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= HW clarification

= HW#2 problem 1
= Show: f- V2f =~ Af— B blur(f)

= A and B are constants that do not matter, it is up to you
to find appropriate values of A and B, as well as the
appropriate version of the blur function.

= Recap for lecture 4
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the return of DFT

= Fourier transform: a continuous WWWWAMVVAANN

signal can be represented as a SATATAVAVAVAVAVAVAVAVAYAL
(countable) weighted sum of VAVAVAVAVAVAN

sinusoids.

FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.



warm-up brainstorm

= Why do we need image transform?
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why transform?

Better image processing
= Take into account long-range correlations in space

= Conceptual insights in spatial-frequency information.
what it means to be “smooth, moderate change, fast change, .

Fast computation: convolution vs. multiplication ,, ‘

Alternative representation and sensing

= Obtain transformed data as measurement in radiology images
(medical and astrophysics), inverse transform to recover image

Efficient storage and transmission
= Energy compaction
= Pick a few “representatives” (basis)

= Just store/send the “contribution” from each baS|s



outline

= Why transform

= 2D Fourier transform
= a picture book for DFT and 2D-DFT
= properties
= implementation
= applications

= discrete cosine transform (DCT)
» definition & visualization
=« Implementation

next lecture: transform of all flavors, unitary
transform, KLT, others ...



1-D continuous FT

—912TWT

g(wz) = e
>C f(x)e—jQWwa:

=7l

real(g(wx)) imag(g(wx))
= 1D — DFT of length N

o =0

F(u) =y Z f(n)e_m”” N N

N




1-D DFT in as basis expansion

—]2wun

F(u) =% z f(n)e

Forward transform
1 N-1

y(u)—\/—zw(n)a(un)

U=0 \J \ b % \J J %

Inverse transform e e
2(n) — 1 Nzly(u)b(u n) W N
VN = \VAVAVEAVAVAVAE

basis \VAVAVAVAVANAVAVAVAVA
—j2m \NANAN AN
cos(2r—2) — jsin(2r-2)  u=7 \NANVVY AN

a(u,n)




1-D DFT In matrix notations

1 N-—1
y(u) = N & Z z(n)a(u,n)
a(u,n) e I2TN

608(27'('—) — ]8’1,?’1,(27'('—)

real(A) imag(A)
u=20,1,....,. N -1 =0 ——————
VM\

. NN AAN

N

-
-
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1-D DFT of different lengths

y = Ax a(u,n) = e_jzﬂ-% v=0,1,...,N—-1
r = A_ly = COS(QT(‘%) — jsin(QW%)
real(A) imag(A)

N=16

N=64




performing 1D DFT

. umn
—J2T

x(n) a(u,n) =e
VAR
-

real-valued input

real(y) = real(A) xx  imag(y) = imag(A) * x
- -

Note: the coefficients in x and y on this slide are only meant for illustration purposes, which are not numerically accurate.



another illustration of 1D-DFT

real(A'(3))

x(n) y = Ax

AVAR
'

real-valued input

imag(A'()) v

- 5z

x(n)a(u,n)

. :
real(y(u))
imag(y(u))

Note: the coefficients in x and y are not numerically accurate



from 1D to 2D

1 N-1

p— \/—N nz::O :p(n)a(u, n)

y = Ax

2D
z(m,n)
CL(’LL, U, m? n)

o—32m(SP+ )

y(u,v)
;] M—1N-1

= = > Y xz(m,n)alu,v,m,n)

m=0 n=0

?



Computing 2D-DFT

M—-1N-1 . .
—j92mTum —j2mun
oFT  y(u,v) :ﬁ Y > z(m,n)e M e N
m=0 n=0
M—-1N-1

J2Tum  j2mun

> Y ylu,v)e M e N

u=0 v=0

IOFT  z(m,n)

= Discrete, 2-D Fourier & inverse Fourier transforms are implemented
in ££t2 and 1 ££t2, respectively

= fftshift: Move origin (DC component) to image center for display

= Example:
>> I = imread(‘test.png’); .
>> F = fftshift (FFt2(1)); g
>> imshow (log(abs(F)), []); '_;¥E_'
>> imshow (angle (F), []); e



2-D Fourier basis

real e—jQW(%-I-%) imag e—jQW(%‘F%)
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2-D FT illustrated

real-val _ um_| vn
eal-valued au,v,m,n) = e 72r (A5
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notes about 2D-DFT

Output of the Fourier transform is a complex number

= Decompose the complex number as the magnitude and phase
components

In Matlab: v = real(z), v = imag(z), r = abs(z), and
theta = angle(z)

Some useful FT pairs:
Impulse alx,y) = 1
Gaussian AV2moe T Y) o pelivl)2s
sin(7ua) sin(wvh)
Rectangle rect[a. b] < ab (zua)  (m0D) Jm(ua+vh)
Cosine cos(2mupx + 2mvpy) <
%[ﬁ{u + to, v + ) + S(u — uy, v — )]
Sine sin(27ugx + 2mwvpy) <
j% [6(u + g, v + vy} — 6(u — up. v — vy)]

" Assumes that functions have been extended by zero padding.



Explaining 2D-DFT
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|fft2 M FIGURE 4.2 (a) A
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(b} its Fourier
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FIGURE 4.36 Left:
convolution of
two discrete
functions. Right:
convolution of the
same functions,
taking into
account the
implied
periodicity of the
DFT. Note in (j)
how data from
adjacent periods
corrupt the result
of convolution.

circular convolution and zero padding
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FIGURE 4.37
Result of
performing

1 convolution with
extended
functions.
Compare
Figs. 4.37(e) and
4.36(e).
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zero padded filter and response

abc
de f

gh

FIGURE 4.36
(a)An M X N
image, f.

(b) Padded image,
fpolsize P X Q.
(c) Result of
multiplying f, by
(_ l )x+}-

(d) Spectrum of
F,. (e) Centered
Gaussian lowpass
filter, H. of size

P < Q.

(f) Spectrum of
the product HF,,.
(g) 8, the product
of (—1)*"¥ and
the real part of
the IDFT of HF,.
(h) Final result, g,
obtained by
cropping the first
M rows and N
columns of g,.




zero padded filter and response
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FIGURE 4.39 Padded lowpass filter is the spatial domain {only the real part is shown).

FIGURE 4.40 Result of filtering with padding. The image is usually cropped to its
original size since there is little valuable information past the image boundaries.



observation 1: compacting energy
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ab

FIGURE 4.11 (a) An image of size 500 x 500 pixels and (b) its Fourier spectrum. The
superimposed circles have radii values of 5, 15, 30, 80, and 230, which enclose 92.0),
04.6,96.4,98.0, and 99.5% of the image power, respectively.
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a b FIGURE 4.12 (a) Original image. (b)-(f) Results of ideal lowpass filtering with cutoff | | | | | | I | I Sy

C
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d frequencies set at radii values of 5. 15, 30, 80, and 230, as shown in Fig. 4.11(b). The
[ power removed by these filters was 8,5.4,3.6,2, and 0.5% of the total, respectively.
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observation 2: amplitude vs. phase

abc
de f

FIGURE 4.27 (a) Woman. (b) Phase angle. (¢c) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.

= Amplitude: relative prominence of sinusoids
= Phase: relative displacement of sinusoids



another example: amplitude vs. phase

A = “Aron”

P = “Phyllis”

FA = fft2(A) FP = fft2(P)

log(abs(FA)) log(abs(FP))
angle(FA) angle(FP)

ifft2(abs(FA), angle(FP)) ifft2(abs(FP), angle(FA))

Adpated from http://robotics.eecs.berkeley.edu/~sastry/ee20/vision2/vision2.html



fast implementation of 2-D DFT

= 2 Dimensional DFT is separable

M—-1N-1 : .
1 —2mjum —2mjun
F(u,v) = Z Z f(m,n)e” M e N
=0 y=
M-—1 : :
1 —2mjum 1-D DFT
= e s Z F(m,n)e™ V") o f(m,n)
=0 - w.r.tn

1-D DFT

of F(m,v) 0] A
w.r.t m >€\/ﬁ
= 1D FFT: O(N-log,N) (2 O
= 2D DFT naive implementation: O(N*)

= 2D DFT as 1D FFT for each row and then for
each column




DFT2

IDFT2

Implement IDFT as DFT

M—-1N-1 _ wm . on
F(u,v) :ﬁ Z Z (m,n)e_]QW(W_l_W)

M N . um on
fm,n) = 3 Z F(u,v)el 2" T

u=0 v=0

M—-1N-1 . wm | on
frimon) = 30 3 F(u,v)e 2GR

u=0 v=0

(MN) - DFT2[F*(u,v)]



TABLE 4.1
Summary of some
important
properties of the
2-D Fourier
transform.

Properties of 2D-DFT

Property Expression(s)
| M 1N _ ) .
Fourier transform  F(u, v) = T > D f(x, y)e Prux/Mtey/N)
L e
[nverse Fourier P . .
- e — W il /M oy /N
transtorm f(x.5) HZ/] Zf]F(“‘ RIE
Polar F(u, v) = |F(u, v)|e#"v)
representation
Spectrum w, v)| = [R¥(u,v) + I*(u.v)]"*. R = Real(F)and
Spect F R? I '
I = Imag(F)
PI 1 f [ A )
hase angle b(u, v) = tan
c ally (J[: :] Te R[:“ 2,‘:]
Power spectrum  P(u. ) = |F(u, v)[
B | M 1IN
Average value f(x,y) = F(0,0) = i S D f(xy)
=0 -0

Translation

f (. y)eP M mIN) o Bl — uy, v — u)
f(x - Xp. ¥V — J"[J) = Flu,v)e Rluzy/ M+ v/ N)
When xy = uy = M /2 and y; = v, = N/2.then
flx. (-1)"7"<= Flu - M/2.v - N/2)

flx = M/2,y — N/2) = F(u,v)(-1)"""




Name

DFT Pairs

1) Symmeltry
properties

2) Linearity

3) Translation
{general)

4) Translation
to center of
the frequency
rectangle,

(M2, NI2)

5) Rotation

6) Convolution
theorem'

See Table 4.1

afi(x,v) + bfa(x, v) & aFj(u, v) + bF(u. v)
2 (wgx/ M + ¥/ N) = F(u — Up. v — V)
—j2m(txg/M +vy/N)

f(x.y)e’
flx = xp.y — yo) & F(u.v)e

flx. y) (1)Y= F(u — M/2.v — N/2)
flx — M/2,y — N/2) = F(u.v)(—1)**"

f(r.0 + 6y) = Flw. ¢ + )

x=rcosf y=rsinf u=wcose ¥=wsing
f(x, y)*,h(x, y) = F(u, v)H(u,v)

f(x, y)h(x, y) = F(u, v) % H(u,v)

(Continued)




Property Exprcssiun{s}

M-1 N

Computation 1 : f
. ) 4 , jjT[Jf.[f.H v N
of the inverse un | xy) f;] ?ZUF u. v)
Fuunqur _ This equation m{hcaus that inputting the function F*{u, v)
translorm using — jng an algorithm designed to compute the forward transform duahw result
a forward (right side of the preceding equation) vields f*(x, y)/MN.
Aiiiiefan Taking the complex conjugate and multiplying this result by
algorithm MN gives the desired inverse.
_ | M1 N1
Convolution® flx.y)=h{x.y) = N Z N f(m.n)h(x — m.y — n)
0 n=0
. | M1 1
Correlation’ flx.y)eh(x.y) = —— E Ef (m,n)h(x + m,y + n)
MN 0 n=0
Convolution flx,y)y=h(x.y) < Flu.v)H(u, v):
theorem’ flx, y)h(x, v) < Flu,v)+ H(u. v)
Carrelation flx,y)eh{x.y) = F*(u,v)H(u.v);
theorem’ Al v)h(x,y) < Flu,v) e H(u.v)




outline

= Why transform

= 2D Fourier transform
= a picture book for DFT and 2D-DFT
= properties
= implementation
= applications

= discrete cosine transform (DCT)
=« definition & visualization
= implementation



DFT application #1: fast Convolution

Frequency domain filtering operation

Pre-
processing

f(x.y)

[nput
image

Filter
function
H(u,v)

Fourier
transform

F(u.v)

O(N2)

H(u.v)F(u,v) 5

Inverse
Fourier
transform

Spatial filtering
f(x.y)*h(x.y)

=

?

g(x.y)
Enhanced
image



DFT application #1: fast convolution

Pre-

f(x.y)

[nput
image

Frequency domain filtering operation

processing,

Filter
function
H(u,v)

Fourier
transform

F(u.v)

O(N?-log,N) O(N2)

H(u.v)F(u,v)

Inverse
Fourier
transform

O(N?-log,N

Spatial filtering
f(x.y)*h(x.y)

=

O(N%)

g(x,y)
Enhanced
image



DFT application #2: feature correlation

= Find letter “a” in the following image

The term watershed
refers to aridge that ...
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bw = imread('text.png'); a = imread(’letter_a.png');

C = real (ifft2(fft2(bw) .*fft2(rot90(a,2),256,256)));

thresh = .9*max(C(:)); figure, imshow(C > thresh)

from Matlab image processing demos.



DFT application #3: image filters

= Zoology of image filters
= Smoothing / Sharpening / Others

= Support in time vs. support in frequency
c.f. "FIR / IIR”

= Definition: spatial domain/frequency domain
= Separable / Non-separable
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smoothing filters: ideal low-pass

Hiu. v) Hiu,v)

e D, v)

8- biic

FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displaved as an
image. (¢) Filter radial cross section.



butterworth filters

H(u.v)
1.0

1
1+ [D(u,v)/Dgl?™

H(u,v) =

v 05

= D(u, v)

alibile

FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross sections of orders 1 through 4.

% N Vi
e e [

FIGURE 4.16 (a)-(d) Spatial representation of BLPFs of order 1,2, 5, and 20, and corresponding gray-level
profiles through the center of the filters (all filters have a cutoff frequency of 5). Note that ringing increases
as a function of filter order.



Gaussian filters

Hiu, v) Hu.v)
i
1.0

0.667

abc

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. {(b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D,,.

H(’LL,’U) — e—DQ(u,’l))/QO'Q
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FIGURE 4.18 (a) Original image. (b)—{f) Results of filtering with Gaussian lowpass
filters with cutoll frequencies sel at radii values of 5, 15, 30, 80, and 230, as shown in

Fig. 4.11(b). Compare with Figs. 4.12 and 4.15.
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a b FIGURE 4.15 (a) Original image. (b)—(1) Results of fillering with BLPFs of order 2,
cd with cutoff frequencies at radii of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b).
e [ Compare with Fig. 4.12.

a b FIGURE 4.12 (a) Original image. (b)—(f) Results of ideal lowpass filtering with cutoff
¢ d frequencies set at radii values of 5. 15, 30, 80, and 230, as shown in Fig. 4.11(b). The
¢ [ power removed by these filters was 8.5.4,3.6.2, and 0.5% of the total, respectively.



smoothing filter application 1

ab

FIGURE 4.19

(a) Sample text of
poor resolution
(note broken
characters in
magnified view).
{b) Result of
filtering with a
GLPF (broken
character
segments were
joined).

text enhancement

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than ﬂ@r
2000.

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than tlﬁr
2000.

o

=




smoothing filter application 2

beautify a photo

aiibic

FIGURE 4.20 (a) Original image (1028 X 732 pixels). (b) Result of filtering with a GLPF with D, = 100.
(c) Result of filtering with a GLPF with D, = 80. Note reduction in skin fine lines in the magnified sections
of (b) and (c).



high-pass filters

Hypp(u,v) =1— Hppp(u,v)

Hiu, v)
Hu,v) Lor
. +
NN
Diu, v
" Ty  v)
u
Hiu,v)
10
. e
D, v
[
Hin, v)
L0
¥ . —
.". :u'
Diu, v)

blc
e f
hi

[l =T}

FIGURE 4.22 Top row: Perspective plot, image representation. and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



sobel operator in frequency domain

-11 0 1
=210 2
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ab
cd

FIGURE 4.39

(a) A spatial
mask and
perspective plot
of its
corresponding
frequency domain

Question: filter. (b) Filter

shown as an

. image. (c) Result
Sobel vs. other high-pass ofitering
. Fig.4.38(a) in the
fl Ite rs? frfequency don?ain
with the filter in
. (b). (d) Result of
Spatial vs frequency Hierng the same
domain implementation? spaial fter i
are identical.




high-pass filter examples

%
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FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with Dy = 15, 30, and 80,
respectively. Problems with ringing are quite evident in {a) and (b).

aehilc

FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with D, = 13,
30. and 80, respectively. Compare with Figs. 4.24 and 4.25.



band-pass, band-reject filters

ab
cd

FIGURE 4.64

(a) Sampled
newspaper image
showing a

moiré pattern.
(b) Spectrum.

(c) Butterworth
notch reject filter
multiplied by the
Fourier
transform.

(d) Filtered
image.




outline

= Why transform

= 2D Fourier transform
= a picture book for DFT and 2D-DFT
= properties
= implementation
= applications in enhancement, correlation

= discrete cosine transform (DCT)
=« definition & visualization
= implementation



Is DFT a Good (enough) Transform?
= Theory

= Implementation

= Application



The Desirables for Image Transforms

= Inverse transform available

= Energy conservation (Parsevell)

= Good for compacting energy

= Orthonormal, complete basis

= (sort of) shift- and rotation invariant

= Implementation
= Real-valued
= Separable
= Fast to compute w. butterfly-like structure
= Same implementation for forward and
inverse transform
= Application
= Useful for image enhancement

= Capture perceptually meaningful structures
in Images

ENRNEIENEN

SNENEN

< S



| 2
—cos
N

DFT vs. DCT
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y = Ax
1D-DFT
u = a(u,n) =
m@nt+ v =12 . . N—-1
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1-D Discrete Cosine Transform (DCT)

Z (k)= 2 z(n)-a(k)cos _7[(2;; l)k_
20 = Z Z (k) -a (k) cos _”(zg;l)k

a(0) = —a(k) \/7

= Transform matrix A
= a(k,n) = a(0) for k=0
« a(k,n) = a(k) cos[n(2n+1)/2N] for k>0

= A s real and orthogonal
= rows of A form orthonormal basis
= A is not symmetric!
= DCT is not the real part of unitary DFT!



1-D DCT

T "ol
0.0 (mllllll , IHHHNEEN Ol.ii. I

l II I -1.0 -1.0 -100 u=0 -100 u=0to4
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Transform coeff.
Basis vectors Reconstructions



DFT and DCT in Matrix Notations

Matrix notation for 1D transform Y= Az, © = A_ly

1D-DCT 1D-DFT
1

CL(O,’I’L) — N u=0 a(u,n)

2 a(2n+ 1Du
a(u,n) = N0 SN
u=1,2,...,.N—1

N=32 A

. un
e—] 27TW

un un
20y _ isin(2n il
cos( 7rN) jsin( 7TN)




From 1D-DCT to 2D-DCT

% ¢ 4 & & 2 J

u
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N
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= Rows of A form a set of orthonormal basis
= A is not symmetric!
= DCT is not the real part of unitary DFT!
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basis images: DFT (real) vs DCT
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Periodicity Implied by DFT and DCT

Discomtinuity

Boundary
points

FIGURE 8.32 The periodicity implicit in the 1-D {a) DFT and (k) DCT.



DFT and DCT on Lena

DFT2 DCT2

Shift low-freq
to the center

Assume periodic and zero-padded ... Assume reflection ...



Using FFT to implement fast DCT

s Reorder odd and even elements

{Z(n) = z(2n)

N forOSnSﬁ—l
Z(N-n-1)=z12n+1) 2

= Split the DCT sum into odd and even terms

Z(k)=a'(k){Nﬁ1z(2n)-cos{ﬂ(4;;1)k}+lvﬁ1z(2n+1)-cos{ﬂ(4;; 3)k}}
n=0 n=0
AN r4n+ Dk ] MG {75(4n+3)k}}
= a(k ~ - N-n-1)-
( ){ 2 Z(n) COS_ N ZB Z(N —n—1)-cos T
_ Glo, o mén+ D] S L Z(4N —4n'-1k
_a'(k){ ;) Z(n) cos_ N _+n'§/2z(n) cos{ T }}

N -1
7Z'(4n+1)k}:Re a(k)e—jﬁk/ZNZ Z(n).e—jZEnk/N
ZfV n=0

= Re |a(k)e ™Y DFT {z(n)}, |

= a'(k)NZIZ(n)-cos[



The Desirables for Image Transforms

= Inverse transform available

= Energy conservation (Parsevell)

= Good for compacting energy

= Orthonormal, complete basis

= (sort of) shift- and rotation invariant

= Implementation
= Real-valued
= Separable
= Fast to compute w. butterfly-like structure
= Same implementation for forward and
inverse transform
= Application
= Useful for image enhancement

= Capture perceptually meaningful structures
in Images
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Summary of Lecture 5

Why we need image transform
DFT revisited
= Definitions, properties, observations, implementations, applications
What do we need for a transform
DCT

Coming in Lecture 6:
=« Unitary transforms, KL transform, DCT

= examples and optimality for DCT and KLT, other transform flavors,
Wavelets, Applications

Readings: G&W chapter 4, chapter 5 of Jain has been posted on
Courseworks

“Transforms” that do not belong to lectures 5-6:
Rodon transform, Hough transform, ...



"GIVEN A SiGHAL WITH
A 2-Hz BANDWAGON,
THE NYGUIL
FREGUENCY MUST BE
1-Hz To AVOD ALENNG
OF THE FURRER
TRANSFORMER.”
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