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Image Transforms and Image
Enhancement in Frequency Domain

EE4830 Lecture 5
Feb 19th, 2007

Lexing Xie

With thanks to G&W website, M. Thomas, M. Wu, W. Trappe, K. Lam, S. Sastry, Matlab demo, etc.



= Announcements
« PS#2, EXP#1 due today
» PS#3, EXP#2 will be posted in the next two days
= Mid-term on March 5

= Recap of previous lecture
= Image enhancements in spatial domain
= Tri-color representation

= This lecture ...

« Image transforms and their uses

=« Readings for foday and next week:
G&W Chap 4, Jain 5.1-5.11



Review 1: Image Enhancement in Spatial Domain
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Review 2: Tri-color Representation

FIGURE 6.5
Chromaticity
diagram.
{Courtesy of the
General Electric
Co., Lamp
Business ELET

Divisi j e SPECTRAL ENERGY LOCUS .
JIVISION. ) WHITE
; (WAVELENGTH, NANOMETERS)

(C.I.E. CHROMATICITY DIAGRAM) MIXTURES OF LIGHT
(Additive primaries)

MIXTURES OF PIGMENTS
(Subtractive primaries)

YELLOW

COOL WHITE -

«

DAYLIGHT -t

a%0 /
DEEP BLUE

_l_ 3 PRIMARY AND SECONDARY COLORS
OF LIGHT AND PIGMENT

FIGURE 6.11 The RGB safe-color cube.



Lecture Outline

s Review of Previous lectures

= Image Transform
= Why transform

= 2D Fourier Transform
= Definition, Properties, Implementation
= DFT applications

= Transform in other flavors

= Unitary transforms
= DCT, KLT



Why Do Transform?

Better image processing
= Take into account long-range correlations in space

= Conceptual insights in spatial-frequency information (smooth,
moderate change, fast change, etc.)

Fast computation: convolution vs. multiplication

Alternative representation and sensing

= Obtain transformed data as measurement in radiology |mages' ,‘

(medical and astrophysics), inverse transform to recover image

Efficient storage and transmission
= Energy compaction

= Pick a few “representatives” (basis)
= Just store/send the “contribution” from each basis



DFT Recap

= Fourier transform: a
continuous signal can be
represented as a (countable)
weighted sum of sinusoids.

= ID-FT

F(w) = T fa)eI2men

vzl

= 1D — DFT of Iength N

—7 27Tun

‘l (U) - J (n) e FIGURE 4.1 The function at the bottom is the sum of the four functions above it
Fourier's idea in 1807 that periodic functions could be represented as a weighted sum

of sines and cosines was met with skepticism



Fourier Basis

o o HZ= N

2D l 12 +5)

u=2,v=2  u=-1,v=2 = u=1,v==2 u=2,v==2
7/ ! NN

u=2, v=1 -1, L u=1,v=-1 u=2,v=-1

Real = _ “‘ u‘ uli
(cos) part =

m u=2.v=0 u=1v=0 u=2v=0
Imaglnary ———— k\ m
(Sln) part E u=+2, v=1 u=1v=1 u=2v=1
N ~ 7

u=2,v=2 u=1yv=2 u=2,v=2

Parts of slides 10-12 adpated from Mani Thomas, Computer Vision lecture notes, CISC 489/689, UDel



Computing 2D-DFT

M—-1N-1 :
—QQWUWL —j72TUn
oFT  F'(u,v) MlN Z Z f(m,n)e e N
m=0 n=0
M—-1N-1

j22mrum  j2mun

IDFT  f(m,n) = Y Y F(u,v)e M e N

u=0 v=0

= Discrete, 2-D Fourier & inverse Fourier transforms are implemented
in ££t2 and 1 ££t2, respectively

= fftshift: Move origin (DC component) to image center for display

= Example:
>> I = imread(‘test.png’); .
>> F = fftshift (FFt2(1)); g
>> imshow (log(abs(F)), []); '_;¥E_'
>> imshow (angle (F), []); e



Fourier transform in Matlab

= Qutput of the Fourier transform is a complex number

= Decompose the complex number as the magnitude and phase
components

= InMatlab: u = real(z), v = imag(z), r = abs(z), and
theta = angle(z)

Some useful FT pairs:
Impuilse alx, y) = 1
Gaussian AN 2moe 7)o g ()20
sin{wua) sin(=vh)
Rectangle rect[a. b] < ab (zud) (D) Jm(ua+vb)
Cosine cos(2mupx + 2m1py) <
%[ﬁ(u + g v + Vo) + 81 — ug v — vy)]
Sine sin(27ttgx + 2mvpy) <
j% [8(u + g v + vy) — 8(u — uy, v — vy}]

" Assumes that functions have been extended by zero padding.



Explaining 2D-DFT
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Explaining 2D-DFT (2)

demo
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FIGURE 4.36 Left:
convolution of
two discrete
functions. Right:
convolution of the
same functions,
taking into
account the
implied
periodicity of the
DFT. Note in (j)
how data from
adjacent periods
corrupt the result
of convolution.

Circular convolution and Zero Padding
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FIGURE 4.37
Result of
performing

1 convolution with
extended
functions.
Compare
Figs. 4.37(e) and
4.36(e).
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Zero Padded Filter and Response

- d

.
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FIGURE 4.39 Padded lowpass filter is the spatial domain {only the real part is shown).

FIGURE 4.40 Result of filtering with padding. The image is usually cropped to its
original size since there is little valuable information past the image boundaries.



Observation 1: Compacting Energy
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FIGURE 4.11 (a) An image of size 500 x 500 pixels and (b) its Fourier spectrum. The
superimposed circles have radii values of 5, 15, 30, 80, and 230, which enclose 92.0),
04.6,96.4,98.0, and 99.5% of the image power, respectively.
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Observation 2: Amplitude vs. Phase

A = “Aron”

P = “Phyllis”

FA = fft2(A) FP = fft2(P)

log(abs(FA)) log(abs(FP))
angle(FA) angle(FP)

ifft2(abs(FA), angle(FP)) ifft2(abs(FP), angle(FA))

Adpated from http://robotics.eecs.berkeley.edu/~sastry/ee20/vision2/vision2.html



Fast Implementation of 2-D DFT

2 Dimensional DFT is separable

1 M—-1N—-1 —2mju  —2mwjv

WZ > flm,n)e M e N

m=0 n=0

F(u,v)

1D FFT: O(N-log,N)

2D DFT naive implementation: O(N?)

2D DFT as 1D FFT for each row and then for
each column




DFT2

IDFT2

Implement IDFT as DFT

M-1N-1

Flu,v) =1k > f(m,n)e 727Gt
m=0 n=0
M—1N-1
fim,n) = F(u,v)el 2" r +3)
u=0 v=0
M—1N-1 . on
fr(mn) = 30 3 F(uv)e 72TaeN
u=0 v=0

= (MN) - DFT2[F*(u,v)]



TABLE 4.1
Summary of some
important
properties of the
2-D Fourier
transform.

Properties of 2D-DFT

Property Expression(s)
| M 1N _ ) .
Fourier transform  F(u, v) = T > D f(x, y)e Prux/Mtey/N)
L e
[nverse Fourier P . .
- e — W il /M oy /N
transtorm f(x.5) HZ/] Zf]F(“‘ RIE
Polar F(u, v) = |F(u, v)|e#"v)
representation
Spectrum w, v)| = [R¥(u,v) + I*(u.v)]"*. R = Real(F)and
Spect F R? I '
I = Imag(F)
PI 1 f [ A )
hase angle b(u, v) = tan
c ally (J[: :] Te R[:“ 2,‘:]
Power spectrum  P(u. ) = |F(u, v)[
B | M 1IN
Average value f(x,y) = F(0,0) = i S D f(xy)
=0 -0

Translation

f (. y)eP M mIN) o Bl — uy, v — u)
f(x - Xp. ¥V — J"[J) = Flu,v)e Rluzy/ M+ v/ N)
When xy = uy = M /2 and y; = v, = N/2.then
flx. (-1)"7"<= Flu - M/2.v - N/2)

flx = M/2,y — N/2) = F(u,v)(-1)"""




Conjugate
symmetry

Differentiation

Laplacian

Distributivity

Scaling

Rotation

Periodicity

Separability

Flu,v) = F'(—u.—v)

|[F(u,v)| = |F(~u. )|
Lf”ﬂ < (ju)'F(u,v)

a"F(u, v)
l"n'ti”
Vif(x, y) = —(u* + v})F(u, v)

Mfi(xy) + filx. y)] = d[fi(x. y)]| + J[falx, )]
J[filx, p) - falx, y)] # Sl )] - 3 flx, p)]

(—jx)"f(x.y) =

X |
af(x, y) < aF(u.v). f(ax, by) < wF(u!a. v/b)
X = rcos# y = rsin# U= wcose V= wsing
f(r.0 + 6y) = Flo,¢ + 6)

Flu.v)= Flu + M.v) = Flu.v + N) = F(u + M.v + N)
fle.y) =flx + M,y) = f(x.y + N) = f(x + M,y + N)

See Eqgs. (4.6-14) and (4.6-15). Separability implies that we can
compute the 2-D transtorm of an image by first computing 1-D
transforms along each row of the image, and then computing a
1-D transform along each column of this intermediate result.
The reverse, columns and then rows, yields the same result.




Property Expression(s)

omoutatio M-1 N1 )
e P89 = 2 2 Fe(uv)e sy
of the inverse MN ’ MN = =,

Fourier

transform using

a forward
transform
algorithm

Convolution”

Correlation’
Convolution
theorem’

Correlation
theorem?

This equation indicates that inputting the function F*(u, v)
into an algorithm designed to compute the forward transform
(right side of the preceding equation) vields f*(x, y)/MN.
Taking the complex conjugate and multiplying this result by
MN gives the desired inverse.

M1 N-1
fla,y)=hxy) = M; ?[] Y:]j‘”(ﬂ’:-t n)h(x — m.y — n)
M-1 N-1

flx,¥)oh(x,y) = ﬁ S D fE(m.n)h(x + m,y + n)
fle,y)=hix,y) & Flu.v)H(u v):

fle, h(x, y) <= Flu,v) = H{u. v)
I )
f}‘

e v) = F¥(u, v)H(u, v);
v) = F(u,v) e H(u,v)




Lecture Outline

s Why transform

s 2D Fourier Transform
= Definition
= Properties
» Implementation
= Three DFT applications
= Convolution, Filtering, Correlation
= Transform in other flavors

= Unitary transforms
=« DCT and KLT



DFT Application #1: Fast Convolution

Pre-

f(x.y)

[nput
image

Frequency domain filtering operation

processing,

Filter
function
H(u,v)

Fourier
transform

F(u.v)

O(N?-log,N) O(N2)

H(u.v)F(u,v)

Inverse
Fourier
transform

O(N?-log,N

Spatial filtering
f(x.y)*h(x.y)

=

O(N%)

g(x,y)
Enhanced
image



DFT Application #2: Feature Correlation

= Find letter “a” in the following image

The term watershed
refers to aridge that ...
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bw = imread('text.png'); a = imread(’letter_a.png');

C = real (ifft2(fft2(bw) .*fft2(rot90(a,2),256,256)));

thresh = .9*max(C(:)); figure, imshow(C > thresh)

from Matlab image processing demos.



DFT Application #3: Image Filters

= Zoology of image filters
= Smoothing / Sharpening / Others

= Support in time vs. support in frequency
c.f. "FIR / IIR”

= Separable / Non-separable

P AP I S :x'ux:;x:'x X *x
P I S e T DR SRR SO S i
xxxxxxxxxxxxxxxxxxx
e
...............
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxxxxxx




Smoothing Filters: Ideal Low-Pass

Hiu. v) Hiu,v)

e D, v)

8- biic

FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displaved as an
image. (¢) Filter radial cross section.



Butterworth Filters

H(u.v)
1.0

1
1+ [D(u,v)/Dgl?™

H(u,v) =

v 05

= D(u, v)

alibile

FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross sections of orders 1 through 4.

% N Vi
e e [

FIGURE 4.16 (a)-(d) Spatial representation of BLPFs of order 1,2, 5, and 20, and corresponding gray-level
profiles through the center of the filters (all filters have a cutoff frequency of 5). Note that ringing increases
as a function of filter order.



Gaussian Filters

Hiu, v) Hu.v)
i
1.0

0.667

abc

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. {(b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D,,.

H(’LL,’U) — e—DQ(u,’l))/QO'Q
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a b FIGURE 4.12 (a) Original image. (b)—(f) Results of ideal lowpass filtering with cutoff
¢ d frequencies set at radii values of 5. 15, 30, 80, and 230, as shown in Fig. 4.11(b). The
¢ [ power removed by these filters was 8.5.4,3.6.2, and 0.5% of the total, respectively.
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FIGURE 4.18 (a) Original image. (b)—{f) Results of filtering with Gaussian lowpass
filters with culoff frequencies set al radii values of 3. 15, 30, 80, and 230, as shown in
Fig. 4.11(b). Compare with Figs. 4.12 and 4.15.
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a b FIGURE 4.15 (a) Original image. (b)—(1) Results of fillering with BLPFs of order 2,
cd with cutoff frequencies at radii of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b).

e [ Compare with Fig. 4.12.



Smoothing Filter Application 1

ab

FIGURE 4.19

(a) Sample text of
poor resolution
(note broken
characters in
magnified view).
{b) Result of
filtering with a
GLPF (broken
character
segments were
joined).

Text enhancement

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than ﬂ@r
2000.

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than tlﬁr
2000.

o

=




Smoothing Filter Application 2

Beautify a photo ©

aiibic

FIGURE 4.20 (a) Original image (1028 X 732 pixels). (b) Result of filtering with a GLPF with D, = 100.
(c) Result of filtering with a GLPF with D, = 80. Note reduction in skin fine lines in the magnified sections
of (b) and (c).



High-pass Filters

Hypp(u,v) =1— Hppp(u,v)

Hiu, v)
Hu,v) Lor
. +
NN
Diu, v
" Ty  v)
u
Hiu,v)
10
. e
D, v
[
Hin, v)
L0
¥ . —
.". :u'
Diu, v)

blc
e f
hi

[l =T}

FIGURE 4.22 Top row: Perspective plot, image representation. and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



High-pass filter examples

%
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FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with Dy = 15, 30, and 80,
respectively. Problems with ringing are quite evident in {a) and (b).

aehilc

FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with D, = 13,
30. and 80, respectively. Compare with Figs. 4.24 and 4.25.



Lecture Outline

= Why transform

m 2D Fourier Transform
» Definition, properties, implementation
»« Three DFT applications

= Convolution, Filtering, Correlation
= Readings G&W 4.4.4 and 4.4.5

s [ransform in other flavors

= Unitary transforms
=« DCT and KLT



The Desirables for Image Transforms

= Inverse transform available

= Energy conservation (Parsevell)

= Good for compacting energy

= Orthonormal, complete basis

= (sort of) shift- and rotation invariant

= Implementation
= Real-valued
= Separable
= Fast to compute w. butterfly-like structure
= Same implementation for forward and
inverse transform
= Application
= Useful for image enhancement

= Capture perceptually meaningful structures
in Images

ENRNEIENEN

SNENEN
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The Quest for a Better Transform ...

Image transform (DFT2) as basis
expansion:

M—-1N-1
Z Z f(man)auv(m7n>
m=—0 n=0
M-1
>
u=0

N-1
> g(u,v)ag,(m,n)
v=0

g(u,v) o

f(m,n) o

. um vn
where ayy(m,n) = e 727 (ir +71)

= Orthonormal (Eq 5.5)
: no two basis represent the same
information in the image

=« Completeness (Eq 5.6)
: all information in the image are
represented in the set of basis
functions

= ? Real-valued - real basis images

ZZ2=I N

——————————

nmuman®

2.v=0

A\V-‘M

=2 v=1 =1, v=1

wﬁizﬁ

1,v=2

V



The Quest for a Better Transform ...

= Separable basis expansion:

g9(u,v)

f(m,n)

M—-1N-1

2.

Z f(m,n)ayy(m,n)

m=—0 n=0
M—-1N-1

2.

u=0

> 9(u,v)ag,(m,n)

v=0

AﬂEEN
YAAEQN

1T -

where ayy(m,n) = ay(m)by(n)

= Denote matrix A;=a;(j)

= Choose AA* T=A*AT=] and
b=a, then:

g(u,v) =

flm,n) =

—1N-1

n=0

—1N-1

M-—1
>
m=0
M-—1
>
u=0

> ay(m)g(u,v)ay(n)

=0 v=0

S au(m)f(m,n)av(m)

A\V-‘M
W§EZA

V



Separable, Real, Unitary Transform

when ayy(m,n) = ay(m)by(n) — We only need to discuss 1D
transforms
= Denote matrix A;=a;(j)

N N N . H= * T

= Hermitian (:lf matrix A: A=A Orthonormality obtained:

= Choose AAH=A*AT=] ——  row vectors of A form a
set of basis vectors

= Also choose b=a, then:
M—-1N-1

g(u,v) = Z Z ay(m) f(m,n)ay,(n) <:> G = AFAT
m=0 n=0
M—-1N-1 H "
Fomn) o 3 Y af(m)g(u,v)ai(n) F=A"GA
u=0 v=0

= Choose A among orthogonal matrixes: Al = AT, AAT=I
= Real-valued unitary matrix is also an orthogonal matrix

= Row vectors of real orthogonal matrix A form orthonormal
basis vectors



Properties of 1-D Unitary Transform

= Energy Conservation
= || fl[2=1] gl

« || gll>= [IAf[|>= (A)"T(Af)= FTATA L = f7f = [|f]|>

= Rotation
= The angles between vectors are preserved

= A unitary transformation is a rotation of a vector in an
N-dimension space, i.e., a rotation of basis coordinates

Slides 39-45, 47-49 are adapted from UMCP ENEE631 Slides created by Min Wu.



Properties of 1-D Unitary Transform

= Energy Compaction

=« Many common unitary transforms tend to pack a large
fraction of signal energy into just a few transform coefficients

= Decorrelation

= Highly correlated input elements - quite uncorrelated output
coefficients

= Covariance matrix E[ (g—E(q)) (g-E(q) )" ]

« small correlation implies small off-diagonal terms

Question: What unitary transform gives the best compaction
and decorrelation?
Coming at the end of this lecture ...



1-D Discrete Cosine Transform (DCT)

Z (k)= 2 z(n)-a(k)cos _7[(2;; l)k_
20 = Z Z (k) -a (k) cos _”(zg;l)k

a(0) = —a(k) \/7

= Transform matrix C

= c(k,n) = a(0) for k=0

= Cc(k,n) = a(k) cos[n(2n+1)/2N] for k>0
= Cis real and orthogonal

= rows of C form orthonormal basis

= Cis not symmetric!

= DCT is not the real part of unitary DFT!



Example of 1-D DCT

100 100
" all I "1 1
z(n) . 1 IR B ) ZK , B N
DCT .
50 -50
-100 -100
0O 1 23 4 5 6 7 0O 1 23 4 5 6 7
n k

From Ken Lam’s DCT talk 2001 (HK Polytech)



Z(n) Il-illll

n

Original signal

Transform coeff.

1-D DCT

0.0 0.0 IIIIII

-1.0

1.0

-1.0

Basis vectors

100 100 II
TTITLI I ||
0 =g

-100 u=0 -100 u=0to 4
100 100 I I
||
-100 u=0to1 -100 u=0to 5
100 I 100 I I
0 .l--lll 0 II-_I il
-100 u=0to2 -100 I u=0to 6
100 I 100 II I
0 I-i=ll I 0 II-_ |
-100 u=0to 3 -100 u=0to 7
Reconstructions

From Ken Lam’s DCT talk 2001 (HK Polytech)



DCT Basis Images

gx5 DCT basis images

10.2

10.15

10.1

10.05
0
005
-0.1
015
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025




Periodicity Implied by DFT and DCT

Discomtinuity

Boundary
points

FIGURE 8.32 The periodicity implicit in the 1-D {a) DFT and (k) DCT.



Using FFT to implement fast DCT

s Reorder odd and even elements

{Z(n) = z(2n)

N forOSnSﬁ—l
Z(N-n-1)=z12n+1) 2

= Split the DCT sum into odd and even terms

Z(k)=a'(k){Nﬁ1z(2n)-cos{ﬂ(4;;1)k}+lvﬁ1z(2n+1)-cos{ﬂ(4;; 3)k}}
n=0 n=0
AN r4n+ Dk ] MG {75(4n+3)k}}
= a(k ~ - N-n-1)-
( ){ 2 Z(n) COS_ N ZB Z(N —n—1)-cos T
_ Glo, o mén+ D] S L Z(4N —4n'-1k
_a'(k){ ;) Z(n) cos_ N _+n'§/2z(n) cos{ T }}

N -1
7Z'(4n+1)k}:Re a(k)e—jﬁk/ZNZ Z(n).e—jZEnk/N
ZfV n=0

= Re |a(k)e ™Y DFT {z(n)}, |

= a'(k)NZIZ(n)-cos[



The Desirables for Image Transforms

= Inverse transform available

= Energy conservation (Parsevell)

= Good for compacting energy

= Orthonormal, complete basis

= (sort of) shift- and rotation invariant

= Implementation
= Real-valued
= Separable
= Fast to compute w. butterfly-like structure
= Same implementation for forward and
inverse transform
= Application
= Useful for image enhancement

= Capture perceptually meaningful structures
in Images
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Two Observations

= Unitary transforms we've dealt so far are data-
independent

« Transform basis/filters are not depending on the signals we
are processing

= We have not proof/found a unitary transform that gives
the best energy compaction and de-correlation.

= Optimal” in a statistical sense to allow the transform
to work well with many images

= Signal statistics would play an important role



Review: Correlation After a Linear Transform

Consider an Nx1 zero-mean random vector x

= Covariance (autocorrelation) matrix R, = E[ x x" ]
= give ideas of correlation between elements
= R, is a diagonal matrix iff. all N r.v.’s are uncorrelated

Apply a linear transformto x;. y =AX
What is the correlation matrix for y?
R, =E[yy"]=E[(AX) (AX)" ] = E[ A x x" A" ]
=AE[xx"]A"=AR_ A"

Decorrelation: try to search for A4 that can produce a
decorrelated y (i.e. a diagonal correlation matrix R, )



Karhunen-Loeve Transform (KLT)

= a.k.a the Hotelling transform or
the Principle Component Analysis (PCA)

= Eigen decomposition of R,: R, u, = A, U,
= Recall the properties of R,
= Hermitian (conjugate symmetric RH = R);
= Nonnegative definite (real non-negative eigen values)

= Karhunen-Loeve Transform (KLT)
y=Ulxeox=Uy withU=[u,,..uyl]

= KLT is a unitary transform with basis vectors in U being the
orthonormalized eigenvectors of R,

« UMR U =diag{A,, A, ..., Ay} i.€. KLT performs decorrelation
« Often order {u;} sothat A, > A, > ... 2 A,



Summary of Lecture 5

Why do we need image transform

DFT revisited

= Definitions, properties, observations, implementations,
applications

What do we need for a transform
Unitary transforms, KL transform, DCT

Coming in Lecture 6: examples and optimality for DCT
and KLT, other transform flavors, Wavelets, Applications

Readings: G&W chapter 4, chapter 5 of Jain has been
posted on Courseworks

“Transforms” that do not belong to lectures 5-6:
Rodon transform, Hough transform, ...



