Lecture 10 (4.14.07)

Image Representation and Description

Shahram Ebadollahi
Lecture Outline

- Image Description
 - Shape Descriptors
 - Texture & Texture Descriptors
 - SIFT
 - Motion Descriptors
 - Color Descriptors
Shape Description

- Shape Represented by its Boundary
 - Shape Numbers,
 - Fourier Descriptors,
 - Statistical Moments

- Shape Represented by its Interior
 - Topological Descriptors
 - Moment Invariants
Boundary Representation: (Freeman) Chain Code

Boundary representation = 0766666453321212
Chain Code: example

8-directional chain code \[\rightarrow 00006066666664444422222022022]\n
Starting point normalized chain code \[\rightarrow 00006066666664444422222022022]\n
Rotation normalized chain code \[\rightarrow 0006200000600006260000620626\]

First difference of chain code
Shape Number –
A boundary descriptor

Order 4

Chain code: 0 3 2 1
Difference: 3 3 3 3
Shape no.: 3 3 3 3

Order 6

Chain code: 0 0 3 2 2 1
Difference: 3 0 3 3 0 3
Shape no.: 0 3 3 0 3 3

Order 8

Chain code: 0 0 3 2 2 1 1
Difference: 3 0 3 0 3 0 3
Shape no.: 0 3 0 3 1 3 3

Order 10

Chain code: 0 0 0 3 2 2 2 2 2 1 1
Difference: 3 0 0 3 1 1 3 0 1 3 0
Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 3 1 3 0 3
Boundary descriptor – Fourier

\[s(k) = x(k) + jy(k) \quad k = 0, 1, 2, \ldots, K - 1 \]

\[a(u) = \sum_{k=0}^{K-1} s(k)e^{-j2\pi uk/K} \quad u = 0, 1, 2, \ldots, K - 1 \]

\[s(k) = \frac{1}{K} \sum_{u=0}^{K-1} a(u)e^{j2\pi uk/K} \quad k = 0, 1, 2, \ldots, K - 1 \]

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Boundary</th>
<th>Fourier Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>(s(k))</td>
<td>(a(u))</td>
</tr>
<tr>
<td>Rotation</td>
<td>(s_r(k) = s(k)e^{j\theta})</td>
<td>(a_r(u) = a(u)e^{j\theta})</td>
</tr>
<tr>
<td>Translation</td>
<td>(s_t(k) = s(k) + \Delta xy)</td>
<td>(a_t(u) = a(u) + \Delta xy\delta(u))</td>
</tr>
<tr>
<td>Scaling</td>
<td>(s_s(k) = \alpha s(k))</td>
<td>(a_s(u) = \alpha a(u))</td>
</tr>
<tr>
<td>Starting point</td>
<td>(s_p(k) = s(k - k_0))</td>
<td>(a_p(u) = a(u)e^{-j2\pi k_0 u/K})</td>
</tr>
</tbody>
</table>
Boundary Reconstruction using Fourier Descriptors

2868 descriptors

Only 8 descriptors

<table>
<thead>
<tr>
<th>100%</th>
<th>50%</th>
<th>10%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image](4/15/2008 950% 10% 5%2.5% 1.25%100%0.63%0.28% Only 8 descriptors2868 descriptors)</td>
<td>![Image](4/15/2008 950% 10% 5%2.5% 1.25%100%0.63%0.28% Only 8 descriptors2868 descriptors)</td>
<td>![Image](4/15/2008 950% 10% 5%2.5% 1.25%100%0.63%0.28% Only 8 descriptors2868 descriptors)</td>
<td>![Image](4/15/2008 950% 10% 5%2.5% 1.25%100%0.63%0.28% Only 8 descriptors2868 descriptors)</td>
</tr>
<tr>
<td>![Image](4/15/2008 950% 10% 5%2.5% 1.25%100%0.63%0.28% Only 8 descriptors2868 descriptors)</td>
<td>![Image](4/15/2008 950% 10% 5%2.5% 1.25%100%0.63%0.28% Only 8 descriptors2868 descriptors)</td>
<td>![Image](4/15/2008 950% 10% 5%2.5% 1.25%100%0.63%0.28% Only 8 descriptors2868 descriptors)</td>
<td>![Image](4/15/2008 950% 10% 5%2.5% 1.25%100%0.63%0.28% Only 8 descriptors2868 descriptors)</td>
</tr>
</tbody>
</table>
Boundary Representation: Signatures

- Represent 2-D boundary shape using 1-D signature signal
Boundary Representation: Signatures
Boundary Description using Statistical Moments

\[\mu_n(v) = \sum_{i=0}^{A-1} (v_i - m)^n p(v_i) \]
\text{n-th moment of } v

\[m = \sum_{i=1}^{A-1} v_i p(v_i) \]
Region Descriptors - Simple

- Area
- Perimeter
- Compactness
- Circularity Ratio
- Mean/Median intensity
- Max/Min intensity
- Normalized area

\[R_c = \frac{A}{P^2 / 4\pi} \]

Area of circle with same perimeter as the shape

\[C : \quad 4\pi \quad 5\pi \quad 16 \]

\[R_c : \quad 1 \quad \frac{4}{5} \approx 0.8 \quad \frac{\pi}{4} \approx 0.78 \]
Topological Region Descriptors

• **Topological properties:** Properties of image preserved under rubber-sheet distortions

\[H: \# \text{ holes in the image} \]
\[C: \# \text{ connected components} \]
\[E = C - H: \text{ Euler Number} \]

\[V - Q + F = C - H = E \]
Geometric Moment Invariants

\[m_{pq} = \int \int x^p y^q f(x, y) \, dx \, dy \]
\((p+q) \)-th 2D geometric moment

\[m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^p y^q f(x, y) \]
Projection of \(f(x,y) \) onto monomial \(x^p y^q \)

- Why use moments?
 - Geometric moments of different orders represent spatial characteristics of the image intensity distribution

\[m_{00} \]
Total intensity of image. For binary image \(\rightarrow \) area

\[x_0 = \frac{m_{10}}{m_{00}} \]
Intensity centroid

\[y_0 = \frac{m_{01}}{m_{00}} \]
binary image \(\rightarrow \) geometrical center
Central Moments

\[\mu_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (x - x_0)^p (y - y_0)^q f(x, y) \]

[Translation invariance]

\[\mu_{00} = m_{00} \]
\[\mu_{10} = \mu_{01} = 0 \]
\[\mu_{02}, \mu_{20} \quad \text{Variance about the centroid} \]
\[\mu_{11} \quad \text{covariance} \]

Scaled Central Moment

\[\lambda_{pq} = \mu'_{pq} / (\mu'_{00})^{(p+q+2)/2} \]
Scale and translation invariant
\[\mu'_{pq} = \frac{\mu_{pq}}{\alpha^{p+q+2}} \]

Normalized Un-Scaled Central Moment

\[\eta_{pq} = \mu_{pq} / (\mu_{00})^{(p+q+2)/2} \]
Moment Invariants
(translation, scale, mirroring, rotation)

\[
\phi_1 = \eta_{20} + \eta_{02}
\]

\[
\phi_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2
\]

\[
\phi_3 = (\eta_{30} - \eta_{12})^2 + (\eta_{21} - \eta_{03})^2
\]

\[
\phi_4 = (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2
\]

\[
\phi_5 = \cdots
\]

\[
\phi_6 = \cdots
\]

\[
\phi_7 = \cdots
\]

<table>
<thead>
<tr>
<th>Moment Invariant</th>
<th>Original Image</th>
<th>Translated</th>
<th>Half Size</th>
<th>Mirrored</th>
<th>Rotated 45°</th>
<th>Rotated 90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_1)</td>
<td>2.8662</td>
<td>2.8662</td>
<td>2.8664</td>
<td>2.8662</td>
<td>2.8661</td>
<td>2.8662</td>
</tr>
<tr>
<td>(\phi_2)</td>
<td>7.1265</td>
<td>7.1265</td>
<td>7.1257</td>
<td>7.1265</td>
<td>7.1266</td>
<td>7.1265</td>
</tr>
<tr>
<td>(\phi_3)</td>
<td>10.4109</td>
<td>10.4109</td>
<td>10.4047</td>
<td>10.4109</td>
<td>10.4115</td>
<td>10.4109</td>
</tr>
<tr>
<td>(\phi_4)</td>
<td>10.3742</td>
<td>10.3742</td>
<td>10.3719</td>
<td>10.3742</td>
<td>10.3742</td>
<td>10.3742</td>
</tr>
</tbody>
</table>

4/15/2008
Affine Transform & Affine Moment Invariants

\[x' = T_x(x, y) \]
\[y' = T_y(x, y) \]

\[x' = \sum_{r=0}^{m} \sum_{k=0}^{m-r} a_{rk} x^r y^k \]
\[y' = \sum_{r=0}^{m} \sum_{k=0}^{m-r} b_{rk} x^r y^k \]

In practice: bilinear transform

4 pairs of corresponding points needed to find coefficients

\[x' = a_0 + a_1 x + a_2 y + a_3 xy \]
\[y' = b_0 + b_1 x + b_2 y + b_3 xy \]

In practice: affine transform

3 pairs of corresponding points needed to find coefficients

\[x' = a_0 + a_1 x + a_2 y \]
\[y' = b_0 + b_1 x + b_2 y \]

Rotation:

\[x' = x \cos \phi + y \sin \phi \]
\[y' = -x \sin \phi + y \cos \phi \]

Scale:

\[x' = ax \]
\[y' = by \]

Skew:

\[x' = x + y \tan \phi \]
\[y' = y \]
Elliptical Shape Descriptors

Principal moment of inertia:

\[I_1 = \frac{\mu_{20} + \mu_{02} + [(\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2]^{1/2}}{2} \]

\[I_2 = \frac{\mu_{20} + \mu_{02} - [(\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2]^{1/2}}{2} \]

\((I_1 + I_2) / m_{00} \) spreadness

\((I_2 - I_1) / (I_1 + I_2) \) elongation

Image ellipse characterizes fundamental shape features and also 2D position and orientation

\[\theta = 0.5 \tan^{-1} \left(\frac{2\mu_{11}}{\mu_{20} - \mu_{02}} \right) \]

\[a = 2(I_1 / \mu_{00})^{1/2} \quad b = 2(I_2 / \mu_{00})^{1/2} \]
Texture - Definition
Texture – Quantification Methods

- Statistical: compute local features at each point in image and derive a set of statistics from the distribution of local features
 - 1st, 2nd, and higher-order statistics based on how many points are used to define local features

- Structural: texture is considered to be composed of “texture elements”. Properties of the “texture elements” and their spatial placement rules characterizes the texture
 - Original texture can be reconstructed from its structural description
Statistical Texture Analysis
1st order statistics

\[
\text{image } f \rightarrow h_f \text{ histogram}
\]

- Obtain statistics of the histogram:

\[
\text{Mean: } \sum_{i=0}^{L-1} ih(i) \quad \text{: average intensity}
\]

\[
\text{Variance: } \sum_{i=0}^{L-1} (i - \mu)^2 h(i) \quad \text{: measure of intensity contrast}
\]

\[
\text{Skewness: } \sum_{i=0}^{L-1} (i - \mu)^3 h(i)
\]

\[
\text{Entropy: } -\sum_{i=0}^{L-1} h(i) \log h(i) \quad \text{Measure of variability of intensity}
\]
<table>
<thead>
<tr>
<th>Texture</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>R (normalized)</th>
<th>Third moment</th>
<th>Uniformity</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth</td>
<td>82.64</td>
<td>11.79</td>
<td>0.002</td>
<td>-0.105</td>
<td>0.026</td>
<td>5.434</td>
</tr>
<tr>
<td>Coarse</td>
<td>143.56</td>
<td>74.63</td>
<td>0.079</td>
<td>-0.151</td>
<td>0.005</td>
<td>7.783</td>
</tr>
<tr>
<td>Regular</td>
<td>99.72</td>
<td>33.73</td>
<td>0.017</td>
<td>0.750</td>
<td>0.013</td>
<td>6.674</td>
</tr>
</tbody>
</table>
Statistical Texture Analysis
1st order statistics

image

histogram

statistics

Skewness = 2.08
Entropy = 0.88

Skewness = 2.44
Entropy = 0.77

Skewness = -0.092
Entropy = 0.97
Statistical Texture Analysis

2nd order statistics: Co-occurrence

\[f(m_2,n_2) = j \]

\[P_{(d,\theta)}(i, j) \approx \Pr[f(m_1,n_1) = i, f(m_2,n_2) = j] \]

\[f(m_1,n_1) = i \]

- Joint gray-level histogram of pairs of pixels
- 2D histogram
Statistical Texture Analysis

2^{nd} order statistics: Co-occurrence

\[
P_{(d,\theta=0^\circ)}(i, j) = \left| \left\{ ((k, l), (m, n)) \in (M \times N) \times (M \times N) : \right. \right.
\]
\[
k - m = 0, \left| l - n \right| = d, f(k, l) = i, f(m, n) = j \left. \right\} \right|
\]

\[
P_{(d,\theta=45^\circ)}(i, j) = \left| \left\{ ((k, l), (m, n)) \in (M \times N) \times (M \times N) : \right. \right.
\]
\[
(k - m = d, l - n = -d) \lor (k = m = -d, l - n = d), f(k, l) = i, f(m, n) = j \left. \right\} \right|
\]

\[
P_{(d,\theta=90^\circ)}(i, j)
\]

\[
P_{(d,\theta=135^\circ)}(i, j)
\]

\[
\left\{ \cdots \right\} \text{ is set cardinality}
\]
Statistical Texture Analysis

2nd order statistics: Co-occurrence (example)

image

Co-occurrence matrix

\[
\begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 2 & 2 & 2 \\
2 & 2 & 3 & 3 \\
\end{bmatrix}
\]
Statistical Texture Analysis
2nd order statistics: Co-occurrence (statistics)

Angular 2nd moment (energy):
(measure of image homogeneity)

\[
\sum_{i=1}^{L} \sum_{j=1}^{L} P_{(d,\theta)}^2(i, j)
\]

Maximum Probability:

\[
\max_{i,j} P_{(d,\theta)}(i, j)
\]

Entropy:

\[
-\sum_{i=1}^{L} \sum_{j=1}^{L} P_{(d,\theta)}(i, j) \log P_{(d,\theta)}(i, j)
\]

Contrast:
(measure of local variations)

\[
\sum_{i=1}^{L} \sum_{j=1}^{L} |i - j|^{\kappa} P_{(d,\theta)}^4(i, j)
\]

Correlation:
(measure of image linearity)

\[
\frac{\sum_{i=1}^{L} \sum_{j=1}^{L} [ijP_{(d,\theta)}(i, j)] - \mu_x \mu_y}{\sigma_x \sigma_y}
\]

\[
\mu_x = \sum_{i=1}^{L} i \sum_{j=1}^{L} P_{(d,\theta)}(i, j)
\]

\[
\sigma_x = \sum_{i=1}^{L} (i - \mu_x)^2 \sum_{j=1}^{L} P_{(d,\theta)}(i, j)
\]

4/15/2008
<table>
<thead>
<tr>
<th>Normalized Co-occurrence Matrix</th>
<th>Max Probability</th>
<th>Correlation</th>
<th>Contrast</th>
<th>Uniformity</th>
<th>Homogeneity</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1/n_1</td>
<td>0.00006</td>
<td>-0.0005</td>
<td>10838</td>
<td>0.00002</td>
<td>0.0366</td>
<td>15.75</td>
</tr>
<tr>
<td>G_2/n_2</td>
<td>0.01500</td>
<td>0.9650</td>
<td>570</td>
<td>0.01230</td>
<td>0.0824</td>
<td>6.43</td>
</tr>
<tr>
<td>G_3/n_3</td>
<td>0.06860</td>
<td>0.8798</td>
<td>1356</td>
<td>0.00480</td>
<td>0.2048</td>
<td>13.58</td>
</tr>
</tbody>
</table>
Statistical Texture Analysis

2nd order statistics: Difference Statistics

\[P_{(d, \theta)}(k) = \sum_{i, j \in \{1, \ldots, L\}} P_{(d, \theta)}(i, j) \quad \text{is a subset of co-occurrence matrix} \]

Angular 2nd moment (energy):

\[\sum_{k=0}^{L-1} P_{(d, \theta)}^{2}(k) \]

Mean:

\[\sum_{k=0}^{L-1} kP_{(d, \theta)}(k) \]

Entropy:

\[-\sum_{k=0}^{L-1} P_{(d, \theta)}(k) \log P_{(d, \theta)}(k) \]

Contrast:

\[\sum_{k=0}^{L-1} k^2 P_{(d, \theta)}(k) \]
Statistical Texture Analysis

2nd order statistics: Autocorrelation

\[C_{ff}(p, q) = \frac{MN}{(M - p)(N - q)} \sum_{k=1}^{M-p} \sum_{l=1}^{N-q} f(k, l) f(k + p, l + q) \]

\[\sum_{k=1}^{M} \sum_{l=1}^{N} f^2(k, l) \]

Large texture elements \(\Rightarrow \) autocorrelation decreases slowly with increasing distance

Small texture elements \(\Rightarrow \) autocorrelation decreases rapidly with increasing distance

Periodic texture elements \(\Rightarrow \) periodic increase & decrease in autocorrelation value
Statistical Texture Analysis

2nd order statistics: Fourier Power Spectrum

\[f(x, y) \leftrightarrow F(u, v) \]

Power Spectrum

\[P(u, v) = |F(u, v)|^2 \]

Note:

\[C_{ff} = F^{-1}\{ |F(u, v)|^2 \} \]

Indicator for size of dominant texture element or texture coarseness

\[P(r) = 2 \sum_{\theta=0}^{\pi} P(r, \theta) \]

\[P(\theta) = \sum_{r=0}^{L/2} P(r, \theta) \]

Indicator for the directionality of the texture
Law’s Texture Energy Measures

\[L_3 = [1,2,1] \quad E_3 = [-1,0,1] \quad S_3 = [-1,2,-1] \]

\[L_5 = [1,4,6,4,1] \quad E_5 = [-1,-2,0,2,1] \quad S_5 = [-1,0,2,0,-1] \quad R_5 = [1,-4,6,-4,1] \quad W_5 = [-1,2,0,-2,-1] \]

\[L_5^T \times S_5 = \begin{bmatrix}
-1 & 0 & 2 & 0 & -1 \\
-4 & 0 & 8 & 0 & -4 \\
-6 & 0 & 12 & 0 & -6 \\
-4 & 0 & 8 & 0 & -4 \\
-1 & 0 & 2 & 0 & -1 \\
\end{bmatrix} \]

- Convolute different Law’s masks with image
- Compute energy statistics
Difference image:

\[d(i, j) = \begin{cases} 0 & \text{if } |f_1(i, j) - f_2(i, j)| \leq \varepsilon \\ 1 & \text{otherwise} \end{cases} \]

No motion direction information!

\[d_{cum}(i, j) = \sum_{k=1}^{n} a_k |f_1(i, j) - f_k(i, j)| \]

Tells us how often the image gray level was different from gray-level of reference image

FIGURE 10.49 ADIs of a rectangular object moving in a southeasterly direction. (a) Absolute ADI, (b) Positive ADI, (c) Negative ADI.
Motion Field

- A velocity vector is assigned to each pixel in the image
- Velocities due to relative motion between camera and the 3D scene
- Image change due to motion during a time interval dt
- Velocity field that represents 3-dimensional motion of object points across 2-dimensional image
Optical flow

• Motion of brightness patterns in image sequence

• Assumptions for computing optical flow:
 • Observed brightness of any object point is constant over time
 • Nearby points in the image plane move in a similar manner

\[
f(x + dx, y + dy, t + dt) = f(x, y, t) + \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial t} dt + O(\partial^2)
\]

\[
= f(x, y, t) + f_x dx + f_y dy + f_t dt + O(\partial^2)
\]

\[
f(x + dx, y + dy, t + dt) = f(x, y, t) \Rightarrow - f_t = f_x \frac{dx}{dt} + f_y \frac{dy}{dt}
\]

\[
c = (\frac{dx}{dt}, \frac{dy}{dt}) = (u, v)
\]

Gray-level difference at same location over time is equivalent to product of spatial gray-level difference and velocity

\[
- f_t = f_x u + f_y v = \nabla f \cdot c
\]
Optical Flow Constraints

\[-f_t = f_x u + f_y v\]

- no spatial change in brightness, induce no temporal change in brightness \(\rightarrow\) no discernible motion

- motion perpendicular to local gradient induce no temporal change in brightness \(\rightarrow\) no discernible motion

- motion in direction of local gradient, induce temporal change in brightness \(\rightarrow\) discernible motion

- only motion in direction of local gradient induces temporal change in brightness and discernible motion
Optical flow \neq Motion Field

$MF \neq 0$

$OF = 0$

$MF = 0$

$OF \neq 0$
Which descriptors?
Image Feature Evaluation

1. Prototype Performance
 - Classify (Segment) image using different features
 - Evaluate which feature is optimal (minimum classification error)

2. Figure of Merit
 - Establish functional distance measurements between set of image features (large distance → low classification error)
 - Bhattacharyya distance