Image Transforms and Image Enhancement in Frequency Domain

Lecture 5, Feb 25th, 2008
Lexing Xie

EE4830 Digital Image Processing
http://www.ee.columbia.edu/~xlx/ee4830/

- HW clarification
- HW\#2 problem 1
- Show: $\mathrm{f}-\nabla^{2} \mathrm{f} \approx \mathrm{Af}-\mathrm{B}$ blur(f)
- A and B are constants that do not matter, it is up to you to find appropriate values of A and B, as well as the appropriate version of the blur function.
- Recap for lecture 4

roadmap

$$
\begin{aligned}
& e^{-j 2 \pi \frac{u n}{N}} \\
& e^{-j 2 \pi\left(\frac{u m}{N}+\frac{v n}{N}\right)}
\end{aligned}
$$

- 2D-DFT definitions and intuitions
- DFT properties, applications
- pros and cons
- DCT

the return of DFT

- Fourier transform: a continuous signal can be represented as a (countable) weighted sum of sinusoids.

warm-up brainstorm

- Why do we need image transform?

why transform?

- Better image processing
- Take into account long-range correlations in space
- Conceptual insights in spatial-frequency information. what it means to be "smooth, moderate change, fast change, ..."
- Fast computation: convolution vs. multiplication
- Alternative representation and sensing

- Obtain transformed data as measurement in radiology images (medical and astrophysics), inverse transform to recover image
- Efficient storage and transmission
- Energy compaction
- Pick a few "representatives" (basis)

- Just store/send the "contribution" from each basis

outline

- why transform
- 2D Fourier transform
- a picture book for DFT and 2D-DFT
- properties
- implementation
- applications
- discrete cosine transform (DCT)
- definition \& visualization
- Implementation
next lecture: transform of all flavors, unitary transform, KLT, others ...

1-D continuous FT

- 1D - FT

$$
F(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-j 2 \pi \omega x}
$$

$$
g(\omega x)=e^{-j 2 \pi \omega x}
$$

- 1D - DFT of length N

1-D DFT in as basis expansion

$F(u)=\frac{1}{N} \sum_{n=0}^{N-1} f(n) e^{\frac{-j 2 \pi u n}{N}}$
Forward transform
$y(u)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) a(u, n)$
Inverse transform

$$
x(n)=\frac{1}{\sqrt{N}} \sum_{u=0}^{N-1} y(u) b(u, n)
$$

basis

$$
\begin{aligned}
a(u, n) & =e^{-j 2 \pi \frac{u n}{N}} \\
& =\cos \left(2 \pi \frac{u n}{N}\right)-j \sin \left(2 \pi \frac{u n}{N}\right)
\end{aligned}
$$

1-D DFT in matrix notations

$y(u)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) a(u, n)$

$$
a(u, n)=e^{-j 2 \pi \frac{u n}{N}}
$$

$$
=\cos \left(2 \pi \frac{u n}{N}\right)-j \sin \left(2 \pi \frac{u n}{N}\right)
$$

$$
u=0,1, \ldots, N-1
$$

$$
y=A x
$$

$$
x=A^{-1} y
$$

1-D DFT of different lengths

$$
\begin{array}{rl}
y=A x & a(u, n) \\
y=A^{-1} y & \\
x=\cos \left(2 \pi \frac{u n}{N}\right)-j \sin \left(2 \pi \frac{u n}{N}\right)
\end{array}
$$

imag(A)

performing 1D DFT

another illustration of 1D-DFT

from 1D to 2D

$$
\begin{array}{cc}
1 \mathrm{D} & 2 \mathrm{LD} \\
x(n) & x(m, n) \\
a(u, n) & a(u, v, m, n) \\
e^{-j 2 \pi \frac{u n}{N}} & e^{-j 2 \pi\left(\frac{u m}{N}+\frac{v n}{N}\right)} \\
y(u) & =\frac{1}{N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} x(m, n) a(u, v, m, n) \\
y=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) a(u, n) & y(u, v) \\
y &
\end{array}
$$

Computing 2D-DFT

$$
\begin{aligned}
& \text { DFT } \quad y(u, v)=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} x(m, n) e^{\frac{-j 2 \pi u m}{M}} e^{\frac{-j 2 \pi v n}{N}} \\
& \text { IDFT } x(m, n)=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} y(u, v) e^{\frac{j 2 \pi u m}{M}} e^{\frac{j 2 \pi v n}{N}}
\end{aligned}
$$

- Discrete, 2-D Fourier \& inverse Fourier transforms are implemented in $f f t 2$ and ifft2, respectively
- fftshift: Move origin (DC component) to image center for display
- Example:

```
>> I = imread('test.png');
>> F = fftshift(fft2(I));
>> imshow(log(abs(F)),[]);
>> imshow(angle(F),[]);
```

\% Load grayscale image
\% Shifted transform
\% Show log magnitude
\% Show phase angle

2-D Fourier basis

2-D FT illustrated

real-valued
$x(m, n)$

CRED \rightarrow

notes about 2D-DFT

- Output of the Fourier transform is a complex number
- Decompose the complex number as the magnitude and phase components
- In Matlab: $u=r e a l(z), v=i m a g(z), r=a b s(z)$, and theta $=$ angle(z)

Some useful FT pairs:

```
Impulse
\(\delta(x, y) \Leftrightarrow 1\)
Gaussian
\[
A \sqrt{2 \pi} \sigma e^{-2 \pi^{2} \sigma^{2}\left(x^{2}+y^{2}\right)} \Leftrightarrow A e^{-\left(u^{2}+v^{2}\right) / 2 \sigma^{2}}
\]
\[
\text { Rectangle } \quad \operatorname{rect}[a, b] \Leftrightarrow a b \frac{\sin (\pi u a)}{(\pi u a)} \frac{\sin (\pi v b)}{(\pi v b)} e^{-j \pi(u a+v b)}
\]
Cosine
\[
\cos \left(2 \pi u_{0} x+2 \pi v_{0} y\right) \Leftrightarrow
\]
\[
\frac{1}{2}\left[\delta\left(u+u_{0}, v+v_{0}\right)+\delta\left(u-u_{0}, v-v_{0}\right)\right]
\]
Sine
\[
\begin{aligned}
& \sin \left(2 \pi u_{0} x+2 \pi v_{0} y\right) \Leftrightarrow \\
& j \frac{1}{2}\left[\delta\left(u+u_{0}, v+v_{0}\right)-\delta\left(u-u_{0}, v-v_{0}\right)\right]
\end{aligned}
\]
```

${ }^{\dagger}$ Assumes that functions have been extended by zero padding.

Explaining 2D-DFT

circular convolution and zero padding

FIGURE 4.36 Left: convolution of
two discrete functions Right: convolution of the same functions, taking into account the implied periodicity of the DFT. Note in (j) how data from how data from
adjacent periods adjacent periods corrupt the resu
of convolution.

zero padded filter and response

zero padded filter and response

FIGURE 4.39 Padded lowpass filter is the spatial domain (only the real part is shown).

FIGURE 4.40 Result of filtering with padding. The image is usually cropped to its original size since there is little valuable information past the image boundaries.

observation 1: compacting energy

a b
FIGURE 4.11 (a) An image of size 500×500 pixels and (b) its Fourier spectrum. The superimposed circles have radii values of $5,15,30,80$, and 230 , which enclose 92.0 , $94.6,96.4,98.0$, and 99.5% of the image power, respectively.

[^0]
observation 2: amplitude vs. phase

a blc
FIGURE 4.27 (a) Woman. (b) Phase angle. (c) Woman reconstructed using only the phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction using the phase angle corresponding to the woman and the spectrum corresponding to the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the spectrum of the woman.

- Amplitude: relative prominence of sinusoids
- Phase: relative displacement of sinusoids

another example: amplitude vs. phase

fast implementation of 2-D DFT

- 2 Dimensional DFT is separable

$$
\begin{aligned}
& F(u, v)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(m, n) e^{\frac{-2 \pi j u m}{M}} e^{\frac{-2 \pi j v n}{N}} \\
& =\frac{1}{M} \sum_{x=0}^{M-1} e^{\frac{-2 \pi j u m}{M}} \cdot\left(\frac{1}{\mathrm{~N}} \sum_{y=0}^{N-1} f(m, n) e^{\frac{-2 \pi j v n}{N}} \begin{array}{l}
1-\mathrm{D} \text { DFT } \\
\text { of } \mathrm{f}(\mathrm{~m}, \mathrm{n}) \\
\text { w.r.t } \mathrm{n}
\end{array}\right. \\
& =\left.\frac{1}{M} \sum_{x=0}^{M-1} e^{\frac{-2 \pi j u m}{M}} F(m, v)\right|_{\substack{1-\mathrm{D} \text { DFT } \\
\text { of } \mathrm{F}(\mathrm{~m}, \mathrm{v})}} \\
& \text { - 1D FFT: O(N. } \left.\log _{2} \mathrm{~N}\right) \\
& \text { - 2D DFT naïve implementation: O(N }{ }^{4} \text {) } \\
& \text { - 2D DFT as 1D FFT for each row and then for } \\
& \text { each column }
\end{aligned}
$$

Implement IDFT as DFT

$$
\begin{aligned}
\text { DFT2 } \quad F(u, v) & =\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) e^{-j 2 \pi\left(\frac{u m}{M}+\frac{v n}{N}\right)} \\
\text { IDFT2 } f(m, n) & =\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j 2 \pi\left(\frac{u m}{M}+\frac{v n}{N}\right)} \\
\square f^{*}(m, n) & =\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^{*}(u, v) e^{-j 2 \pi\left(\frac{u m}{M}+\frac{v n}{N}\right)} \\
& =(M N) \cdot \operatorname{DT} 2\left[F^{*}(u, v)\right]
\end{aligned}
$$

Properties of 2D-DFT

TABLE 4.1

Summary of some important properties of the 2-D Fourier transform.

Property	Expression(s)
Fourier transform	$F(u, v)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi(u x / M+v y / N)}$
Inverse Fourier transform	$f(x, y)=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j 2 \pi(u x / M+v y / N)}$
Polar representation	$F(u, v)=\|F(u, v)\| e^{-j \phi(u, v)}$
Spectrum	$\|F(u, v)\|=\left[R^{2}(u, v)+I^{2}(u, v)\right]^{1 / 2}, \quad \begin{aligned} & R=\operatorname{Real}(F) \text { and } \\ & \\ & I=\operatorname{Imag}(F) \end{aligned}$
Phase angle	$\phi(u, v)=\tan ^{-1}\left[\frac{I(u, v)}{R(u, v)}\right]$
Power spectrum	$P(u, v)=\|F(u, v)\|^{2}$
Average value	$\bar{f}(x, y)=F(0,0)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)$
Translation	$\begin{aligned} & f(x, y) e^{j 2 \pi\left(u_{0} x / M+v_{0} y / N\right)} \Leftrightarrow F\left(u-u_{0}, v-v_{0}\right) \\ & f\left(x-x_{0}, y-y_{0}\right) \Leftrightarrow F(u, v) e^{-j 2 \pi\left(u x_{0} / M+v y_{0} / N\right)} \\ & \text { When } x_{0}=u_{0}=M / 2 \text { and } y_{0}=v_{0}=N / 2 \text {, then } \\ & f(x, y)(-1)^{x+y} \Leftrightarrow F(u-M / 2, v-N / 2) \\ & f(x-M / 2, y-N / 2) \Leftrightarrow F(u, v)(-1)^{u+v} \end{aligned}$

Property	Expression(s)		
Computation of the inverse	$\frac{1}{M N} f^{*}(x, y)=\frac{1}{M N} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^{*}(u, v) e^{-j 2 \pi(u x / M+v y / N)}$ Fourier transform using a forward transform algorithm		This equation indicates that inputting the function $F^{*}(u, v)$
:---			
(right side of the preceding equation) yields $f^{*}(x, y) / M N$.			
Taking the complex conjugate and multiplying this result by			
$M N$ gives the desired inverse.			

duality result

outline

- why transform
- 2D Fourier transform
- a picture book for DFT and 2D-DFT
- properties
- implementation
- applications
- discrete cosine transform (DCT)
- definition \& visualization
- implementation

DFT application \#1: fast Convolution

Frequency domain filtering operation

DFT application \#1: fast convolution

Frequency domain filtering operation

DFT application \#2: feature correlation

- Find letter "a" in the following image

DFT application \#3: image filters

- Zoology of image filters
- Smoothing / Sharpening / Others
- Support in time vs. support in frequency c.f. "FIR / IIR"
- Definition: spatial domain/frequency domain
- Separable / Non-separable

smoothing filters: ideal low-pass

a b c
FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displayed as an image. (c) Filter radial cross section.

butterworth filters

$$
H(u, v)=\frac{1}{1+\left[D(u, v) / D_{0}\right]^{2 n}}
$$

a b c
FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an image. (c) Filter radial cross sections of orders 1 through 4.

a b c d
FIGURE 4.16 (a)-(d) Spatial representation of BLPFs of order 1,2,5, and 20, and corresponding gray-level profiles through the center of the filters (all filters have a cutoff frequency of 5). Note that ringing increases as a function of filter order.

Gaussian filters

a b c
FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter radial cross sections for various values of D_{0}.

$$
H(u, v)=e^{-D^{2}(u, v) / 2 \sigma^{2}}
$$

low-pass filter examples

FIGURE 4.18 (a) Original image. (b)-(f) Results of filtering with Gaussian lowpass
filters with cutoff frequencies set at radiii values of $5,15,30,80$ and 230 , as shown in filters with cutoff frequencies set at radiii values of $5,15,30,80$, and 230 , as shown in
Fig. 4.11 (b). Compare with Figs. 4.12 and 4.15 .

FIGURE 4.15 (a) Original image. (b)-(f) Results of filtering with BLPFs of order 2, FIGURE 4.15 (a) Original image. (b)-(f) Results of filtering with BLPFs of order 2,
with cutoff frequencies at radii of $5,15,30,80$, and 230 , as shown in Fig. 4.11 (b). Compare with Fig. 4.12.

[^1]
smoothing filter application 1

text enhancement

a b

FIGURE 4.19
(a) Sample text of poor resolution (note broken characters in magnified view).
(b) Result of filtering with a GLPF (broken character segments were joined).

smoothing filter application 2

beautify a photo

a b c
FIGURE 4.20 (a) Original image (1028×732 pixels). (b) Result of filtering with a GLPF with $D_{0}=100$. (c) Result of filtering with a GLPF with $D_{0}=80$. Note reduction in skin fine lines in the magnified sections of (b) and (c).

high-pass filters

$$
H_{H P F}(u, v)=1-H_{L P F}(u, v)
$$

$\begin{array}{lll}\text { a b } & \text { c } \\ \text { d } & \text { e } \\ \text { f }\end{array}$
ghin
FIGURE 4.22 Top row: Perspective plot, image representation, and cross section of a typical ideal highpas filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

sobel operator in frequency domain

-1	0	1
-2	0	2
-1	0	1

a	b
c	d

FIGURE 4.39
(a) A spatial
mask and
perspective plot
of its
corresponding
Question:
Sobel vs. other high-pass filters?

Spatial vs frequency domain implementation? frequency domain filter. (b) Filter shown as an image. (c) Result of filtering Fig. 4.38(a) in the frequency domain with the filter in (b). (d) Result of filtering the same image with the spatial filter in (a). The results are identical.

high-pass filter examples

FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with $D_{0}=15,30$, and 80, respectively. Problems with ringing are quite evident in (a) and (b).

a b c
FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with $D_{0}=15$, 30 , and 80 , respectively. Compare with Figs. 4.24 and 4.25 .

band-pass, band-reject filters

a b
c d
FIGURE 4.64
(a) Sampled
newspaper image
showing a
moiré pattern.
(b) Spectrum.
(c) Butterworth
notch reject filter multiplied by the
Fourier
transform.
(d) Filtered
image.

outline

- why transform
- 2D Fourier transform
- a picture book for DFT and 2D-DFT
- properties
- implementation
- applications in enhancement, correlation
- discrete cosine transform (DCT)
- definition \& visualization
- implementation

Is DFT a Good (enough) Transform?

- Theory
- Implementation
- Application

The Desirables for Image Transforms

- Theory
- Inverse transform available
- Energy conservation (Parsevell)
- Good for compacting energy
- Orthonormal, complete basis
- (sort of) shift- and rotation invariant
- Implementation
- Real-valued
- Separable
- Fast to compute w. butterfly-like structure
- Same implementation for forward and inverse transform
- Application
- Useful for image enhancement
- Capture perceptually meaningful structures in images

1-D Discrete Cosine Transform (DCT)

$$
\begin{aligned}
& \left\{\begin{array}{l}
Z(k)=\sum_{n=0}^{N-1} z(n) \cdot \alpha(k) \cos \left[\frac{\pi(2 n+1) k}{2 N}\right] \\
z(n)=\sum_{k=0}^{N-1} Z(k) \cdot \alpha(k) \cos \left[\frac{\pi(2 n+1) k}{2 N}\right]
\end{array}\right. \\
& \alpha(0)=\frac{1}{\sqrt{N}}, \alpha(k)=\sqrt{\frac{2}{N}}
\end{aligned}
$$

- Transform matrix A
- $a(k, n)=\alpha(0)$ for $k=0$
- $a(k, n)=\alpha(k) \cos [\pi(2 n+1) / 2 N]$ for $k>0$
- A is real and orthogonal
- rows of A form orthonormal basis
- A is not symmetric!
- DCT is not the real part of unitary DFT!

1-D DCT

DFT and DCT in Matrix Notations

Matrix notation for 1D transform

$$
y=A x, x=A^{-1} y
$$

1D-DCT

$$
\begin{aligned}
a(0, n) & =\sqrt{\frac{1}{N}} \quad u=0 \\
a(u, n) & =\sqrt{\frac{2}{N}} \cos \frac{\pi(2 n+1) u}{2 N} \\
& u=1,2, \ldots, N-1
\end{aligned}
$$

1D-DFT

$$
\begin{aligned}
a(u, n) & =e^{-j 2 \pi \frac{u n}{N}} \\
& =\cos \left(2 \pi \frac{u n}{N}\right)-j \sin \left(2 \pi \frac{u n}{N}\right)
\end{aligned}
$$

$N=32$
A

From 1D-DCT to 2D-DCT

- Rows of A form a set of orthonormal basis
- A is not symmetric!
- DCT is not the real part of unitary DFT!

basis images: DFT (real) vs DCT

Periodicity Implied by DFT and DCT

DFT and DCT on Lena

DFT2

Shift low-freq to the center

Assume periodic and zero-padded ...

DCT2

Assume reflection ...

Using FFT to implement fast DCT

- Reorder odd and even elements

$$
\left\{\begin{array}{l}
\tilde{z}(n)=z(2 n) \\
\widetilde{z}(N-n-1)=z(2 n+1)
\end{array} \text { for } 0 \leq n \leq \frac{N}{2}-1\right.
$$

- Split the DCT sum into odd and even terms

$$
\begin{aligned}
Z(k) & =\alpha(k)\left\{\sum_{n=0}^{N / 2-1} z(2 n) \cdot \cos \left[\frac{\pi(4 n+1) k}{2 N}\right]+\sum_{n=0}^{N / 2-1} z(2 n+1) \cdot \cos \left[\frac{\pi(4 n+3) k}{2 N}\right]\right\} \\
& =\alpha(k)\left\{\sum_{n=0}^{N / 2-1} \tilde{z}(n) \cdot \cos \left[\frac{\pi(4 n+1) k}{2 N}\right]+\sum_{n=0}^{N / 2-1} \tilde{z}(N-n-1) \cdot \cos \left[\frac{\pi(4 n+3) k}{2 N}\right]\right\} \\
& =\alpha(k)\left\{\sum_{n=0}^{N / 2-1} \tilde{z}(n) \cdot \cos \left[\frac{\pi(4 n+1) k}{2 N}\right]+\sum_{n^{\prime}=N / 2}^{N-1} \tilde{z}\left(n^{\prime}\right) \cdot \cos \left[\frac{\pi\left(4 N-4 n^{\prime}-1\right) k}{2 N}\right]\right\} \\
& =\alpha(k) \sum_{n=0}^{N-1} \tilde{z}(n) \cdot \cos \left[\frac{\pi(4 n+1) k}{2 N}\right]=\operatorname{Re}\left[\alpha(k) e^{-j \pi k / 2 N} \sum_{n=0}^{N-1} \tilde{z}(n) \cdot e^{-j 2 \pi n k / N}\right] \\
& =\operatorname{Re}\left[\alpha(k) e^{-j \pi k / 2 N} \operatorname{DFT}\{\widetilde{z}(n)\}_{N}\right]
\end{aligned}
$$

The Desirables for Image Transforms

- Theory
- Inverse transform available
- Energy conservation (Parsevell)
- Good for compacting energy
- Orthonormal, complete basis
- (sort of) shift- and rotation invariant
- Implementation
- Real-valued
- Separable
- Fast to compute w. butterfly-like structure
- Same implementation for forward and inverse transform
- Application
- Useful for image enhancement
- Capture perceptually meaningful structures in images

Summary of Lecture 5

- Why we need image transform
- DFT revisited
- Definitions, properties, observations, implementations, applications
- What do we need for a transform
- DCT
- Coming in Lecture 6:
- Unitary transforms, KL transform, DCT
- examples and optimality for DCT and KLT, other transform flavors, Wavelets, Applications
- Readings: G\&W chapter 4, chapter 5 of Jain has been posted on Courseworks
- "Transforms" that do not belong to lectures 5-6: Rodon transform, Hough transform, ...

[^0]: a b FIGURE 4.12 (a) Original image. (b)-(f) Results of ideal lowpass filtering with cutoff
 c d frequencies set at radii values of $5,15,30,80$, and 230, as shown in Fig. 4.11(b). The
 e f power removed by these filters was $8,5.4,3.6,2$, and 0.5% of the total, respectively.

[^1]: a b FIGURE 4.12 (a) Original image. (b)-(f) Results of ideal lowpass filtering with cutof
 c d frequencies set at radii values of $5,15,30,80$, and 230 , as shown in Fig. 4.11(b). The
 e f power removed by these filters was $8,5.4,3.6,2$, and 0.5% of the total, respectively.

