

Lecture 10 (4.14.07)

Image Representation and Description

Shahram Ebadollahi

Lecture Outline

- Image Description
 - Shape Descriptors
 - Texture & Texture Descriptors
 - SIFT
 - Motion Descriptors
 - Color Descriptors

Shape Description

- Shape Represented by its Boundary
 - Shape Numbers,
 - Fourier Descriptors,
 - Statistical Moments
- Shape Represented by its Interior
 - Topological Descriptors
 - Moment Invariants

Boundary Representation: (Freeman) Chain Code

Boundary representation = 0766666453321212

Chain Code: example

8-directional chain code \rightarrow Starting point normalized chain code \rightarrow Rotation normalized chain code \rightarrow $_{4/15/2008}$ First difference of chain code

Shape Number – A boundary descriptor

 Chain code:
 0
 0
 0
 3
 0
 0
 3
 2
 2
 3
 2
 2
 1
 2
 1
 1

 Difference:
 3
 0
 0
 3
 1
 0
 3
 3
 0
 1
 3
 0
 0
 3
 1
 3
 0

 Shape no.:
 0
 0
 3
 1
 0
 3
 3
 0
 1
 3
 0
 0
 3
 1
 3
 0
 3
 1
 3
 0
 3
 1
 3
 0
 3
 1
 3
 0
 3
 1
 3
 0
 1
 3
 0
 3
 1
 3
 0
 3
 1
 3
 0
 3
 1
 3
 0
 3
 1
 3
 0
 3
 1
 3
 0
 3
 1
 3
 0
 3
 1
 3
 0
 3
 1
 3
 0
 3
 1
 3
 0
 3
 3
 0
 3
 1
 3
 0
 3

Boundary descriptor – Fourier

$$s(k) = x(k) + jy(k)$$
 $k = 0, 1, 2, \dots, K-1$

$$a(u) = \sum_{k=0}^{K-1} s(k) e^{-j2\pi u k/K}$$

$$s(k) = \frac{1}{K} \sum_{u=0}^{K-1} a(u) e^{j 2\pi u k/K}$$

$$k = 0, 1, 2, \cdots, K - 1$$

 $u = 0, 1, 2, \cdots, K - 1$

 $y_0 \\ y_1$

Transformation	Boundary	Fourier Descriptor
Identity	s(k)	a(u)
Rotation	$s_r(k) = s(k)e^{j\theta}$	$a_r(u) = a(u)e^{j\theta}$
Translation	$s_t(k) = s(k) + \Delta_{xy}$	$a_t(u) = a(u) + \Delta_{xy}\delta(u)$
Scaling	$s_s(k) = \alpha s(k)$	$a_s(u) = \alpha a(u)$
Starting point	$s_p(k) = s(k - k_0)$	$a_p(u) = a(u)e^{-j2\pi k_0 u/K}$

 $x_0 x_1$

8

 $\succ x$

Boundary Reconstruction using Fourier Descriptors

Boundary Representation: Signatures

• Represent 2-D boundary shape using 1-D signature signal

Boundary Description using Statistical Moments

$$\mu_n(v) = \sum_{i=0}^{A-1} (v_i - m)^n p(v_i)$$

n-th moment of v

perimeter as the shape

Topological Region Descriptors

•<u>Topological properties</u>: Properties of image preserved under rubber-sheet distortions

- H: # holes in the image
- **C**: # connected components
- *E* = C-H: Euler Number

H=1, C=1, E=0 H=2, C=1, E=-1

V - Q + F = C - H = E

Geometric Moment Invariants

$$m_{pq} = \iint_{x=0}^{M} x^{p} y^{q} f(x, y) dx dy$$
$$m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^{p} y^{q} f(x, y)$$

(p+q)-th 2D geometric moment

Projection of f(x,y) onto monomial $x^p y^q$

• Why use moments?

• Geometric moments of different orders represent spatial characteristics of the image intensity distribution

 \mathcal{M}_{00} Total intensity of image. For binary image \rightarrow area

$$x_0 = m_{10} / m_{00}$$
 Intensity centroid
 $y_0 = m_{01} / m_{00}$ binary image \rightarrow geometrical center

Central Moments

$$\mu_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (x - x_0)^p (y - y_0)^q f(x, y)$$

[Translation invariance]

$$\begin{split} \mu_{00} &= m_{00} \\ \mu_{10} &= \mu_{01} = 0 \\ \mu_{02}, \mu_{20} \quad \text{Variance about the centroid} \\ \mu_{11} \qquad \text{covariance} \end{split}$$

Scaled Central Moment

$$\lambda_{pq} = \mu'_{pq} / (\mu'_{00})^{(p+q+2)/2}$$

Scale and translation invariant

$$\mu'_{pq} = \frac{\mu_{pq}}{\alpha^{p+q+2}}$$

17

Normalized Un-Scaled Central Moment

$$\eta_{pq} = \mu_{pq} / (\mu_{00})^{(p+q+2)/2}$$

Moment Invariants (translation, scale, mirroring, rotation)

 $\phi_{1} = \eta_{20} + \eta_{02}$ $\phi_{2} = (\eta_{20} - \eta_{02})^{2} + 4\eta_{11}^{2}$ $\phi_{3} = (\eta_{30} - \eta_{12})^{2} + (\eta_{21} - \eta_{03})^{2}$ $\phi_{4} = (\eta_{30} + \eta_{12})^{2} + (\eta_{21} + \eta_{03})^{2}$

 $\phi_5 = \cdots$

 $\phi_6 = \cdots$

 $\phi_7 = \cdots$

Moment Invariant	Original Image	Translated	Half Size	Mirrored	Rotated 45°	Rotated 90°
ϕ_1	2.8662	2.8662	2.8664	2.8662	2.8661	2.8662
ϕ_2	7.1265	7.1265	7.1257	7.1265	7.1266	7.1265
ϕ_3	10.4109	10.4109	10.4047	10.4109	10.4115	10.4109
ϕ_4	10.3742	10.3742	10.3719	10.3742	10.3742	10.3742
ϕ_5	21.3674	21.3674	21.3924	21.3674	21.3663	21.3674
ϕ_6	13.9417	13.9417	13.9383	13.9417	13.9417	13.9417
ϕ_7	-20.7809	-20.7809	-20.7724	20.7809	-20.7813	-20.7809

Affine Transform & Affine Moment Invariants

$$x' = T_{x}(x, y)$$

$$y' = T_{y}(x, y)$$

$$x' = \sum_{r=0}^{m} \sum_{k=0}^{m-r} a_{rk} x^{r} y^{k}$$

$$y' = \sum_{r=0}^{m} \sum_{k=0}^{m-r} b_{rk} x^{r} y^{k}$$

In practice: bilinear transform

4 pairs of corresponding points needed to find coefficients

$$x' = a_0 + a_1 x + a_2 y + a_3 xy$$
$$y' = b_0 + b_1 x + b_2 y + b_3 xy$$

m m-r

In practice: affine transform

3 pairs of corresponding points needed to find coefficients

$$x' = a_0 + a_1 x + a_2 y$$

 $y' = b_0 + b_1 x + b_2 y$

Rotation:

$$x' = x \cos \phi + y \sin \phi$$
$$y' = -x \sin \phi + y \cos \phi$$

y'

Scale:

Skew:

$$\begin{array}{ll} x' = ax & x' = x + y \tan \phi \\ y' = by & y' = y \end{array}$$

Elliptical Shape Descriptors

Principal moment of inertia:

 $I_{1} = \frac{(\mu_{20} + \mu_{02}) + [(\mu_{20} - \mu_{02})^{2} + 4\mu_{11}^{2}]^{1/2}}{2}$ $I_{2} = \frac{(\mu_{20} + \mu_{02}) - [(\mu_{20} - \mu_{02})^{2} + 4\mu_{11}^{2}]^{1/2}}{2}$

Image ellipse characterizes fundamental shape features and also 2D position and orientation

 $(I_1 + I_2) / m_{00}^2$ $(I_2 - I_1)/(I_1 + I_2)$

$$\theta = 0.5 \tan^{-1} \left(\frac{2\mu_{11}}{\mu_{20} - \mu_{02}} \right)$$

$$a = 2(I_1 / \mu_{00})^{1/2}$$
 $b = 2(I_2 / \mu_{00})^{1/2}$

Texture - Definition

Texture – Quantification Methods

- Statistical: compute local features at each point in image and derive a set of statistics from the distribution of local features
 - 1st, 2nd, and higher-order statistics based on how many points are used to define local features
- Structural: texture is considered to be composed of "texture elements". Properties of the "texture elements" and their spatial placement rules characterizes the texture
 - Original texture can be reconstructed from its structural description

Statistical Texture Analysis 1st order statistics

• Obtain statistics of the histogram:

	L-1	
<u>Mean:</u>	$\sum ih(i)$: average intensity
	i=0	
Variance:	$\sum_{k=1}^{L-1} (1 - 1)^2 h(1)$, magging of intensity contract
<u>vanance.</u>	$\sum (i-\mu) n(i)$: measure of intensity contrast
	$i=0 \\ L-1$	
Skewness:	$\overline{\Sigma}(i-\mu)^3h(i)$	
<u></u>	$\sum_{i=0}^{i} (i - pi) + i (i)$	
Entropy:	$-\sum h(i)\log h(i)$	Measure of variability of intensity
4/15/2008	i=0	23

Texture	Mean	Standard deviation	R (normalized)	Third moment	Uniformity	Entropy
Smooth	82.64	11.79	0.002	-0.105	0.026	5.434
Coarse	143.56	74.63	0.079	-0.151	0.005	7.783
Regular	99.72	33.73	0.017	0.750	0.013	6.674

Statistical Texture Analysis

Statistical Texture Analysis 2nd order statistics: Co-occurrence

 $f(m_1, n_1) = i$

- Joint gray-level histogram of pairs of pixels
 - 2D histogram

Co-occurrence matrix G

Statistical Texture Analysis 2nd order statistics: Co-occurrence

$$\begin{split} P_{(d,\theta=0^{\circ})}(i,j) =&|\{((k,l),(m,n)) \in (M \times N) \times (M \times N): \\ &k-m=0, |l-n| = d, f(k,l) = i, f(m,n) = j\}| \\ P_{(d,\theta=45^{\circ})}(i,j) =&|\{((k,l),(m,n)) \in (M \times N) \times (M \times N): \\ &(k-m=d, l-n=-d) \vee (k=m=-d, l-n=d), f(k,l) = i, f(m,n) = j\}| \end{split}$$

Statistical Texture Analysis 2nd order statistics: Co-occurrence (example)

Statistical Texture Analysis 2nd order statistics: Co-occurrence (statistics)

Angular 2nd moment (energy): (measure of image homogeneity)

Maximum Probability:

$$\sum_{i=1}^{L} \sum_{j=1}^{L} P_{(d,\theta)}^{2}(i,j)$$

$$\max_{i,j} P_{(d,\theta)}(i,j)$$

$$-\sum_{i=1}^{L}\sum_{j=1}^{L}P_{(d,\theta)}(i,j)\log P_{(d,\theta)}(i,j)$$

Entropy:

<u>Contrast:</u> (measure of local variations)

Correlation:

(measure of image linearity)

4/15/2008
$$\mu_x = \sum_{i=1}^L i \sum_{j=1}^L P_{(d,\theta)}(i,j)$$

$$\sum_{i=1}^{L} \sum_{j=1}^{L} |i-j|^{\kappa} P_{(d,\theta)}^{\lambda}(i,j)$$
$$\sum_{i=1}^{L} \sum_{j=1}^{L} [ijP_{(d,\theta)}(i,j)] - \mu_{x}\mu_{y}$$

~ ~

$$\sigma_{x} = \sum_{i=1}^{L} (i - \mu_{x})^{2} \sum_{j=1}^{L} P_{(d,\theta)}(i, j)$$

29

Normalized o-occurrence	Max	Descriptor				
Matrix	Probability	Correlation	Contrast	Uniformity	Homogeneity	Entropy
G_1/n_1	0.00006	-0.0005	10838	0.00002	0.0366	15.75
\mathbf{G}_2/n_2	0.01500	0.9650	570	0.01230	0.0824	6.43
G_{3}/n_{3}	0.06860	0.8798	1356	0.00480	0.2048	13.58

4/15/2008

Statistical Texture Analysis 2nd order statistics: Difference Statistics

 $P_{(d,\theta)}(k) = \sum_{\substack{i,j \in \{1,\cdots,L\} \\ |i-j|=k}} P_{(d,\theta)}(i,j) \text{ is a subset of co-occurrence matrix}$

k=0

Angular 2nd moment (energy):

Mean:

Entropy:

Contrast:

$$\sum_{k=0}^{k=0} k P_{(d,\theta)}(k)$$

- $\sum_{k=0}^{L-1} P_{(d,\theta)}(k) \log P_{(d,\theta)}(k)$
 $\sum_{k=0}^{L-1} k^2 P_{(d,\theta)}(k)$

 $\sum^{L-1} P^2_{(d,\theta)}(k)$

Statistical Texture Analysis 2nd order statistics: Autocorrelation

$$C_{ff}(p,q) = \frac{MN}{(M-p)(N-q)} \frac{\sum_{k=1}^{M-p} \sum_{l=1}^{N-q} f(k,l) f(k+p,l+q)}{\sum_{k=1}^{M} \sum_{l=1}^{N} f^{2}(k,l)}$$

Large texture elements \rightarrow autoccorrelation decreases slowly with increasing distance Small texture elements \rightarrow autoccorrelation decreases rapidly with increasing distance Periodic texture elements \rightarrow periodic increase & decrease in autocorrelation value

Law's Texture Energy Measures

$$L_{3} = [1,2,1] \qquad E_{3} = [-1,0,1] \qquad S_{3} = [-1,2,-1]$$
$$L_{5} = [1,4,6,4,1]$$
$$E_{5} = [-1,-2,0,2,1]$$
$$S_{5} = [-1,0,2,0,-1]$$
$$R_{5} = [1,-4,6,-4,1]$$
$$W_{5} = [-1,2,0,-2,-1]$$

$$L_5^T \times S_5 = \begin{bmatrix} -1 & 0 & 2 & 0 & -1 \\ -4 & 0 & 8 & 0 & -4 \\ -6 & 0 & 12 & 0 & -6 \\ -4 & 0 & 8 & 0 & -4 \\ -1 & 0 & 2 & 0 & -1 \end{bmatrix}$$

•Convolute different Law's masks with image

• Compute energy statistics

m RUBBERR (a) (c) 4/15/2008 (d)

4/1

Motion – object

Difference image:

$$d(i,j) = 0 \quad if \quad |f_1(i,j) - f_2(i,j)| \le \varepsilon$$

1 otherwise

No motion direction information !

$$d_{cum}(i,j) = \sum_{k=1}^{n} a_k |f_1(i,j) - f_k(i,j)|$$

Tells us how often the image gray level was different from gray-level of reference image

Cumulative difference image

a b c

FIGURE 10.49 ADIs of a rectangular object moving in a southeasterly direction. (a) Absolute ADI. (b) Positive ADI. (c) Negative ADI.

Motion Field

- A velocity vector is assigned to each pixel in the image
- Velocities due to relative motion between camera and the 3D scene
- Image change due to motion during a time interval dt
- Velocity field that represents 3-dimensional motion of object points across 2-dimensional image

Optical flow

- Motion of brightness patterns in image sequence
- Assumptions for computing optical flow:
 - Observed brightness of any object point is constant over time
 - Nearby points in the image plane move in a similar manner

$$f(x + dx, y + dy, t + dt) = f(x, y, t) + \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial t}dt + O(\partial^2)$$
$$= f(x, y, t) + f_x dx + f_y dy + f_t dt + O(\partial^2)$$

$$t + \delta t$$

t

Gray-level difference at same location over time is equivalent to product of spatial gray-level difference and velocity

$$f(x+dx, y+dy, t+dt) = f(x, y, t) \Longrightarrow -f_t = f_x \frac{dx}{dt} + f_y \frac{dy}{dt}$$
$$c = \left(\frac{dx}{dt}, \frac{dy}{dt}\right) = (u, v)$$

Optical Flow Constraints

• no spatial change in brightness, induce no temporal change in brightness \rightarrow no discernible motion

 motion perpendicular to local gradient induce no temporal change in brightness → no discernible motion

• motion in direction of local gradient, induce temporal change in brightness \rightarrow discernible motion

• only motion in direction of local gradient induces temporal change in brightness and discernible motion

Which descriptors? Image Feature Evaluation

- 1. Prototype Performance
 - Classify (Segment) image using different features
 - Evaluate which feature is optimal (minimum classification error)
- 2. Figure of Merit
 - Establish functional distance measurements between set of image features (large distance → low classification error)
 - Bhattacharyya distance

