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We have covered ...

Spatial Domain
processing

Image Transform
and Filtering

Image sensing

=)

Image Restoration




Lecture Outline

What is image restoration

= Scope, history and applications

= A model for (linear) image degradation
Restoration from noise

= Different types of noise

= Examples of restoration operations
Restoration from linear degradation
= Inverse and pseudo-inverse filtering

= Wiener filters

= Blind de-convolution

Geometric distortion and its corrections



Degraded Images

Original image Blurred image

= What caused the image to blur?

= Can we improve the image, or "undo” the
effects?




Original image Blurred image

= Image enhancement: “improve” an image subjectively.

= Image restoration: remove distortion from image in order
to go back to the “original” - objective process.



Image Restoration

s Started from the 1950s

= Application domains
= Scientific explorations
= Legal investigations
=« Film making and archival
= Image and video (de-)coding

= Consumer photography

= Related problem: image reconstruction in radio
astronomy, radar imaging and tomography

See [Banham and Katsaggelos 97]



A Model for Image Distortion

= Image enhancement: “improve” an image subjectively.
= Image restoration: remove distortion from image, to go

back to the “origina

f(x.y)

III

- elx,v)
D?gra;lfmon Restoration Fx,y)
un;fmﬂ -+ filter(s) X, )
MNoise
n(x, v)
DEGRADATION RESTORATION

g(z,y) = H[f(z,y)] + n(z,y)

—> objective process

FIGURE 5.1 A
model of the
image
degradation/
restoration
process.



A Model for Image Distortion

= Image restoration
=« Use a priori knowledge of the degradation
= Modeling the degradation and apply the inverse process
« Formulate and evaluate objective criteria of goodness

FIGURE 5.1 A

Degradation g(x.y) Restoration . model of the
Flx.v) function - filter (s) flx,¥) image
H ' degradation/
. restoration
Noise Process,

n(x, v)
DEGRADATION

RESTORATION

g(z,y) = H[f(z,y)] + n(z,y)

— design restoration filters such that
f(z,y) is as close to f(zx,y) as possible.
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Usual Assumptions for the Distortion Model

- Input Image Bll_un'ecl bthamern
= Noise |
om) (GEEN)
= Independent of spatial location e F
= Exception: periodic noise ... \ R

=« Uncorrelated with image
SPACE-INVARIENT RESPONSE - each point on image gives
m Deg ra d atl O n fu n Ctl O n same response just shifted in position.

Blurred by Camera

L . Input Image Rotation
= Position-invariant I NZ

/\

SPACE-VARIENT RESPONSE - each point on image gives
a different response

flx,y)1

DEGRADATION

Divide-and-conquer step #1: degraded only by noise.
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FIGURE 5.2 Some important probability density functions.

Noise Models

Gaussian

1 ~(z-p)* 1207
p(2)=———e "
N2mwo
Rayleigh

p(2) :%(Z —a@)e T for z>a

Erlang, Gamma(a,b)
abe—l
(b—a)!
Exponential

p(z2) =ae ™, for 720

p(2)= e “, for 720

Salt-and-Pepper:

p(z) = Pyo(z —a) + P,o(z — b)

- additive noise

Speckle noise: a = ap + jay
9(z,y)|% ~ | f(z,y)|?|alz, ¥)|? + n(z, y)

ar,a; zero mean, independent Gaussian
- multiplicative noise on signal magnitude
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isual Effects of Noise

Original image shown on the right with the
annotated dimensions.

Gamma Exponential Uniform Salt & Pepper

Rayleigh
2 h i
k1
FIGURE 5.4 (Continued)

noise to the image in Fig. 5.3.

Gaussian

—

Images and histograms resulting from adding exponential, uniform, and impulse

abec
il o
FIGURE 5.4 Images and histograms resulting from adding Gaussian. Rayleigh. and gamma noise to the image

in Fig. 5.3,
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Recovering from Noise

= Overview of noise reduction
Observe and estimate noise type and parameters -
apply optimal (spatial) filtering (if known) - observe
result, adjust filter type/parameters ...

= Example noise-reduction filters [G&W 5.3]
= Mean/median filter family
= Adaptive filter family

= Other filter family
= e.g. Homomorphic filtering for speckle noise [G&W 4.5, Jain 8.13]

| FIGURE 4.31

. Homomorphic
. . -1 . . I
fley) 522 In DFI W (u, v) (DFT) exp g(x. y) filtering approach




Recovering from Periodic Noise e

[G&W 5.4]
Recall: Butterworth LPF Butterworth bandreject filter
1
1 H —
H(u,v) = (u,v) = D(u0)W
1+ [D(u,v)/Do]?" 1+ [5rrss]2n
D2(u,v)—D8
ab
cd
FIGURE 5.16

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum of (a).
(¢) Butterworth
bandreject filter
(while represents
1). (d) Result of
filtering. (Original
image courtesy of
NASA.)




Lecture Outline

Scope, history and applications
A model for (linear) image degradation

Restoration from noise
» Different types of noise
» Examples of restoration operations

Restoration from linear degradation
= Inverse and pseudo-inverse filtering

= Wiener filters

=« Blind de-convolution

Geometric distortion and example corrections
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Recover from Degradation

= Degradation function
= Linear (eq 5.5-3, 5.5-4)
= Homogeneity
« Additivity
= Position-invariant (in cartesian coordinates, eq 5.5-5)
- linear filtering with H(u,v)
convolution with h(x,y) — point spread function

Degradation
function
H

DEGRADATION

RESTORATION ‘

Divide-and-conquer step #2: linear degradation, noise negligible.



Point Spread Functions

ab

FIGURE 5.24
Degradation
estimation by
impulse
characterization.
(a) An impulse of
light (shown
magnified).

(b) Imaged
(degraded)
impulse.
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Point Spread Functions

Spatial domain
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hix y)
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(a) One dimensional motion blur

hix 0)

/u

¥

(b) Incoherent diffraction limited system (lens cutoff)

hix, 0)

=X
/ 0
y
(c) Average atmospheric turbulence

Figure 8.5 Examples of spatially invariant PSFs

Frequency
domain

(x) i)

FIGURE 2 PSF of motion blur in the Fourier domain, showing | DM, v)], for
ML=75andé=0(b)L=T75andé = w4

»
"
s

SLLLBLAblilis.

(a) (b

FIGURE 3 (a) Fringe elements of discrete out-of-focus blur that ane calcu-
lated by integration: (b) PSF in the Fourier domain, shawing | D(s, ¥H, for
R=215



= Assume h is known: low-p

= Inverse filter
= Recovered Image £'(u,v)

6000
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2000

Inverse Filter

AR
LYRETE R
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i

) ‘3"“5‘?::";-

100

H(u,v) = 1/H(u,v)

= G(u,v)H(u,v

o)
Ay

ass filter H(u,v

[EE381K, UTexas]
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Inverse Filtering Example

loss of \\
information
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Inverse Filtering under Noise

= H(u,v) =0, forsome u, v
= In the noisy case:

ﬁ(u,v) - 1/H(U,’U> :> G(’U,,’U) — F(’U,,U)H(U,U)—I—N(U,U)

P = Cmttnn D Py — Py B0

Guassian Noise (zero mean, o = 1)
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SNEE381K, UTexas]
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Pseudo-inverse Filtering

A(uv) = 1/H(uv), H(uw)> e
0, H(u,v) < ¢

[Jain, Fig 8.10]



Back to the Original Problem

FIGURE 5.1 A
model of the

Degradation

Restoration

flxy) function . B fley) i mage
H fiter(s) ]L;cgrz:daliml.-"
. restoration
Noise Process,
n(x, ¥)
DEGRADATION RESTORATION
Pseudo-inverse filter: H(u,v) = 1/H(u,v), H(u,v) > ¢
0, H(u,v) <€

= Can the filter take values between 1/H(u,v) and zero?
= Can we model noise directly?
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Wiener Filter

FIGURE 5.1 A
Degradation Restoration . ?nudu] of the
flx.y) function filter(s) f(x,y) image
H N degradation/
. restoration
Noise process
n(x, y)
DEGRADATION RESTORATION
W (u,v)

= Find “optimal” linear filter W(u,v) such that the Mean
Square Error between f(z,y)and f(u,v) is minimized

min e® = E{(f - )}

W
(1) orthogonal condition E{g(f — f)} =0

(2) correlation function  Ryy(w,y) = W(z,y) ® Rgg(z,y)

:> W(’LL,’U) _ ng(u,’l)) _ H*(’U/,U)Sff(u,’l))
Sgg(u,v) |H(u,v)|25ff(u,fu) + Syn(u, v)

Sty and Sy, are the power spectral densities of
the signal and noise, respectively

23



Observations about Wiener Filter

H*(u,v)S¢r(u,v)

Wiy, v) = |H(u,v)|25ff(u,v)—I—Snn(u,v)
1
B H(u,v) 4 Sy
’ ! H*(u,v)S¢r

= If no noise, S, 20 W (u,v)ls,, 0 = m CifH(u,v) £ 0

0 , ifH(u,v) =0
- Pseudo inverse filter

= If no blur, H(u,v)=1 (Wiener smoothing filter)
1
1+ Syn(u,v)/Syr(u,v)

- More suppression on noisier frequency bands

W(u,v)|p=1 =

24
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1-D Wiener Filter Shape Wiener Filter implementation
H*(u,v)S¢p(u,v)
W (u,v) =
e (u,0) |H (u, v)|25ff(u, v) + Spn(u,v)
Q B H*(u,v)
PR .| o S
p— o 1 ; H (u, 0)2 + 52
1a) Noﬂs:;o::g-:;"?l —_— H* (u7 U)
 JHw,v)[2+ K

Where K is a constant chosen
according to our knowledge
of the noise level.

T by ————

b} Detdurring

Figure 8.11 Wiener filter characteristics

[Jain, Fig 8.11]



Wiener Filter Example

H (u,v)
H(u,v)|" +K

W(u,v)=

G(u,v), K=0.02
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Wiener Filter as a LMS Filter

a) Noisy image (SNR=20 dB) b) Wiener filter ¢) Gauss filter (6= 1.0)
rms =25.7 rms =20.2 rms =21.1

d) Kuwahara filter (5 x 5) e) Median filter (3 x 3) f) Morph. smoothing (3 x 3)
rms =224 rms =22.6 rms =26.2

Figure 49: Noise suppression using various filtering techniques.

[Young et. al., Fundamentals of Image Processing, TU-Delft]
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Wiener Filter Example

abc

FIGURE 5.28 Comparison of inverse- and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(h).

(b) Radially limited inverse filter result. (¢) Wiener filter result.

= Wiener filter is robust to noise, and preserves
high-frequency details.

28
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Wiener Filter Example

Ringing effect visible, too many high
frequency components?

(a) Blurry image (b) restored w. regularized pseudo inverse
(c) restored with wiener filter

[UMD EE631]



Wiener Filter

image ‘blurrl’ wiener filter restored license plate

How much de-blurring is just enough?

[Image Analysis Course, TU-Delft]
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Improve Wiener Filter

= Constrained Least Squares

Wiener filter emphasizes high-frequency
components, while images tend to be smooth

: 712 712
min lg— Hf|* 4+ a|CF]
f: the estimate for undegraded image
Cf: a high-passed version of f

FIGURE 5.30 Results of constrained least squares filtering. Compare (a), (b). and (c¢) with the Wiener filtering
results in Figs. 5.29(c), (), and (i), respectively.
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Improve Wiener Filter (1)

= Constrained Least Squares

Wiener filter emphasizes high-frequency components,
while images tend to be smooth

min |g — Hf|* 4+ a|Cf|?
where Cf is a high-passed version of f

= Blind deconvolution

Wiener filter assumes both the image and noise
spectrum are know (or can be easily estimated), in
practice this becomes trial-and-error since noise and
signal parameters are often hard to obtain.

log |H|? = 109(Sgg — Syn) — 109 S

Smm~0 =) log|H|= ﬁzéil[loglel — log| F]



Maximum-Likelihood (ML) Estimation

= h(x,y) H(u,v) unknown

= Assume parametric models for the blur function,
original image, and/or noise

= Parameter set @is estimated by

6, =argimax p(y | 0)}

= Solution is difficult in general

= Expectation-Maximization algorithm
= Guess an initial set of parameters 6
= Restore image via Wiener filtering using 6

= Use restored image to estimate refined parameters 6
= ... iterate until local optimum

To explore more: D. Kundur and D. Hatzinakos, ‘Blind Image Deconvolution," JEEE Signal
Processing Magazine, vol. 13, no. 3, May 1996, pp. 43-64.
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Geometric Distortions

= Modify the spatial
O I e S a Ia Corresponding
tiepoints in two

image segments.

relationships between
pixels in an image

= a. k. a. “rubber-sheet” w
transformations

= Two basic steps
/_\\

= Spatial transformation o o
u GraY'Ievel interpOIatlon .\\ // Nearest neighbor to (x', ¥)

\_//

Gray-level assignment g(x’,y)

f(x.y)
FIGURE 5.33 Gray-level interpolation based on the nearest neighbor concept.
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Spatial Distortion Examples

Run

» \

(a) Onginal (b) Pincushion distortion {c) Barrel distortion

FIGURE 14.2-1. Example of geometric distortion.
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Recovery from Geometric Distortion

ab

cd

e f

FIGURE 5.34 (a) Image showing tiepoints. (b) Tiepoints after geometric distortion.
(c) Geometrically distorted image, using nearest neighbor interpolation. (d) Restored
result. (e) Image distorted using bilinear interpolation. (f) Restored image.
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Recovery from Geometric Distortion

(a) (b)

Fig. 5. (c) Image produced by a Computar 2.5mm lens and a Computar 1/3” CCD board camera. ( b) Distortion parameters recovered via the minimization of & are used
to map (a) to perspective image. Notice that straight lines in the scene, such as door edges, map to straight lines in the undistorted images.

Rahul Swaminathan, Shree K. Nayar: Nonmetric Calibration of Wide-Angle Lenses and
Polycameras. IEEE Trans. Pattern Anal. Mach. Intell. 22(10): 1172-1178 (2000)



Epilogue: Estimating Distortion

= Calibrate
= Use flat/edge areas
= ... Oongoing work

http://photo.net/learn/dark_noise/

a. Original b. Out-of-focus
BlurExtent = 0.0104 BlurExtent = 0.4015

c.Original d. Linear-motion
BlurExtent = 0.0462 BlurExtent = 0.2095

[Tong et. al. ICME2004]
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Summary

Image degradation model
Restoration from noise

Restoration from linear degradation

=« Inverse and pseudo-inverse filters, Wiener filter, blind
deconvolution

Geometric distortions

Readings
= G&W Chapter 5, Jain 8.1-8.3 (at courseworks)

=« M. R. Banham and A. K. Katsaggelos "Digital Image Restoration,
" IEEE Signal Processing Magazine, vol. 14, no. 2, Mar. 1997, pp.
24-41.

Gratefully attribute many of the image examples to G&W book, Min Wu (UMD), Joanneum Research
(Austria), John Conway (Chalmers, Sweden), B. Evans and H. T. Pai (UT Austin), Daniel Garcia-
Romero (UMD), NASA Langley Research Center, photo.net, Matlab Toolbox, and whoever annotated
in the slides.
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