## Lecture 10 (4.14.07)

## Image Representation and Description

Shahram Ebadollahi


## Lecture Outline

- Image Description
- Shape Descriptors
- Texture \& Texture Descriptors
- SIFT
- Motion Descriptors
- Color Descriptors


## Shape Description

- Shape Represented by its Boundary
- Shape Numbers,
- Fourier Descriptors,
- Statistical Moments
- Shape Represented by its Interior
- Topological Descriptors
- Moment Invariants


# Boundary Representation: (Freeman) Chain Code 

Boundary representation $=0766666453321212$


Chain code for 4-neighborhood

4/15/2008


Chain code for 8-neighborhood

## Chain Code: example



8-directional chain code
$\rightarrow 00006066666666444444242222202202$
Starting point normalized chain code $\rightarrow 00006066666666444444242222202202$
Rotation normalized chain code

## Shape Number - <br> A boundary descriptor



Chain code: $\begin{array}{llll}0 & 3 & 2 & 1\end{array}$
Difference: 3333
Shape no.: $\begin{array}{llll}3 & 3 & 3 & 3\end{array}$


Chain code: $\begin{array}{llllllllllllllll}0 & 0 & 3 & 3 & 2 & 2 & 1 & 1 & 0 & 3 & 0 & 3 & 2 & 2 & 1 & 1\end{array}$ Difference: $\begin{array}{lllllllllllllllll}3 & 0 & 3 & 0 & 3 & 0 & 3 & 0 & 3 & 3 & 1 & 3 & 3 & 0 & 3 & 0\end{array}$

Shape no.: $0 \begin{array}{llllllllllllllll}0 & 3 & 0 & 3 & 0 & 3 & 0 & 3 & 0 & 3 & 0 & 3 & 3 & 1 & 3 & 3\end{array}$

$\begin{array}{llllllll}0 & 0 & 0 & 3 & 2 & 2 & 1\end{array}$
$\begin{array}{llllllll}3 & 0 & 0 & 3 & 3 & 0 & 0 & 3\end{array}$
$\begin{array}{llllllll}0 & 0 & 3 & 3 & 0 & 0 & 3\end{array}$


Chain code: $\begin{array}{lllllllllllllllll}0 & 0 & 0 & 3 & 0 & 0 & 3 & 2 & 2 & 3 & 2 & 2 & 2 & 1 & 2 & 1 & 1\end{array}$ Difference: $\begin{array}{llllllllllllllll} & 0 & 0 & 0 & 3 & 1 & 0 & 3 & 3 & 0 & 1 & 3 & 0 & 0 & 3 & 1\end{array} 3$ Shape no.: $0 \begin{array}{llllllllllllllll}0 & 0 & 3 & 1 & 0 & 3 & 3 & 0 & 1 & 3 & 0 & 0 & 3 & 1 & 3 & 0\end{array}$

## Boundary descriptor - Fourier

$$
\begin{aligned}
& s(k)=x(k)+j y(k) \quad k=0,1,2, \cdots, K-1 \\
& a(u)=\sum_{k=0}^{K-1} s(k) e^{-j 2 \pi u k / K} \quad u=0,1,2, \cdots, K-1 \\
& s(k)=\frac{1}{K} \sum_{u=0}^{K-1} a(u) e^{j 2 \pi u k / K} \quad k=0,1,2, \cdots, K-1 \\
& \longleftarrow \text { Fourier Descriptor }
\end{aligned}
$$

## Boundary Reconstruction using Fourier Descriptors



Only 8
descriptors

## Boundary Representation: Signatures

- Represent 2-D boundary shape using 1-D signature signal




## Boundary Representation: Signatures




## Boundary Description using Statistical Moments

$$
\begin{aligned}
& \mu_{n}(v)=\sum_{i=0}^{A-1}\left(v_{i}-m\right)^{n} p\left(v_{i}\right) \quad \text { n-th moment of } v \\
& m=\sum_{i=1}^{A-1} v_{i} p\left(v_{i}\right)
\end{aligned}
$$



## Region Descriptors - Simple

- Area
- Perimeter
- Compactness $\longrightarrow($ perimeter) $2 /$ Area
- Circularity Ratio
- Mean/Median intensity
- Max/Min intensity
- Normalized area


C: $4 \pi$
$5 \pi$
16
$R_{c}$ :
1
$4 / 5 \approx 0.8 \quad \pi / 4 \approx 0.78$
Area of circle with same perimeter as the shape



## Topological Region Descriptors

- Topological properties: Properties of image preserved under rubber-sheet distortions
$\boldsymbol{H}$ : \# holes in the image
C: \# connected components

$$
H=2, C=1, E=-1
$$

E = C-H: Euler Number

$$
V-Q+F=C-H=E
$$



## Geometric Moment Invariants

$$
\begin{gathered}
m_{p q}=\iint^{p} x^{p} y^{q} f(x, y) d x d y \\
m_{p q}=\sum_{x=0}^{M=1} \sum_{y=0}^{N-1} x^{p} y^{q} f(x, y)
\end{gathered}
$$

( $\mathrm{p}+\mathrm{q}$ )-th 2D geometric moment
Projection of $\mathrm{f}(\mathrm{x}, \mathrm{y})$ onto monomial $x^{p} y^{q}$
-Why use moments?

- Geometric moments of different orders represent spatial characteristics of the image intensity distribution
$m_{00} \quad$ Total intensity of image. For binary image $\rightarrow$ area

$$
x_{0}=m_{10} / m_{00} \quad \text { Intensity centroid }
$$

$$
y_{0}=m_{01} / m_{00} \quad \text { binary image } \rightarrow \text { geometrical center }
$$

## Central Moments

$$
\mu_{p q}=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1}\left(x-x_{0}\right)^{p}\left(y-y_{0}\right)^{q} f(x, y)
$$

[Translation invariance]

$$
\begin{aligned}
& \mu_{00}=m_{00} \\
& \mu_{10}=\mu_{01}=0 \\
& \mu_{02}, \mu_{20} \quad \text { Variance about the centroid } \\
& \mu_{11} \quad \text { covariance }
\end{aligned}
$$

Scaled Central Moment
$\lambda_{p q}=\mu_{p q}^{\prime} /\left(\mu_{00}^{\prime}\right)^{(p+q+2) / 2} \quad$ Scale and translation invariant $\quad \mu_{p q}^{\prime}=\frac{\mu_{p q}}{\alpha^{p+q+2}}$
Normalized Un-Scaled Central Moment

$$
\eta_{p q}=\mu_{p q} /\left(\mu_{00}\right)^{(p+q+2) / 2}
$$

## Moment Invariants

(translation, scale, mirroring, rotation)

$$
\begin{aligned}
& \phi_{1}=\eta_{20}+\eta_{02} \\
& \phi_{2}=\left(\eta_{20}-\eta_{02}\right)^{2}+4 \eta_{11}^{2} \\
& \phi_{3}=\left(\eta_{30}-\eta_{12}\right)^{2}+\left(\eta_{21}-\eta_{03}\right)^{2} \\
& \phi_{4}=\left(\eta_{30}+\eta_{12}\right)^{2}+\left(\eta_{21}+\eta_{03}\right)^{2} \\
& \phi_{5}=\cdots \\
& \phi_{6}=\cdots
\end{aligned}
$$



$$
\phi_{7}=\cdots
$$

| Moment <br> Invariant | Original <br> Image | Translated | Half Size | Mirrored | Rotated 45 | Rotated 90 |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| $\phi_{1}$ | 2.8662 | 2.8662 | 2.8664 | 2.8662 | 2.8661 | 2.8662 |
| $\phi_{2}$ | 7.1265 | 7.1265 | 7.1257 | 7.1265 | 7.1266 | 7.1265 |
| $\phi_{3}$ | 10.4109 | 10.4109 | 10.4047 | 10.4109 | 10.4115 | 10.4109 |
| $\phi_{4}$ | 10.3742 | 10.3742 | 10.3719 | 10.3742 | 10.3742 | 10.3742 |
| $\phi_{5}$ | 21.3674 | 21.3674 | 21.3924 | 21.3674 | 21.3663 | 21.3674 |
| $\phi_{6}$ | 13.9417 | 13.9417 | 13.9383 | 13.9417 | 13.9417 | 13.9417 |
| $\phi_{7}$ | -20.7809 | -20.7809 | -20.7724 | 20.7809 | -20.7813 | -20.7809 |

## Affine Transform \& Affine Moment Invariants

$$
\begin{aligned}
& x^{\prime}=T_{x}(x, y) \\
& y^{\prime}=T_{y}(x, y) \quad x^{\prime}=\sum_{r=0}^{m} \sum_{k=0}^{m-r} a_{r k} x^{r} y^{k} \\
& y^{\prime}=\sum_{r=0}^{m} \sum_{k=0}^{m-r} b_{r k} x^{r} y^{k}
\end{aligned}
$$

In practice: bilinear transform

4 pairs of corresponding points needed to find coefficients

$$
\begin{aligned}
& x^{\prime}=a_{0}+a_{1} x+a_{2} y+a_{3} x y \\
& y^{\prime}=b_{0}+b_{1} x+b_{2} y+b_{3} x y
\end{aligned}
$$

In practice: affine transform

3 pairs of corresponding points needed to find coefficients

Rotation:

4/15/2008

$$
\begin{aligned}
& x^{\prime}=x \cos \phi+y \sin \phi \\
& y^{\prime}=-x \sin \phi+y \cos \phi
\end{aligned}
$$

$$
x^{\prime}=a_{0}+a_{1} x+a_{2} y
$$

$$
y^{\prime}=b_{0}+b_{1} x+b_{2} y
$$

Scale:
Skew:

$$
\begin{gathered}
x^{\prime}=a x \\
y^{\prime}=b y
\end{gathered}
$$

$$
\begin{aligned}
& x^{\prime}=x+y \tan \phi \\
& y^{\prime}=y
\end{aligned}
$$

## Elliptical Shape Descriptors

Principal moment of inertia:
$I_{1}=\frac{\left(\mu_{20}+\mu_{02}\right)+\left[\left(\mu_{20}-\mu_{02}\right)^{2}+4 \mu_{11}^{2}\right]^{1 / 2}}{2}$
$I_{2}=\frac{\left(\mu_{20}+\mu_{02}\right)-\left[\left(\mu_{20}-\mu_{02}\right)^{2}+4 \mu_{11}^{2}\right]^{1 / 2}}{2}$
$\left(I_{1}+I_{2}\right) / m_{00}^{2} \quad$ spreadness
$\left(I_{2}-I_{1}\right) /\left(I_{1}+I_{2}\right) \quad$ elongation

Image ellipse characterizes fundamental shape features and also 2D position and orientation

$\theta=0.5 \tan ^{-1}\left(\frac{2 \mu_{11}}{\mu_{20}-\mu_{02}}\right)$

$$
a=2\left(I_{1} / \mu_{00}\right)^{1 / 2} \quad b=2\left(I_{2} / \mu_{00}\right)^{1 / 2}
$$

## Texture - Definition

## :\%:。



## Texture - Quantification Methods

- Statistical: compute local features at each point in image and derive a set of statistics from the distribution of local features
- $1^{\text {st }}, 2^{\text {nd }}$, and higher-order statistics based on how many points are used to define local features


A

- Structural: texture is considered to be composed of "texture elements". Properties of the "texture elements" and their spatial placement rules characterizes the texture
- Original texture can be reconstructed from its structural description


B


D

## Statistical Texture Analysis $1^{\text {st }}$ order statistics

$$
\text { image } \quad f \rightarrow \boldsymbol{h}_{f} \quad \text { histogram }
$$

- Obtain statistics of the histogram:

Mean:

Variance:

$$
\begin{array}{ll}
\sum_{i=0}^{L-1} i h(i) & : \text { average intensity } \\
\sum_{i=0}^{L-1}(i-\mu)^{2} h(i) & : \text { measure of intensity contrast } \\
\sum_{i=0}^{L-1}(i-\mu)^{3} h(i) & \\
-\sum_{i=0}^{L-1} h(i) \log h(i) & \text { Measure of variability of intensity }
\end{array}
$$

Skewness:

Entropy:


| Texture | Mean | Standard <br> deviation | $\boldsymbol{R}$ (normalized) | Third <br> moment | Uniformity | Entropy |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: |
| Smooth | 82.64 | 11.79 | 0.002 | -0.105 | 0.026 | 5.434 |
| Coarse | 143.56 | 74.63 | 0.079 | -0.151 | 0.005 | 7.783 |
| Regular | 99.72 | 33.73 | 0.017 | 0.750 | 0.013 | 6.674 |

## Statistical Texture Analysis $1^{\text {st }}$ order statistics



statistics
Skewness $=2.08$
Entropy $=0.88$


Skewness $=2.44$
Entropy $=0.77$


Skewness $=-0.092$
Entropy $=0.97$

## Statistical Texture Analysis $2^{\text {nd }}$ order statistics: Co-occurrence

$$
f\left(m_{2}, n_{2}\right)=j
$$



$$
P_{(d, \theta)}(i, j) \approx \operatorname{Pr}\left[f\left(m_{1}, n_{1}\right)=i, f\left(m_{2}, n_{2}\right)=j\right]
$$

$f\left(m_{1}, n_{1}\right)=i$

- Joint gray-level histogram of pairs of pixels
- 2D histogram


## Statistical Texture Analysis $2^{\text {nd }}$ order statistics: Co-occurrence

$$
\begin{aligned}
& P_{\left(d, \theta=0^{\circ}\right)}(i, j)=\mid\{((k, l),(m, n)) \in(M \times N) \times(M \times N): \\
& k-m=0,|l-n|=d, f(k, l)=i, f(m, n)=j\} \mid \\
& P_{\left(d, \theta=45^{\circ}\right)}(i, j)=\mid\{((k, l),(m, n)) \in(M \times N) \times(M \times N): \\
& (k-m=d, l-n=-d) \vee(k=m=-d, l-n=d), f(k, l)=i, f(m, n)=j\} \mid \\
& P_{\left(d, \theta=90^{\circ}\right)}(i, j) \\
& P_{\left(d, \theta=135^{\circ}\right)}(i, j) \\
& |\{\cdots\}| \text { is set cardinality }
\end{aligned}
$$

## Statistical Texture Analysis

 $2^{\text {nd }}$ order statistics: Co-occurrence (example)| image |  |  |  |
| :---: | :--- | :--- | :--- |
| 0 0 1 <br> 1   <br> 0 0 1$\|$ |  |  |  |
| 0 | 2 | 2 | 2 |
| 2 | 2 | 3 | 3 |



$$
\begin{array}{lll}
0^{\circ} & & 900 \\
P_{H} & =\left(\begin{array}{llll}
4 & 2 & 1 & 0 \\
2 & 4 & 0 & 0 \\
1 & 0 & 6 & 1 \\
0 & 0 & 1 & 2
\end{array}\right) & P_{V}=\left(\begin{array}{llll}
6 & 0 & 2 & 0 \\
0 & 4 & 2 & 0 \\
2 & 2 & 2 & 2 \\
0 & 0 & 2 & 0
\end{array}\right) \\
135^{\circ} P_{L D}=\left(\begin{array}{llll}
2 & 1 & 3 & 0 \\
1 & 2 & 1 & 0 \\
3 & 1 & 0 & 2 \\
0 & 0 & 2 & 0
\end{array}\right) & 45^{\circ} & P_{R D}=\left(\begin{array}{llll}
4 & 1 & 0 & 0 \\
1 & 2 & 2 & 0 \\
0 & 2 & 4 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{array}
$$

## Statistical Texture Analysis $2^{\text {nd }}$ order statistics: Co-occurrence (statistics)

Angular $2^{\text {nd }}$ moment (energy): (measure of image homogeneity)

Maximum Probability:

$$
\sum_{i=1}^{L} \sum_{j=1}^{L} P_{(d, \theta)}^{2}(i, j)
$$

Entropy:

$$
\max _{i, j} P_{(d, \theta)}(i, j)
$$

$$
-\sum_{i=1}^{L} \sum_{j=1}^{L} P_{(d, \theta)}(i, j) \log P_{(d, \theta)}(i, j)
$$

(measure of local variations)

$$
\sum_{i=1}^{L} \sum_{j=1}^{L}|i-j|^{K} P_{(d, \theta)}^{\lambda}(i, j)
$$

Correlation:

$$
\frac{\sum_{i=1}^{L} \sum_{j=1}^{L}\left[i j P_{(d, \theta)}(i, j)\right]-\mu_{x} \mu_{y}}{\sigma_{x} \sigma_{y}}
$$

$$
\text { 4/15/2008 } \quad \mu_{x}=\sum_{i=1}^{L} i \sum_{j=1}^{L} P_{(d, \theta)}(i, j) \quad \sigma_{x}=\sum_{i=1}^{L}\left(i-\mu_{x}\right)^{2} \sum_{j=1}^{L} P_{(d, \theta)}(i, j)
$$



| Normalized <br> Co-occurrence <br> Matrix | Max <br> Probability | Correlation Contrast Uniformity | Homogeneity Entropy |  |  |  |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{G}_{1} / n_{1}$ | 0.00006 | -0.0005 | 10838 | 0.00002 | 0.0366 | 15.75 |
| $\mathbf{G}_{2} / n_{2}$ | 0.01500 | 0.9650 | 570 | 0.01230 | 0.0824 | 6.43 |
| $\mathbf{G}_{3} / n_{3}$ | 0.06860 | 0.8798 | 1356 | 0.00480 | 0.2048 | 13.58 |



## Statistical Texture Analysis $\mathbf{2}^{\text {nd }}$ order statistics: Difference Statistics

$$
P_{(d, \theta)}(k)=\sum_{\substack{i, j \in\{\{1, \cdots, L\} \\|i-j|=k}} P_{(d, \theta)}(i, j) \quad \text { is a subset of co-occurrence matrix }
$$

Angular 2nd moment (energy): $\quad \sum_{k=0}^{L-1} P_{(d, \theta)}^{2}(k)$

Mean:

Entropy:

$$
\begin{aligned}
& \sum_{k=0}^{L-1} k P_{(d, \theta)}(k) \\
- & \sum_{k=0}^{L-1} P_{(d, \theta)}(k) \log P_{(d, \theta)}(k)
\end{aligned}
$$

Contrast:

$$
\sum_{k=0}^{L-1} k^{2} P_{(d, \theta)}(k)
$$

## Statistical Texture Analysis $2^{\text {nd }}$ order statistics: Autocorrelation

$$
C_{f f}(p, q)=\frac{M N}{(M-p)(N-q)} \frac{\sum_{k=1}^{M-p N-q} \sum_{l=1} f(k, l) f(k+p, l+q)}{\sum_{k=1}^{M} \sum_{l=1}^{N} f^{2}(k, l)}
$$

Large texture elements $\rightarrow$ autoccorrelation decreases slowly with increasing distance Small texture elements $\rightarrow$ autoccorrelation decreases rapidly with increasing distance

Periodic texture elements $\rightarrow$ periodic increase \& decrease in autocorrelation value

## Statistical Texture Analysis $2^{\text {nd }}$ order statistics: Fourier Power Spectrum

$$
f(x, y) \leftrightarrow F(u, v)
$$

Power Spectrum

$$
P(u, v)=|F(u, v)|^{2}
$$



$$
P(\theta)=\sum_{r=0}^{L / 2} P(r, \theta)
$$

Note:

$$
C_{f f}=F^{-1}\left\{|F(u, v)|^{2}\right\}
$$

Indicator for size of dominant texture element or texture coarseness

Indicator for the directionality of the texture

## Law's Texture Energy Measures

$$
\begin{aligned}
& L_{3}=[1,2,1] \\
& E_{3}=[-1,0,1] \\
& S_{3}=[-1,2,-1] \\
& L_{5}=[1,4,6,4,1] \\
& E_{5}=[-1,-2,0,2,1] \\
& S_{5}=[-1,0,2,0,-1] \\
& R_{5}=[1,-4,6,-4,1] \\
& W_{5}=[-1,2,0,-2,-1]
\end{aligned}
$$

$$
L_{5}^{T} \times S_{5}=\left[\begin{array}{ccccc}
-1 & 0 & 2 & 0 & -1 \\
-4 & 0 & 8 & 0 & -4 \\
-6 & 0 & 12 & 0 & -6 \\
-4 & 0 & 8 & 0 & -4 \\
-1 & 0 & 2 & 0 & -1
\end{array}\right]
$$

-Convolute different Law's masks with image

- Compute energy statistics






100
100
, 000
, 00


## Motion - object

Difference image:

$$
\begin{aligned}
d(i, j)=0 & \text { if }\left|f_{1}(i, j)-f_{2}(i, j)\right| \leq \varepsilon \\
1 & \text { otherwise }
\end{aligned}
$$

No motion direction information !

$f_{1}$

$f_{2}$

$$
d_{\text {cum }}(i, j)=\sum_{k=1}^{n} a_{k}\left|f_{1}(i, j)-f_{k}(i, j)\right|
$$

Tells us how often the image gray level was different from gray-level of reference image

## Cumulative difference image


a b c

## Motion Field

- A velocity vector is assigned to each pixel in the image
- Velocities due to relative motion between camera and the 3D scene
- Image change due to motion during a time interval dt
- Velocity field that represents 3-dimensional motion of object points across 2-dimensional image


4/15/2008


## Optical flow

- Motion of brightness patterns in image sequence
- Assumptions for computing optical flow:

- Observed brightness of any object point is constant over time
- Nearby points in the image plane move in a similar manner

$$
\begin{aligned}
f(x+d x, y+d y, t+d t) & =f(x, y, t)+\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial t} d t+O\left(\partial^{2}\right) \\
& =f(x, y, t)+f_{x} d x+f_{y} d y+f_{t} d t+O\left(\partial^{2}\right)
\end{aligned}
$$

Gray-level difference at same location over time is equivalent to product of spatial

$$
f(x+d x, y+d y, t+d t)=f(x, y, t) \Rightarrow-f_{t}=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}
$$ gray-level difference and velocity

$$
c=\left(\frac{d x}{d t}, \frac{d y}{d t}\right)=(u, v)
$$



## Optical Flow Constraints

$$
-f_{t}=f_{x} u+f_{y} v
$$


$\stackrel{A}{\mathrm{i}} \rightarrow$

- no spatial change in brightness, induce no temporal change in brightness $\rightarrow$ no discernible motion
- motion perpendicular to local gradient induce no temporal change in brightness $\rightarrow$ no discernible motion
- motion in direction of local gradient, induce temporal change in brightness $\rightarrow$ discernible motion

K

- only motion in direction of local gradient induces temporal change in brightness and discernible motion


## Optical flow != Motion Field



$$
\begin{aligned}
& M F \neq 0 \\
& O F=0
\end{aligned}
$$


$M F=0$
$O F \neq 0$


Barber's pole

Motion field


## Which descriptors? Image Feature Evaluation

1. Prototype Performance

- Classify (Segment) image using different features
- Evaluate which feature is optimal (minimum classification error)

2. Figure of Merit

- Establish functional distance measurements between set of image features (large distance $\rightarrow$ low classification error)
- Bhattacharyya distance

