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Lecture 9 (4.7.08)

Image Segmentation

Shahram Ebadollahi

DIP ELEN E4830
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Lecture Outline

� Skeletonization
� Extension to Gray-level images -- GSAT

� Image Segmentation – Introduction
� Thresholding
� Edge Segmentation and Linking
� Hough Transform

� Region-based Approach 
� Using Morphology for Segmentation
� Watershed Algorithm
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Skeletonization (Medial Axis Transform)

Notion of “Maximal Disc”
B is a “Maximal Disc” in set X if there are no 
other discs included in X and containing B

Skeleton is the loci of the centers of all 
“maximal discs”
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Skeletonization
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Notion of “Maximal Disc”

Skeleton is the loci of the 
centers of all “maximal discs”

Reconstruction
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Gray-level SAT 
(Skeletonization for Gray-level Images)
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GSAT
• GSAT is the extension of skeletonization to gray-level images

• GSAT is the locus of the centers of maximal discs whose 
plane is perpendicular to the gray-level axis and which fit in the 
region above or below the topographic map of image

• Symmetry surface for gray-level == skeleton for bi-level

• Represent the collection of symmetry surfaces as a graph �
GSAT graph

• nodes: 

• g_min:  gray-level at bottom of surface path

• delta_g: difference in gray-level between top and bottom

• p_avg: average location of maximal discs on the path

• n_avg: average size of maximal discs on the path
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GSAT - Implementation
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Image Segmentation by Region 
Growing on GSAT graph
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Digital Image Processing

Low level

Mid level
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Image Segmentation - Intro

Goal decompose image into regions Rk such that:

{ }
jifalseRRH

KktrueRH

jiRR

Rf

ji

k

ji

k

K

k

≠=
∈∀=

≠=

=
=

)(

,,1)(

1

�

�

�

�

φ

There are various approaches:

• edge-based vs. region-based

• global vs. local

• feature – texture, motion, color
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Thresholding

T

Input image segmented

• Global Thresholding: T is constant everywhere in the image

• Variable Thresholding:   T varies

• Local Thresholding: T changes based on the neighborhood properties

• Adaptive Thresholding: T changes based on the coordinates
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Thresholding - pitfalls

Effect of Noise

Effect of Illumination
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Global Thresholding

T=30 T=42.5 T=46.7 T=52.1

T=80.8

Input image segmented

1. T=T0

2. Segment using T

3. Get average gray-level for region G1 (f > T) and region G2 (f <= T)

4. T_new = average of average of gray-levels

5. Repeat until convergence
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Optimal Threshold
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• Pose problem as: 

minimizing error of assigning pixels in image to two or more groups
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Optimal Threshold (cont.)
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Optimal Threshold – Otsu’s method

I=imread('coins.png'); 

level=graythresh(I); 

BW=im2bw(I,level); 

imshow(BW) 

• Otsu defines the measure of “goodness” of a threshold based on 
how well it can separate two (or more) classes (regions)
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Thresholding in MATLAB 
using Otsu’s method for 
determining the threshold:
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Adaptive Thresholding – Image Partitioning

Global threshold 
obtained using 

iterative algorithm

Global threshold 
obtained using 
Otsu’s method

Bimodal 
histograms

Under what condition this method fails?
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Adaptive Thresholding – Moving Average

original Otsu Moving average
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Image Derivatives
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• 1st order derivative produces 
“thick” edges

• 2nd order derivative has stronger 
response to fine edges

• 2nd order derivative produces 
double edge response at ramp 
and step transitions in intensity

• 2nd order derivative’s sign can be 
used to find out if going from dark 
to light or vice versa
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Edge detection – gradient operator
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2-D gradient operators
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Edge detection

Averaged prior to edge detection

After thresholding
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Edge detection: Marr-Hildreth method

* Edge detection operator should be “tunable” to 
detect edges at different “scales”
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Edge detection: Marr-Hildreth method

In practice

- sample Gaussian function [nxn samples]

- convolve with image f(x,y): image smoothing

- convolve result with Laplacian mask

- find zero-crossings of g(x,y)
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Edge detection: Canny method

* An optimal method for detecting step edges corrupted by white noise

•Goal Satisfy the following 3 criteria:

• Detection: should not miss important edges

• Localization: distance between the actual and located position of the 
edge should be minimal

• One response: only one response (edge) to a single actual edge

•Algorithm

• Step 1: Smooth input image with a  Gaussian filter

• Step 2: Compute the gradient magnitude and angle images
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Edge detection –
Step 3: nonmaxima suppression

1. Find direction       closest to 

2. If value of M(x,y) is less than at 
least one of its neighbors along     , 
let                      , otherwise
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Edge detection –
Step 4: Reducing false edge points 
(hysteresis thresholding)
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Strong edges:

Weak edges:

1. Locate unvisited edge pixel in the strong edge image

2. Mark as valid edge pixels all the weak pixels that are connected to above 
pixel in the neighborhood

3. If all nonzero pixels in strong edge image havee been visited continue, 
otherwise go to (1)

4. Set to zero all pixels in weak edge image not already marked

5. Append all remaining non-zero pixels from weak edge image to strong 
edge image
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Edge detection: Canny method
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Hough Method for Curve Detection
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M points in image 
with slope ap and 
intercept bq

1. For each point (x,y) in image 
determine ap and bq that 
satisfy the line equation

2. Increment A(p,q) by 1

Goal: find subset of points 
in the image that lie on a 
straight line
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ρθθ =+ sincos yx

Hough Method: Normal line representation

Algorithm:

1. Quantize parameter space

2. Initialize the accumulator matrix

3. For each point in the edge image, iterate on 
choices of angle bins and find distance. 
Increase corresponding accumulator bins

4. Lines in image correspond to the local 
maxima in the accumulator array
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Hough Method: Matlab

image accumulator

hough()

houghpeaks()
houghlines()
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Edge-based segmentation: 
Problems

� Spurious edges due to noise and low quality 
image. Difficult to identify spurious edges.

� Dependent on local neighborhood information
� No notion of higher order organization of the 

image
� Gaps and discontinuities in the linked edges
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Split & Merge Method

1. Pick a grid structure and 
homogeneity property H

2. If for any region R, H(R)=false, 
split region into 4

3. If for any neighboring regions 
H(R1UR2)=true, merge regions 
into single region

4. Stop when no more split or merge
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Watershed Goal: Find watershed lines

Build dams to prevent water flow from one 
catchment basin to other 
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Boundaries between flooded 
catchment basins
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Segmentation using Watershed
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Segmentation as Clustering in 
Feature Space

Feature Space 
(Color, Texture)

R

G

B

Clustering algorithms:

• K-means

• Gaussian Mixture Model

• Neural Network

Issues/Choices:

• Feature

• Distance

• Method
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K-means Clustering Algorithm

� Select K initial cluster centers: 

� Assign each pixel 
representation      to nearest 
cluster Ck

� Recomputer cluster centroids
for all clusters

� Iterate until convergence

ix
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Change in clusters and 
migration of centroids in 

consecutive steps


