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Description
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High-level Image 
Representation
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Lecture Outline

� Image Description
� Shape Descriptors
� Texture & Texture Descriptors
� SIFT
� Motion Descriptors
� Color Descriptors
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Shape Description

� Shape Represented by its Boundary
� Shape Numbers, 
� Fourier Descriptors, 
� Statistical Moments

� Shape Represented by its Interior
� Topological Descriptors
� Moment Invariants
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Boundary Representation: 
(Freeman) Chain Code

Sub-sampled boundary Chain code of boundaryOriginal boundary

Chain code for 
4-neighborhood

Chain code for 
8-neighborhood

Boundary representation = 0766666453321212
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8-directional chain code                     � 00006066666666444444242222202202

Rotation normalized chain code         � 0006200000006000006260000620626

Chain Code: example

Starting point normalized chain code � 00006066666666444444242222202202

First difference of chain code
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Shape Number –
A boundary descriptor
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Boundary descriptor – Fourier
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50% 10% 5%

2.5% 1.25%

100%

0.63% 0.28%

Only 8 
descriptors

2868 
descriptors

Boundary Reconstruction using 
Fourier Descriptors
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Boundary Representation: Signatures

• Represent 2-D boundary shape using 1-D signature signal
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Boundary Representation: Signatures
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Boundary Description using 
Statistical Moments
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� Area
� Perimeter
� Compactness
� Circularity Ratio
� Mean/Median intensity
� Max/Min intensity
� Normalized area

Region Descriptors - Simple

(perimeter)2/Area
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Topological Region Descriptors
• Topological properties: Properties of image preserved under 
rubber-sheet distortions

H: # holes in the image

C: # connected components

E = C-H: Euler Number

H=2, C=1, E=-1

H=0, C=3, E=3

H=1, C=1, E=0 H=2, C=1, E=-1

EHCFQV =−=+−
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Geometric Moment Invariants

∫ ∫= dxdyyxfyxm qp
pq ),( (p+q)-th 2D geometric moment

Projection of f(x,y) onto monomial qp yx

• Why use moments?

• Geometric moments of different orders represent spatial 
characteristics of the image intensity distribution
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Central Moments
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Moment Invariants 
(translation, scale, mirroring, rotation)
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Affine Transform & Affine Moment Invariants
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xyayaxaax 3210' +++=
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needed to find coefficients

In practice: affine transform
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Texture - Definition
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Texture – Quantification Methods

� Statistical: compute local features at 
each point in image and derive a set 
of statistics from the distribution of 
local features

� 1st, 2nd, and higher-order statistics 
based on how many points are 
used to define local features

� Structural: texture is considered to 
be composed of “texture elements”. 
Properties of the “texture elements” 
and their spatial placement rules 
characterizes the texture

� Original texture can be 
reconstructed from its structural 
description
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Statistical Texture Analysis
1st order statistics

image histogram
fhf →

• Obtain statistics of the histogram:

Mean:

Variance:

Skewness:

Entropy:
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Statistical Texture Analysis
1st order statistics
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Statistical Texture Analysis
2nd order statistics: Co-occurrence

� Joint gray-level histogram of pairs of 
pixels
� 2D histogram
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Statistical Texture Analysis
2nd order statistics: Co-occurrence
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Statistical Texture Analysis
2nd order statistics: Co-occurrence (example)

image Co-occurrence matrix
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Statistical Texture Analysis
2nd order statistics: Co-occurrence (statistics)

Angular 2nd moment (energy):

Maximum Probability:

Contrast:

Correlation:
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Statistical Texture Analysis
2nd order statistics: Difference Statistics

Angular 2nd moment (energy):

Mean:

Contrast:
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Statistical Texture Analysis
2nd order statistics: Autocorrelation
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Large texture elements � autoccorrelation decreases slowly with increasing distance

Small texture elements � autoccorrelation decreases rapidly with increasing distance

Periodic texture elements � periodic increase & decrease in autocorrelation value
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Statistical Texture Analysis
2nd order statistics: Fourier Power Spectrum
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Law’s Texture Energy Measures
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Motion – object 

1f 2f

object 
motion
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Motion Field

• A velocity vector is assigned to each pixel in the image

• Velocities due to relative motion between camera and the 3D 
scene

• Image change due to motion during a time interval dt

• Velocity field that represents 3-dimensional motion of object 
points across 2-dimensional image

M
otion field
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Optical flow

• Motion of brightness patterns in image sequence

• Assumptions for computing optical flow:

• Observed brightness of any object point is 
constant over time

• Nearby points in the image plane move in a 
similar manner
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Optical Flow Constraints

• no spatial change in brightness, induce no temporal 
change in brightness � no discernible motion

• motion perpendicular to local gradient induce no temporal 
change in brightness � no discernible motion

• motion in direction of local gradient, induce temporal 
change in brightness � discernible motion

• only motion in direction of local gradient induces temporal 
change in brightness and discernible motion

vfuff yxt +=−
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Optical flow != Motion Field
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Which descriptors?
Image Feature Evaluation

1. Prototype Performance
� Classify (Segment) image using 

different features
� Evaluate which feature is optimal 

(minimum classification error)

2. Figure of Merit
� Establish functional distance 

measurements between set of 
image features (large distance �
low classification error)

� Bhattacharyya distance


