=1)*" and
the real part of
the IDFT of HF,.
(h) Final result, g.
obtained by
cropping the first
M rows and N
columns of g,

11



zero padded filter and response

FIGURE 4.39 Padded lowpass filter is the spatial domain (only the real part is shown).

FIGURE 4.40 Result of filtering with padding. The image is usually cropped to its

original size since there is little valuable information past the image boundaries.

observation 1: compacting energy

aaaaaaadd

ab

FIGURE 4.11 (a) An image of size 500 x 500 pixels and (b) its Fourier spectrum. The
superimposed circles have radii values of 5. 15, 30, 80. and 230, which enclose 92.0,
94.6, 96.4, 98.0, and 99.5% of the image power, respectively.

a b FIGURE 4.12 (a) Original image. (b)—(f) Results of ideal lowpas
¢ d frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in Fig, 4.11(b). The
e [ power removed by these filters was 8.5.4.3.6.2, and 0.5% of the total, respectively.
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observation 2: amplitude vs. phase

{

7

abec
de f

FIGURE 4.27 (a) Woman. (b) Phase angle. (c) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.

= Amplitude: relative prominence of sinusoids
Phase: relative displacement of sinusoids

ifft2(abs(FA), angle(FP))

another example: amplitude vs. phase

A ="Aron” P = “Phyllis”
FA = fft2(A) FP = fft2(P)
log(abs(FA)) log(abs(FP))

angle(FA) angle(FP)

Adpated from http://robotics.eecs.berkeley.edu/~sastry/ee20/vision2/vision2.html

ifft2(abs(FP), angle(FA))

13



fast implementation of 2-D DFT

= 2 Dimensional DFT is separable

M—-1N-1 . .
1 —2mjum —2mjvn
F(u,v) = UN Z Z f(m,n)e M e N
=0 y=0
_ 1 ~1 —! —2mjvnN 1-D DFT
= > Fmn)e” N ) etimn)
y=0 w.r.tn

1-D DFT
of F(m,v)
w.r.tm

= 1D FFT: O(N-log,N)

= 2D DFT naive implementation: O(N*)

= 2D DFT as 1D FFT for each row and then for
each column

Implement IDFT as DFT

M—-1N-1 ) wm | on
DFT2 F(u,v) = ﬁ > f(m,n)e_ﬂﬂ(ﬁ"'w)
m=0 n=0
M_lN_l . um vn
ioFr2 f(m,n) = F(u,v)el 2"+
u=0 v=0
M—-1N-1 ) wmn 1 on
) fmn) = Y 3 Fruu)e 92+
u=0 v=0

= (MN) - DFT2[F*(u,v)]

14



TABLE 4.1
Summary of some
important
properties of the
2-D Fourier

Properties of 2D-DFT

Property

Fourier transform

transform. Inverse Fourier

transform

Polar
representation

Spectrum

Phase angle
Power spectrum
Average value

Translation

Expression(s)
. ”V‘ MS‘I 2/ M+ oy/N)
Flu.v) = — N Flx, e M Ny
MN 5 5
M-1 N-1

f(,r. y) - E EF(u.v)e’zT”“""” /N
W0 i-0

F(u,v) = |Fu. v)|e 7

|F(.v)| = [Ru.v) + (. v)]”2. R = Real(F) and
I = Imag(F)

$(u, v) = tan

P(u,v) = |F(u, v)}
M 1N
> >y

0 30

Flr.y) = F(0.0) = 1

flx .V)E"}WNM N F(“ = g ¥ — L‘”)
f‘()‘ —Xp Y~ ,Vu) <= Fluv)e A/ M-on/N)
When xy = 1y = M/2and y;, = v, = N/2.then
flen-1)" < F(u — M/2.v — N/2)
flx— M/2,y — N/2) & F(uv)(-1)"""

Name

DFT Pairs

1) Symmetry
properties

2) Linearity

3) Translation
(generaly

4) Translation
to center of
the frequency
rectangle,

(M/2.NI2)

5) Rotation

6) Convolution
theorem®

See Table 4.1

afi(x, y) + bfy(x, y) = aFi(u, v) + bFy(u,v)

Flx. y) 2@ Myey/N) oy 1y — uy v — )
M +uyo/N)

Flx = xo.y = yo) = Fluv)e 7

Fx.y)(—1D)*"Y < F(u — M/2.v — Nf2)
flxr = M2,y — N/2) & F(u,0)(—1)**®

F(r.6 + 6y) & Flo.¢ + 6y)

X =rcosf y=rsinf u=wcosg

Fx. y)* h(x.y) = F(u. v)H(u.v)
F(x,y)h(x,y) = F(u,v) % H(u,v)

v=wsing

(Continued)

15



Fourier
transform using
a forward

Property Expression(s)

Computation X (el .
P on S y) = FE (. v)e 2rleiu/N)

of the inverse MNf (x.5) MN ?-%] ‘2[] (w.v)

This equation indicates that inputting the function F*(u, v)
into an algorithm designed to compute the forward transform
(right side of the preceding equation) vields f*(x, y)/MN.

ers?“”“ ‘Taking the complex conjugate and multiplying this result by
algorithm MN gives the desired inverse.
1 M=T"N=1
Convolution® fleyyshey) =—=3 N f(m n)h(x — m.y — n)
MN = 35
1 M-1 N-1
Correlation” fleyyeh(xy) =—— 3 S f*mn)h(x + m,y + n)
MN m=0 n=0
Convolution Sl y)=h{x.y) = Flu.v)H(u. v):
theorem’ flx.y)h(x.y) & Flu.v)= Hu.v)
Correlation flx,y)eh(x.y) & F*(u,v)H(u, v);
theorem’ frx.yh(x.y) = Flu,v) o Huv)

duality result

outline

= why transform
= 2D Fourier transform

= properties

applications

a picture book for DFT and 2D-DFT

implementation

= discrete cosine transform (DCT)

= definition &

visualization

= implementation

16



DFT application #1: fast Convolution

Frequency domain filtering operation

. Filter Inverse
Fourier : g :
transform function Fourier
b | H(u,v) ‘ transform
F(u,v) H(u,v)F(u,v) 2
Pre- O(NZ) : Post-
processing, processing

TN Spatial filtering / T

flxy) alx, y)
= )
Input flx.y)*h(x.y) Enhanced
image image
?

DFT application #1: fast convolution

Frequency domain filtering operation

Filter Inverse

. }l:L’QFi‘”' function Fourier
ransiorm | H(u,v) ‘ transform
O(N2| NF(H. v) Hu, v)F(u,v)
1o 2 2. Post-
@ ( gZ ) O(N ) O(N IOgZN processing
f N Spatial filtering /
a(x.y)

f(x¥) .
Input focy)*hix.y) Enhanced
image image

O(N%)

17



DFT application #2: feature correlation

= Find letter “a” in the following image

The term watershed
refers to a ridge that ...

-
=
o
]
E
h=]
>
a
o
Q
£
[
=
k=

@
= v
=T £
a2e
$3 2
Sab
> —
2Ly
TEs

H =

bw = imread('text.png'); a = imread(’letter_a.png');

C = real (ifft2(£ft2(bw) .*fft2(rot90(a,2),256,256)));

thresh = .9*max(C(:)); figure, imshow(C > thresh)

from Matlab image processing demos.

DFT application #3: image filters

= Zoology of image filters
= Smoothing / Sharpening / Others

= Support in time vs. support in frequency
c.f. "FIR / IIR"

» Definition: spatial domain/frequency domain
= Separable / Non-separable

18



smoothing filters: ideal low-pass

H{u.v)

D(u.v)

abc

FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross section.

butterworth filters

H(u.v)

1

Hwv) = T D Ca, o)/ Do

abec

FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. () Filter radial cross sections of orders 1 through 4

abed

FIGURE 4.16 (a)—(d) Spatial representation of BLPFs of order 1,2.5, and 20. and correspondin
profiles through the center of the filters (all filters have a cutoff frequency of 5). Note that ringi
as a function of filter order.

gray-level
¢ increases

19



Gaussian filters

H(u,v) H(wv)

0.667

D(u,v)

abec

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c¢) Filter
radial cross sections for various values of D,.

H(u,v) = e—DQ(u,v)/ch2

low-pass filter examples
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FIGURE 4.12 (a) Original image. (b)~(f) Results of ide:

a b
cd Irequencies set al radii va
elf

power removed by these filters was 8, 54, 36,2, and 0
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smoothing filter application 1

ab

FIGURE 4.19

(a) Sample text of
poor resolution
(note broken
characters in
magnified view).
(b) Result of
filtering with a
GLPF (broken
character
segments were
joined).

text enhancement

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than the yEar
2000.

g

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than the ygEar
2000.

ea

smoothing filter application 2

abc

beautify a photo

FIGURE 4.20 (a) Original image (1028 X 732 pixels). (b) Result of filtering with a GLPF with D, = 100.
(c) Result of filtering with a GLPF with D, = 80. Note reduction in skin fine lines in the magnified sections
of (b)and (c).

21



high-pass filters

Hppp(u,v) =1~ Hppp(u,v)

Hi )
10
. .
il
S 1 D)
“ Hw v)
10
. -
‘ Diu,v)
4
Hiw vy
10
D, 1)
!

FIGURE 4.22 "Top row: Perspective plot. image representation, and cross scetion of a typical ideal highpass
filter. Middie and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

sobel operator in frequency domain

=10 1
-2| 0 2
-1] 0 1

250N 2
AN S
FIGURE 4.39 /I',',"o,:o,
(a) A spatial 2
mask and
perspective plot
of its
corresponding
. frequency domain

Question: filter. (b) Filter

shown as an

. image. (c) Result
Sobel vs. other high-pass ofierins
filters? freavancy domain
’ with the filter in
. (b). (d) Result of
Spatial vs frequency fitrin th same
domain ImpIementat|on7 spagalﬁlterin
(a). The results
are identical.
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high-pass filter examples

L & & a e £ ..

abe
FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with Do = 15, 30, and 80,
respectively. Problems with ringing are quite evident in (a) and (b).

FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with D, = 15,
30, and 80, respectively. Compare with Figs. 424 and 4.25.

abc

band-pass, band-reject filters

g
ab
cd

FIGURE 4.64

(a) Sampled
newspaper image
showing a

moiré pattern.
(b) Spectrum.
(c) Butterworth
notch reject filter
multiplied by the
Fourier
transform.

(d) Filtered
image.
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outline

= why transform

= 2D Fourier transform

= a picture book for DFT and 2D-DFT

= properties

= implementation

= applications in enhancement, correlation
= discrete cosine transform (DCT)

= definition & visualization

= implementation

Is DFT a Good (enough) Transform?
= Theory

= Implementation

= Application

24



The Desirables for Image Transforms

= Inverse transform available v
= Energy conservation (Parsevell) v
= Good for compacting energy ?
= Orthonormal, complete basis v
= (sort of) shift- and rotation invariant v

= Implementation

= Real-valued X
= Separable v
= Fast to compute w. butterfly-like structure v
= Same implementation for forward and v
inverse transform
= Application
= Useful for image enhancement v
= Capture perceptually meaningful structures v
in images
DFT vs. DCT
y = Ax
1D-DCT 1D-DFT
a(oan) = % u = O a(u,n) = e_jQﬁ%

= COS(QW%) + jsin(QTr%)
a(u,n) = %cosw u=12,...,. N—-1

real(a) imag(a)

Q

u=0 u=0 —

~ N

- AN

\ u=7 VVVVYVVV JVVVVVV

n=7

25



1-D Discrete Cosine Transform (DCT)

Z (k)= NZ: z(n)~0/(k)cos[

n=0

‘=Y

k=0

a(0) = ﬁ,a(k) = \/%

= Transform matrix A4
= a(k,n) = a(0) for k=0

Z(k)~a(k)cos|:

= a(k,n) = a(k) cos[rn(2n+1)/2N] for k>0

= Ais real and orthogonal

« rows of A form orthonormal basis

= A is not symmetric!

= DCT is not the real part of unitary DFT!

7r(2n+1)k}
2N

7(2n+ 1)k

o

T
O
v,
O
—]

=)
=)

=3
o
o
o

<)
<)

—100‘ u=0 ‘—100‘ u=0t04‘

100 100
ENNENEEE | ll__lIIi
0 =5

z<n)ﬁl}lJ ’
ﬁ

=)

0 --... omHE____ | |
-

&

Original signal ~ -1.0

_100‘ u=0ml‘,100‘ u=0105‘

1.0
oo HE____H

Z(k) g

=)

(=]
|
|
|
|

|
=)

il

=)

-100‘ u=0102‘—100‘ u=0[06‘

100 II 100 II I
o INmmE omll=_HEE

]
tlj 1o
k

5
3

-100‘ u=0to 3‘7100‘ u=0to 7‘

100 I 100 IH
0 -ii. o MEm_ |

Transform coeff.
Basis vectors

Reconstructions
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DFT and DCT in Matrix Notations

Matrix notation for 1D transform y= Az, z= A"y

1D-DCT 1D-DFT
[1 = IV
a(0,n) = Ny u=0 au,n) _e Qﬁm) ”(2“%
= CoSs TFW — Jsin ﬂ-ﬁ
2 7a(2n4+ 1lu
a(u,n) = /—cos

N 2N
w=1,2,...,N—1

N=32 A

From 1D-DCT to 2D-DCT

| .n=7 _Eﬁﬂﬁﬂﬁﬁ

= Rows of A form a set of orthonormal basis
= A is not symmetric!
= DCT is not the real part of unitary DFT!
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basis images: DFT (real) vs DCT

=S==nTEEn
EE
SS=mmEimn
e R
e o,
s 2 0 26000 0 4
g A A

W L

-
2
s__mwmm
mm -

N
NN

=
i

Periodicity Implied by DFT and DCT

b

FIGURE 8.32 The periodicity implicit in the 1-D {a) DFT and (b) DCT.
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DFT and DCT on Lena

Shift low-freq
to the center

Assume periodic and zero-padded ... Assume reflection ...

Using FFT to implement fast DCT

= Reorder odd and even elements

{Z(n) =z(2n)

N forOSnSE—l
Z(N-n-1)=z(12n+1) 2

= Split the DCT sum into odd and even terms

~ N/2-1 . T(4n+ k| & _ 7 (4n +3)k
Z(k)—a(k){ Z‘a z(2n) - cos [721\] }+ Z‘a z(2n +1) - cos [721\/ H
N/2-1 N/2-1
= a(k){ ga Z(n)-cos [W}+ ;) Z(N —n—-1)-cos {W}}
_ NEH L ) w(4n+ 1k &L, ) (4N —4n'-1)k
= a(k){ nZ::O Z(n)-cos [721\/ }+nvzmz(n ) - cos [—ZN }}

= a(k)ﬁlz(n)fos {77[(4;1: Dk}: Re| ar (k)e /™2 Nz_lf(n)~e’j2”"km:|

= Re[a(k)e ™ >Y DFT {z(m)}, ]
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The Desirables for Image Transforms

= Theory DFT DCT ???

= Implementation

= Inverse transform available

= Energy conservation (Parsevell)

= Good for compacting energy

= Orthonormal, complete basis

= (sort of) shift- and rotation invariant

AENEENEN

Real-valued
Separable
Fast to compute w. butterfly-like structure

Same implementation for forward and
inverse transform

N N S RN

SNENEN

= Application

= Useful for image enhancement

= Capture perceptually meaningful structures
in images

SNEN

Summary of Lecture 5

Why we need image transform
DFT revisited
= Definitions, properties, observations, implementations, applications
What do we need for a transform
DCT

Coming in Lecture 6:
= Unitary transforms, KL transform, DCT
= examples and optimality for DCT and KLT, other transform flavors,
Wavelets, Applications
Readings: G&W chapter 4, chapter 5 of Jain has been posted on
Courseworks

“Transforms” that do not belong to lectures 5-6:
Rodon transform, Hough transform, ...
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