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� PS#3 due Friday March 2nd (no extensions)
� 4.19 Expand the expression for Laplacian filter, try to visualize/explain 

what you get

� EXP#2 due Monday March 26th

� Image compression and eigen face applications

� New dataset for eigen face: Rice ELEC301

� PS#4 to be posted this week

� Midterm on March 5
� YES: text book(s), class notes, calculator

NO: computer/cellphone/matlab/internet

� 5 analytical problems, sample midterm + solutions available

� Coverage: lecture 1-5, summary content in lecture 6 

� Additional instructor office hours: 4:30-6:30pm Monday March 5th

Mudd 1312, enter from the backdoor, x4-3131

� Midterm class evaluations available next week

Announcements 



Lecture Outline

� Unitary transforms

� Review of definition, properties

� Examples: DFT, DCT, KLT, Haar …

� Applications

� Wavelet transform and applications

� Readings for today and last week: G&W Chap 4, 
7, Jain 5.1-5.11



Digital Transform as Basis Expansion

Forward transform

Inverse transform

Matrix notation

1D-DFT

real(a) imag(a)

n

u=0

u=7



DFT vs. DCT

1D-DFT

real(a) imag(a)

n=7

u=0

u=7

n=7

u=0

u=7

1D-DCT



DFT and DCT in Matrix Notations

Matrix notation for 1D transform

1D-DFT

real(A) imag(A)

1D-DCT

AN=32



Unitary Transforms

Unitary Transform implies the following properties

Orthonormality (Eq 5.5 in Jain)
: no two basis represent the same information in the image

Completeness (Eq 5.6)
: all information in the image are represented in the set of basis 
functions

Matrix notation for 1D transform

This transform is called “unitary” when A is a unitary matrix



Unitary Transforms in 2D

� Image transform as basis 
expansion:

v

real(DFT2)



From 1D-DCT to 2D-DCT

n=7

u=0

u=7

� Rows of A form a set of orthonormal basis

� A is not symmetric!

� DCT is not the real part of unitary DFT!



DFT and DCT on Lena

DFT2 DCT2

Shift low-freq 
to the center

Assume periodic and zero-padded … Assume reflection …



Exercise

� Unitary or not?
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� How do we decompose this picture?
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Properties of 1-D Unitary Transform

� Energy Conservation
� || f||2 = || g||2

� || g||2 = ||Af||2= (Af)*T(Af)= f*T A*T A f = f*Tf = ||f||2

� Rotation
� A unitary transformation is a rotation of a vector in an 

N-dimension space, i.e., a rotation of basis coordinates
� The angles between vectors are preserved

� Review: correlation in vectors and images
� De-correlation (example 5.2 in Jain)

� Highly correlated input elements � quite uncorrelated output 
coefficients

� Energy compaction
� Many common unitary transforms tend to pack a large fraction 

of signal energy into just a few transform coefficients



Karhunen-Loeve Transform (KLT)
� a.k.a the Hotelling transform or 

the Principle Component Analysis (PCA)

� Eigen decomposition of Rx:    Rx uk = λk uk

� Recall the properties of Rx

� Hermitian (conjugate symmetric  RH = R);  

� Nonnegative definite (real non-negative eigen values)

� Karhunen-Loeve Transform (KLT)  

y = UH x � x = U y    with U = [ u1, … uN ] 

� KLT is a unitary transform with basis vectors in U being the 
orthonormalized eigenvectors of Rx

� UH Rx U = diag{λ1, λ2, … , λN}  i.e. KLT performs decorrelation

� Often order {ui} so that λ1 ≥ λ2 ≥ … ≥ λN



Properties of K-L Transform

� Decorrelation

� E[ y yH ]= E[ (UH x) (UH x)H ]= UH E[ x xH ] U = diag{λ1, λ2, 

… , λN}

� By construction

� Note: Other matrices (unitary or nonunitary) may also 
decorrelate the transformed sequence [Jain’s example5.5 and 5.7]

� Minimizing MSE under basis restriction 

� If only allow to keep m coefficients for any 1≤ m ≤N, 
what’s the best way to minimize reconstruction error?

� Keep the coefficients w.r.t. the eigenvectors of the 
first m largest eigenvalues



KLT Basis Restriction

� Basis restriction

� Keep only a subset of m transform coefficients and 
then perform inverse transform  (1≤ m ≤ N)

� Basis restriction error:  MSE between original & new 
sequences

� Goal: to find the forward and backward transform 
matrices to minimize the restriction error for each and 
every m

� The minimum is achieved by KLT arranged according 
to the decreasing order of the eigenvalues of R



Unitary Transforms in Other Flavors

Walsh-Hardamard Slant

Nassiri et. al, “Texture Feature Extraction using
Slant-Hadamard Transform”

wikipedia



Energy Compaction Transforms
� DCT has excellent energy compaction for highly 

correlated data

� DCT is a good replacement for K-L

� Close to optimal for highly correlated data

� Not depend on specific data like K-L does

� Fast algorithm available

[ref and statistics: Jain’s pp153, 168-175]



The Desirables for Image Transforms

� Theory

� Inverse transform available

� Energy conservation (Parsevell)

� Good for compacting energy

� Orthonormal, complete basis

� (sort of) shift- and rotation invariant

� Transform basis signal-independent

� Implementation

� Real-valued

� Separable

� Fast to compute w. butterfly-like structure

� Same implementation for forward and 
inverse transform

DFT KLT
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A Brief History of Transforms

from wikipedia, “a brief history of wavelets”, and other online sources

1807
Fourier

1992
JPEG

1965
FFT

DCT 
1974

fast DCT
1977

1933,47,48
KLT

1909
Haar

1973
Slant

1807 Fourier Theory
1909 Haar filters “wavelets”
1933 Hotelling transform
1947 1948 Karhunen-Loeve
1965 FFT, Cooley-Tukey
1969 WHT, Shanks “computing fast Walsh-Hadamard transform”
1973 Slant Transform and applications to image coding
1974 DCT, Rao, 
1977 Fast DCT
…
1992 JPEG Standard

WHT
1969



Applications of Image Transforms

� Compression

� Feature extraction

� Pattern recognition:   e.g., eigen faces

� analyze the principal (“dominating”) components



Image Compression

where P is average power and A is RMS amplitude. 



Gabor filters

� Gaussian windowed Fourier Transform

� Make convolution kernels from product of Fourier 
basis images and Gaussians

×
=

Odd
(sin)

Even
(cos)

Frequency



Example: Filter Responses

from Forsyth & Ponce

Filter
bank

Input
image



Texture Representation: Filter Responses

� Choose a group of filters 

� Edge/Bar filters: Something like Gabor filters at different 
orientations, scales

� Spot filters: Center-surround filters like a Gaussian/difference of 
Gaussians at multiple scales

� Run filters over image to get a set of response images
� Each contains specific texture information

� Collect statistics of responses over an image or subimage

� Mean of squared response

� Mean and variance of squared response

� Euclidean distance between vectors of response statistics 
for two images is measure of texture similarity



Eigen Faces

Courtesy of Rice U. eigen face project and Yale face database



Lecture Outline

� Unitary transforms

� Properties

� Examples: DFT, DCT, KLT, Haar

� Applications

� Brief overview of wavelet transform and 
applications



Image in Multiple Scales



A Three-scale Wavelet Decompostion



A Brief History of Wavelets

� For in-depth looks …

� ELEN E6860y Advanced Digital Signal Processing 

� Wavelet and Subband Coding, Vetterli and Kovacevic

1909 Haar
…
1946 Gabor, Time-Frequency analysis
…
1982 Morlet, geophysics
1984 Marseile team, Grossmann/Paul, “mathematical microscope”
1985 Meyer, operator theory
1986 Mallat, signal analysis, filter design
1988 Lemarie, Daubechies, w. exponential decay and compact support
1991 … general construction, …
1992 … biorthongonal wavelets, continuous wavelet transform …
1995 … wavelet on domains 
2000+ image compression standard (JPEG 2000)



Summary

� Unitary Transforms

� Theory revisited

� Example transforms: DFT, DCT, KLT, Hadamard, Slant

� Applications

� Compression

� Feature extraction

� Image matching (eigen faces)

� Wavelet decomposition of images


