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� Announcements
� PS#2, EXP#1 due today

� PS#3, EXP#2 will be posted in the next two days

� Mid-term on March 5

� Recap of previous lecture
� Image enhancements in spatial domain

� Tri-color representation

� This lecture …
� Image transforms and their uses

� Readings for today and next week:
G&W Chap 4, Jain 5.1-5.11



Review 1: Image Enhancement in Spatial Domain



Review 2: Tri-color Representation



Lecture Outline

� Review of Previous lectures

� Image Transform

� Why transform

� 2D Fourier Transform

� Definition, Properties, Implementation

� DFT applications

� Transform in other flavors

� Unitary transforms

� DCT, KLT



Why Do Transform?

� Better image processing
� Take into account long-range correlations in space

� Conceptual insights in spatial-frequency information (smooth, 
moderate change, fast change, etc.)

� Fast computation: convolution vs. multiplication

� Alternative representation and sensing 
� Obtain transformed data as measurement in radiology images 

(medical and astrophysics), inverse transform to recover image

� Efficient storage and transmission
� Energy compaction

� Pick a few “representatives” (basis)

� Just store/send the “contribution” from each basis

?



DFT Recap

� Fourier transform: a 
continuous signal can be 
represented as a (countable) 
weighted sum of sinusoids.

� 1D – FT

� 1D – DFT of length N



Fourier Basis
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Parts of slides 10-12 adpated from Mani Thomas, Computer Vision lecture notes, CISC 489/689, UDel
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Computing 2D-DFT

DFT

IDFT

� Discrete, 2-D Fourier & inverse Fourier transforms are implemented 
in fft2 and ifft2, respectively

� fftshift: Move origin (DC component) to image center for display

� Example:

>> I = imread(‘test.png’);  % Load grayscale image

>> F = fftshift(fft2(I)); % Shifted transform

>> imshow(log(abs(F)),[]);  % Show log magnitude

>> imshow(angle(F),[]);     % Show phase angle



Fourier transform in Matlab

� Output of the Fourier transform is a complex number
� Decompose the complex number as the magnitude and phase 

components

� In Matlab: u = real(z), v = imag(z), r = abs(z), and
theta = angle(z)



Explaining 2D-DFT

fft2

ifft2



Explaining 2D-DFT (2)

demo



Circular convolution and Zero Padding



Zero Padded Filter and Response



Observation 1: Compacting Energy



Observation 2: Amplitude vs. Phase 

Adpated from http://robotics.eecs.berkeley.edu/~sastry/ee20/vision2/vision2.html

A = “Aron” P = “Phyllis”

log(abs(FA)) log(abs(FP))

angle(FA) angle(FP)

ifft2(abs(FA), angle(FP))

FA = fft2(A) FP = fft2(P)

ifft2(abs(FP), angle(FA))



Fast Implementation of 2-D DFT

� 2 Dimensional DFT is separable

� 1D FFT: O(N·log2N)

� 2D DFT naïve implementation: O(N4)

� 2D DFT as 1D FFT for each row and then for 
each column



Implement IDFT as DFT

DFT2

IDFT2



Properties of 2D-DFT







Lecture Outline

� Why transform

� 2D Fourier Transform

� Definition

� Properties

� Implementation

� Three DFT applications

� Convolution, Filtering, Correlation

� Transform in other flavors

� Unitary transforms

� DCT and KLT



DFT Application #1: Fast Convolution

O(N2·log2N) O(N2·log2N)O(N2)

Spatial filtering

O(N4)

f(x.y)*h(x.y)



DFT Application #2: Feature Correlation

� Find letter “a” in the following image

bw = imread('text.png'); a = imread(‘letter_a.png');

% Convolution is equivalent to correlation if you rotate the 

convolution kernel by 180deg

C = real(ifft2(fft2(bw) .*fft2(rot90(a,2),256,256)));

% Use a threshold that's a little less than max.

% Display showing pixels over threshold.

thresh = .9*max(C(:)); figure, imshow(C > thresh)

from Matlab image processing demos.



DFT Application #3: Image Filters

� Zoology of image filters

� Smoothing / Sharpening / Others

� Support in time vs. support in frequency
c.f. “FIR / IIR”

� Separable / Non-separable



Smoothing Filters: Ideal Low-Pass



Butterworth Filters



Gaussian Filters





Smoothing Filter Application 1

Text enhancement



Smoothing Filter Application 2

Beautify a photo ☺



High-pass Filters



High-pass filter examples



Lecture Outline

� Why transform

� 2D Fourier Transform

� Definition, properties, implementation

� Three DFT applications

� Convolution, Filtering, Correlation

� Readings G&W 4.4.4 and 4.4.5

� Transform in other flavors

� Unitary transforms

� DCT and KLT

� … 



The Desirables for Image Transforms

� Theory
� Inverse transform available
� Energy conservation (Parsevell)
� Good for compacting energy
� Orthonormal, complete basis
� (sort of) shift- and rotation invariant

� Implementation
� Real-valued
� Separable
� Fast to compute w. butterfly-like structure
� Same implementation for forward and 

inverse transform

� Application
� Useful for image enhancement
� Capture perceptually meaningful structures 

in images

DFT ???
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�
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The Quest for a Better Transform …

� Image transform (DFT2) as basis 
expansion:

� Orthonormal (Eq 5.5)
: no two basis represent the same 
information in the image

� Completeness (Eq 5.6)
: all information in the image are 
represented in the set of basis 
functions

� ? Real-valued � real basis images

v



The Quest for a Better Transform …

� Separable basis expansion:

v

� Denote matrix Aij=ai(j)

� Choose AA* T=A*AT=I, and 
b=a, then:



Separable, Real, Unitary Transform

� Denote matrix Aij=ai(j)

� Hermitian of matrix A: AH=A* T

� Choose AAH=A*AT=I

� Also choose b=a, then:

We only need to discuss 1D 
transforms

� Choose A among orthogonal matrixes: A-1 = AT, AAT=I

� Real-valued unitary matrix is also an orthogonal matrix

� Row vectors of real orthogonal matrix A form orthonormal
basis vectors

Orthonormality obtained: 
row vectors of  A  form a 
set of basis vectors



Properties of 1-D Unitary Transform

� Energy Conservation

� || f||2 = || g||2

� || g||2 = ||Af||2= (Af)*T(Af)= f*T A*T A f = f*Tf = ||f||2

� Rotation

� The angles between vectors are preserved

� A unitary transformation is a rotation of a vector in an 
N-dimension space, i.e., a rotation of basis coordinates

Slides 39-45, 47-49 are adapted from UMCP ENEE631 Slides created by Min Wu.



Properties of 1-D Unitary Transform

� Energy Compaction

� Many common unitary transforms tend to pack a large 
fraction of signal energy into just a few transform coefficients

� Decorrelation

� Highly correlated input elements � quite uncorrelated output 
coefficients

� Covariance matrix  E[ ( g – E(g) ) ( g – E(g) )*T ]
� small correlation implies small off-diagonal terms

Question:  What unitary transform gives the best compaction 
and decorrelation?

Coming at the end of this lecture …



1-D Discrete Cosine Transform (DCT)

� Transform matrix C

� c(k,n) = α(0)  for k=0 

� c(k,n) = α(k) cos[π(2n+1)/2N]  for k>0

� C is real and orthogonal

� rows of C  form orthonormal basis

� C is not symmetric!

� DCT is not the real part of unitary DFT!
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Example of 1-D DCT 

100

50

0

-50

-100

0 1 2 3 4 5 6 7

n

z(n)

100

50

0

-50

-100

0 1 2 3 4 5 6 7

k

Z(k)

DCT

From Ken Lam’s DCT talk 2001 (HK Polytech)



1-D DCT 
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DCT Basis Images



Periodicity Implied by DFT and DCT



Using FFT to implement fast DCT

� Reorder odd and even elements

� Split the DCT sum into odd and even terms
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The Desirables for Image Transforms

� Theory
� Inverse transform available
� Energy conservation (Parsevell)
� Good for compacting energy
� Orthonormal, complete basis
� (sort of) shift- and rotation invariant

� Implementation
� Real-valued
� Separable
� Fast to compute w. butterfly-like structure
� Same implementation for forward and 

inverse transform

� Application
� Useful for image enhancement
� Capture perceptually meaningful structures 

in images

DFT ???
� 

�

?
�

�

x 

� 

�

�

�

�

DCT
� 

�

?
�

�

� 

� 

�

�



Two Observations

� Unitary transforms we’ve dealt so far are data-
independent

� Transform basis/filters are not depending on the signals we 
are processing

� We have not proof/found a unitary transform that gives 
the best energy compaction and de-correlation.

� “Optimal” in a statistical sense to allow the transform 
to work well with many images

� Signal statistics would play an important role



Review: Correlation After a Linear Transform

� Consider an Nx1 zero-mean random vector x

� Covariance (autocorrelation) matrix Rx = E[ x x
H ]

� give ideas of correlation between elements

� Rx is a diagonal matrix iff. all N r.v.’s are uncorrelated

� Apply a linear transform to x:   y = A x

� What is the correlation matrix for y ?

Ry = E[ y y
H ] = E[ (Ax) (Ax)H ] = E[ A x xH AH ] 

= A E[ x xH ] AH = A Rx A
H

� Decorrelation:  try to search for A that can produce a 

decorrelated y (i.e. a diagonal correlation matrix Ry )



Karhunen-Loeve Transform (KLT)
� a.k.a the Hotelling transform or 

the Principle Component Analysis (PCA)

� Eigen decomposition of Rx:    Rx uk = λk uk
� Recall the properties of Rx

� Hermitian (conjugate symmetric  RH = R);  

� Nonnegative definite (real non-negative eigen values)

� Karhunen-Loeve Transform (KLT)  

y = UH x � x = U y    with U = [ u1, … uN ] 

� KLT is a unitary transform with basis vectors in U being the 
orthonormalized eigenvectors of Rx

� UH Rx U = diag{λ1, λ2, … , λN}  i.e. KLT performs decorrelation

� Often order {ui} so that λ1 ≥ λ2 ≥ … ≥ λN



Summary of Lecture 5

� Why do we need image transform
� DFT revisited

� Definitions, properties, observations, implementations, 
applications

� What do we need for a transform
� Unitary transforms, KL transform, DCT

� Coming in Lecture 6: examples and optimality for DCT 
and KLT, other transform flavors, Wavelets, Applications

� Readings: G&W chapter 4, chapter 5 of Jain has been 
posted on Courseworks

� “Transforms” that do not belong to lectures 5-6:
Rodon transform, Hough transform, …


