
Digital Image Processing

Professors: Shahram Ebadollahi Lexing Xie

1/29/2008

General Information

Spring 2008

Mondays 4:10~6:40pm

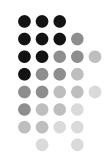
Location: Eng. Mudd 1127 5:30~6:40 part 2

Credits: 3.0

1/29/2008

Offered on CVN

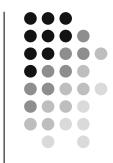
4:10~5:20 part 1


5:20~5:30 break

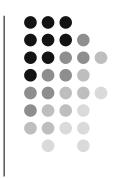
Course Webpage http://www.ee.columbia.edu/~xlx/ee4830/

Target audience:

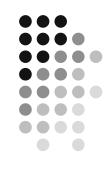
First year Graduate and Senior level students


Staff

- Lecturers/Staff:
 - Shahram Ebadollahi
 Research Staff Member, IBM T.J. Watson Research
 PhD from Columbia U. EE dept.
 - Lexing Xie
 Research Staff Member, IBM T.J. Watson Research
 PhD from Columbia U. EE dept.
 - TA: Wei Liu


How to reach us?

- Shahram Ebadollahi
 - E-mail: shahram@ee.columbia.edu
 - Office hours: Mondays 3:00~4:00pm
 - Office: 1312 Mudd
- Lexing Xie
 - E-mail: xlx@ee.columbia.edu
 - Office hours: Mondays 3:00~4:00pm
 - Office: 1312 Mudd
- Wei Liu
 - E-mail: wl2223@columbia.edu
 - Office hours:TBD
 - Office: 711 CEPSR
 - Mailbox:TBD

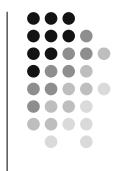

Please contact the lecturer of the week for problems/question related to each lecture!

Our research

- Shahram Ebadollahi
 - Image/Video content understanding
 - Medical imaging informatics
- Lexing Xie
 - multimedia content analysis, data mining
 - statistical learning and signal processing in multimedia

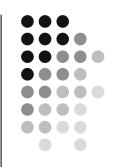
Pre-requisites

- Signals & Systems
- Linear Algebra
- Probability

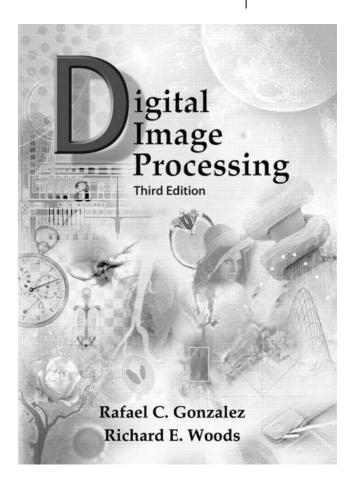

1/29/2008

 If you haven't taken these courses please see us after the class TODAY!

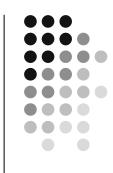
Outline



- Part I [Shahram Ebadollahi]
 - Course protocol, policy, and all that
 - Introduction to DIP and examples of applications
 - Course outline
 - Brief review of signals and systems
- Break
- Part II [Lexing Xie]
 - Introduction to MATLAB for Image Processing
 - Brief review of linear algebra and probability



Course Protocols & Policies


Course textbook

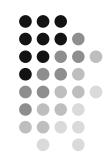
- Digital Image Processing, 3rd Edition by Gonzalez and Woods, Prentice Hall 2008 (ISBN 9780131687288)
- Very well written book
- Broad coverage of the subject
- Accessible by wide audience
- Other references: see course web-page!

Assignments

10

- 6 assignments
- Due at: END OF DAY OF CLASS IN TA's MAILBOX OR EMAIL INBOX! (NO EXCEPTIONS)
- Solutions and graded homeworks will be handed out the week after you hand in your assignments.
- Types of questions in the assignment:
 - Analytical
 - Experimental

A problem which require some programming and experimentation. e.g.

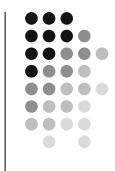

- 1) change parameters of an image processing algorithm, observe the effect, comment on your findings
- 2) how do you think this image could be enhanced? Show it! Why this approach?

2 Exams

- Midterm (03/10/2008)
 - 150 minutes
 - Open book
- Final
 - 3 hours
 - Open book

Grading Policy

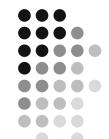
12

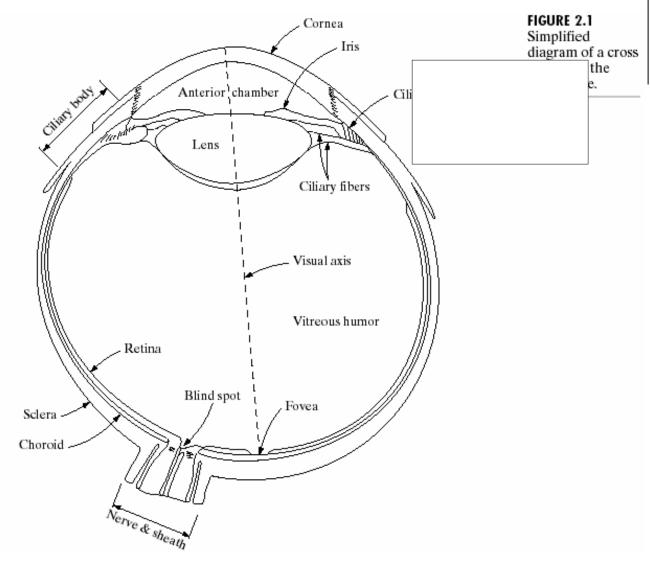

Homeworks: 30%

• Midterm: 30%

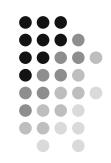
• Final: 40%

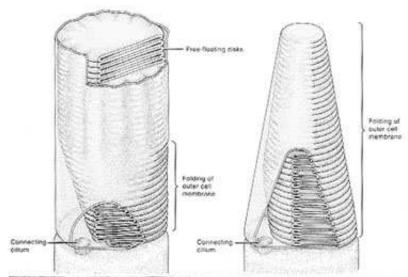
1/29/2008

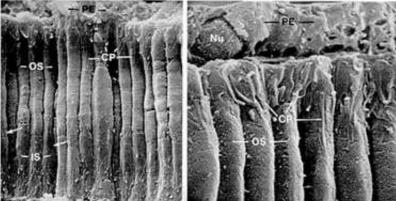

All material will be covered in the final exam



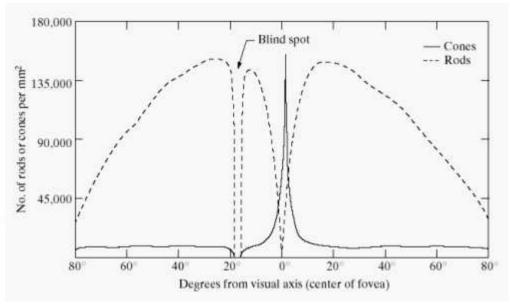
DIP Introduction


Eye Physiology

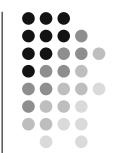

1/29/2008

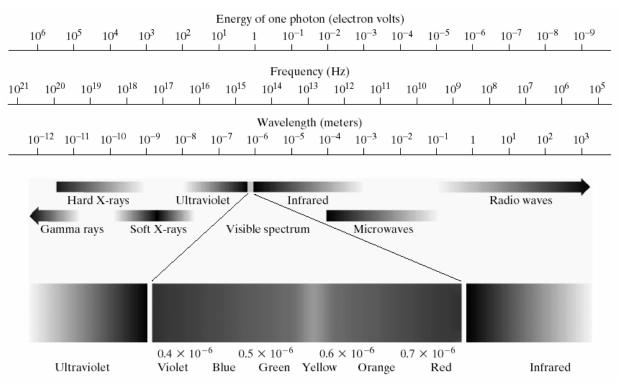


Eye Physiology & Visual Perception

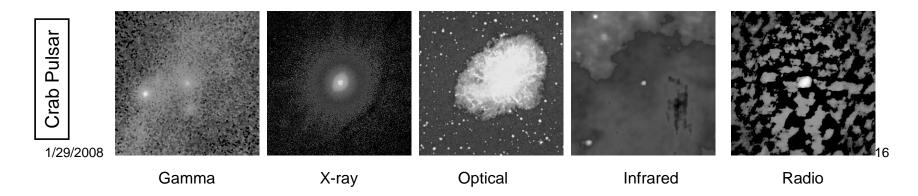


Photoreceptor Cells


- •75~150 Million
- Sensitive to low illumination
- Distributed over Retina
- Scotopic (dim light) vision


- •6~7 Million
- •Highly sensitive to color
- •Concentrated in Fovea
- •Photopic (day light) vision

Rods & Conés Distribution in Retina



Electromagnetic Spectrum & more

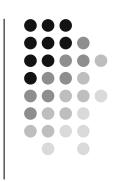
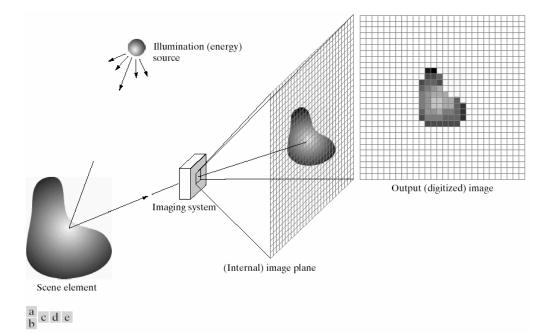


FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation, but note that the visible spectrum is a rather narrow portion of the EM spectrum.

Image


• Image = 2d function

$$f(x, y) \in R$$
 $x, y \in R$

$$f(x, y) = i(x, y).r(x, y)$$

| Illumination reflectance

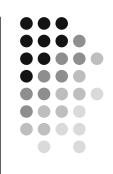

$$0 \le f(x, y) \le F$$

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

1/29/2008

Image

• Image = 2d function

$$f(x, y) \in R$$

$$x, y \in R$$

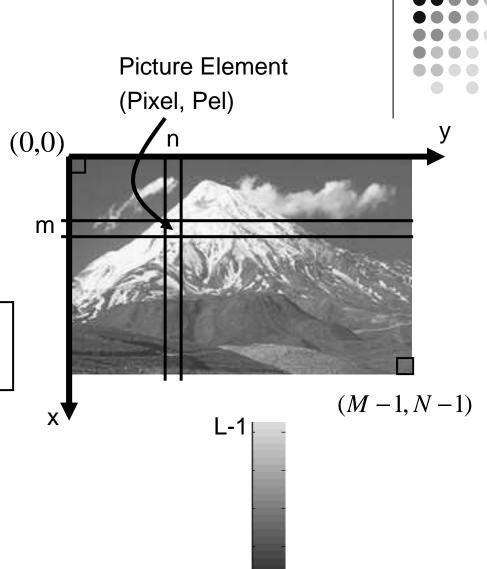
$$f(x, y) = i(x, y).r(x, y)$$

| Illumination reflectance

$$0 \le f(x, y) \le F$$

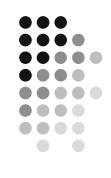
$$0 \le x \le X$$

$$0 \le y \le Y$$


Digital Image

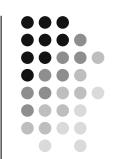
- Discretization
 - Spatial sampling
 - Quantization

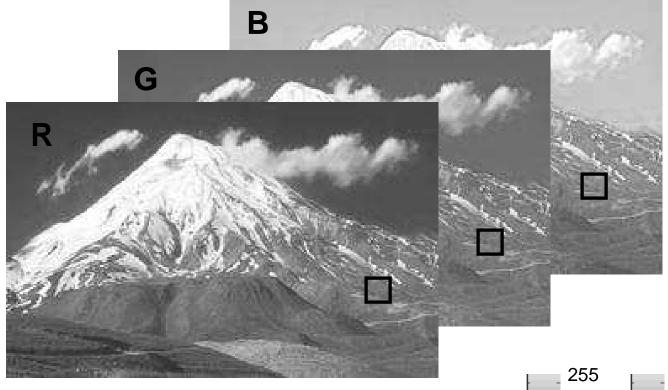
$$f(m,n) \in Z$$

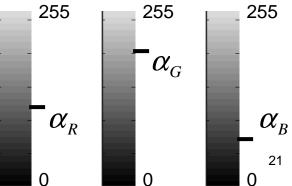

$$m,n \in Z$$

$$0 \le f(m,n) \le L-1 \qquad \begin{array}{c} 0 \le m \le M-1 \\ 0 \le n \le N-1 \end{array}$$

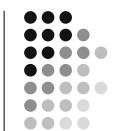
COLUMBIA UNIVERSITY

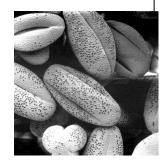

Digital Image




$$f = \begin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,N-1) \\ f(1,0) & f(1,1) & \cdots & f(1,N-1) \\ \vdots & \vdots & \vdots & \vdots \\ f(M-1,0) & f(M-1,1) & \cdots & f(M-1,N-1) \end{bmatrix}$$

Color Image

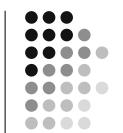


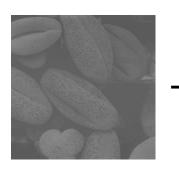

1/29/2008

Digital Image Processing

Low level

Mid level

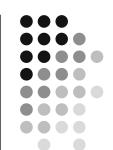

High level



Digital Image Processing

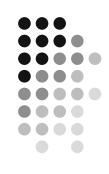
Low level

Mid level

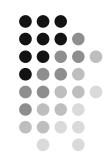

High level

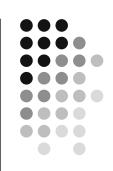
Communication & Storage

What are we going to study?


Lecture No.	Date	Lecturer	Subject
1	1.28	SE/LX	Course Mechanics, Introduction to Image Processing, Introduction to MATLAB
2	2.4	SE	Digital Image Fundamentals (ch2): Sensing, Sampling, and Quantization
3	2.11	SE	Gray-level, Color and Multi-band Images (ch3 & 6), Video
4	2.18	LX	Image Enhancement in Spatial Domain (ch3& 6)
5	2.25	LX	Image Enhancement in Frequency Domain (ch4)
6	3.3	LX	More Image Transform, Wavelets (ch7)
Mid-term	3.10		
7	3.24	LX	Image Restoration (ch5)
8	3.31	SE	Morphological Image Processing (ch9)
9	4.7	SE	Image Segmentation (ch10)
10	4.14	SE	Image Description (ch11)
11	4.21	LX	Object Recognition (ch12)
12	4.28	LX	Image Compression (ch8)
13	5.5	SE	Applications: medical, cbir,

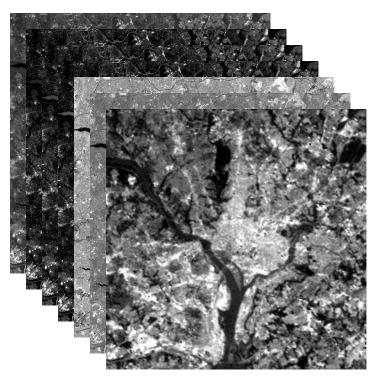
1/29/2008

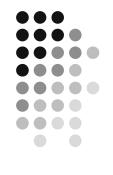

Why study DIP?

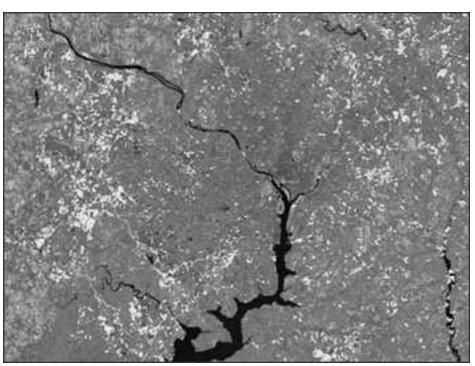

- Image & video is a major communication media
 - "An image is worth 1000 words!"
- In all application domains, image and video is becoming indispensable
- WWW, faster computation, more storage, proliferation of image capture and consumption devices → Need for more, better, faster, and more intelligent image and video analysis
- It's fun!

1/29/2008

- Consumer domain
 - Storage, tagging, searching,...
- Remote sensing
 - Agriculture, Urban growth monitoring, ...
- Medical
 - CAD, quantification, organization, assisted surgery, ...
- Space explorations
 - Image mosaic, image matching,
- Art
 - Working methods of painters, material used, ...
- Security
- Military
- ... and many more!


- Consumer domain
 - Storage, tagging, searching,...

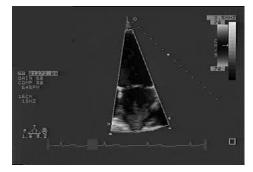


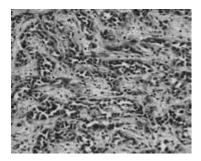

mountain, snow, buildings, sky

- Remote sensing
 - Agriculture, Urban growth monitoring, ...

Multi-spectral imaging

Urban growth in Washington D.C. between 1973 and 1985


[Image courtesy of NASA/LANDSAT]

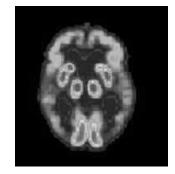

Medical

 CAD, quantification, organization, assisted surgery,

. . .

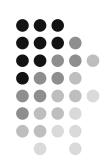
Color doppler Echocardiogram

Tissue Microscopy


Brain MRI

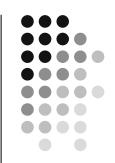
Spine X-ray

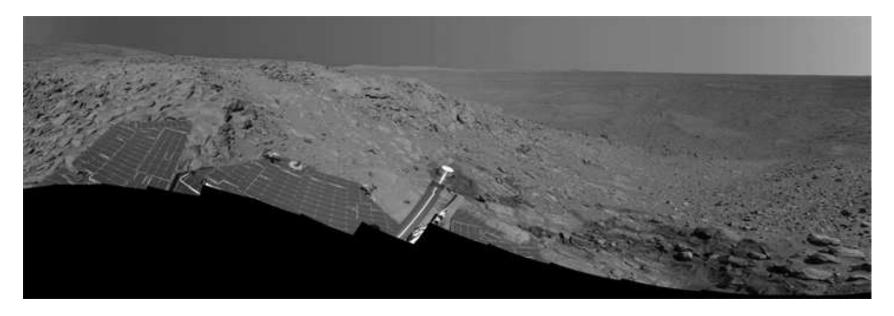
Cardiac CT



Brain PET (Alzheimers)

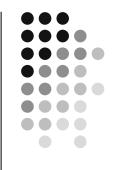
1/29/2008


30



Space explorations

1/29/2008


Image mosaic, image matching, ...

Panoramic image built from images taken from mars rover Spirit

[image courtesy of NASA/JPL/Cornell]

Review of Signals & Systems