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Announcements

� PS#6 extended to Wednesday 10am
� libSVM compiler issues

� SVMLight have ready packages for R14SP3 (v7.1)
� e.g. http://webspace.ship.edu/thbrig/mexsvm/download.html

� PS#7 to be assigned by Wednesday 10am
� analytical + mini practical

� Final Exam on May 7th 7pm~10pm
� Similar Spec. to Midterm

� 5 problems

� Open book, notes, calculator

� Coverage: Lectures 1-13
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Roadmap to Date

Spatial Domain 
processing and 
enhancement

Image Transform 
and Filtering

Morphological 
Processing

Image Descriptors

Image 
Segmentation

Applications:
Object recognition, Image/Video Compression

Indexing and Retrieval, Reconstruction
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Lecture Outline

� Image/Video compression: What and why

� Source coding 

� Basic idea

� Entropy coding for i.i.d. symbols

� Coding symbol sequences

� Source coding systems

� Compression standards

� JPEG / MPEG / …

� Recent developments and summary
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The Need for Compression

� Image: 6.0 million pixel camera, 3000x2000 
� 18 MB per image � 56 pictures / 1GB

� Video: DVD Disc 4.7 GB
� video 720x480, RGB, 30 f/s � 31.1MB/sec

� audio 16bits x 44.1KHz stereo � 176.4KB/s
� � 1.5 min per DVD disc

� Send video from cellphone: 
352*240, RGB, 15 frames / second
� 3.8 MB/sec  � $38.00/sec levied by Cingular
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Data Compression

� Wikipedia: “data compression, or source coding, is the 
process of encoding information using fewer bits (or 
other information-bearing units) than an unencoded
representation would use through use of specific 
encoding schemes.”

� Applications
� General data compression: .zip, .gz …

� Image over network: telephone/internet/wireless/etc

� Slow device: 
� 1xCD-ROM 150KB/s, bluetooth v1.2 up to ~0.25MB/s

� Large multimedia databases
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Why Can We Compress?

� Two main reasons

� Remove redundancy (Lossless): preserve all 
information, perfectly recoverable.

� Reduce irrelevance (Lossy): cannot recover all bits.

� Three types of operations
� Symbol redundancy: give common values shorts 
codes and uncommon values longer codes.

� Inter-pixel redundancy: adjacent pixels are highly 
correlated.

� Perceptual redundancy: not all information is 
perceived by eye/brain, so throw away those that 
are not.
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Psychovisual Redundancy

Pulse-code modulation (PCM) is a digital 
representation of an analog signal where the 
magnitude of the signal is sampled regularly 
at uniform intervals.
http://en.wikipedia.org/wiki/Pulse-code_modulation

PCM
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Symbol/inter-symbol Redundancy

� Letters and words in 
English
� e, a, i, s, t, …

q, y, z, x, j, …

� a, the, me, I …
good, magnificent, …

� fyi, btw, ttyl …

� In the evolution of 
language we naturally 
chose to represent 
frequent meanings with 
shorter representations.
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Pixel/inter-pixel Redundancy

� Some gray level value 
are more probable 
than others.

� Pixel values are not 
i.i.d. (independent 
and identically 
distributed)
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How much can we compress a picture?
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� i.i.d random variable

� Entropy

� Source code

� Length of the codeword 

� Expected length of C

� An example

Fundamentals of Source Coding
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What Makes a Good Code

� Desired properties of good codes: 

� Non-singular: every symbol in X maps to a different code word

� Uniquely decodable: every sequence {x1, … xn} maps to 
different codeword sequence

� Instantaneous: no codeword is a prefix of any other codeword

� Source coding theorem (Shannon 1948) 

i.i.d (stationary process)
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Huffman Codes

� Revisit example

� Is this code: non-singular /uniquely decodable / 
instantaneous?

� If not, how to improve it?
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Arithmetic Coding

� Huffman code is optimal but must be integer length
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Universal Data Compression

� What if the symbol probabilities are unknown?

� LZW algorithm (Lempel-Ziv-Welch)

w = NIL;

while ( read a character k )

{

if wk exists in the dictionary

w = wk;

else

add wk to the dictionary;

output the code for w;

w = k;

}

read a character k;

output k;

w = k;

while ( read a character k )    

/* k could be a character or a code. */

{

entry = dictionary entry for k;

output entry;

add w + entry[0] to dictionary;

w = entry;

}

� Widely used: GIF, TIFF, PDF …

� Its royalty-free variant (DEFLATE) used in PNG, ZIP, …
� Unisys U.S. LZW Patent No. 4,558,302 expired on June 20, 
2003 http://www.unisys.com/about__unisys/lzw

encoding decoding
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LZW

39  39  126  126

39  39 126  126

39  39 126  126

39  39 126  126

� Exercise: verify that the dictionary can be automatically 
reconstructed during decoding. (G&W Problem 8.16)

Example
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Lecture Outline

� Image/Video compression: What and why

� Source coding 

� Basic idea

� Entropy coding for i.i.d symbols

� Coding symbol sequences

� Source coding systems

� Compression standards

� JPEG / MPEG / …

� Current developments and future directions
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Run-Length Coding

� Why is run-length coding with 
P(X=0) >> P(X=1)  actually beneficial?

� See Jain Sec 11.3 (at course works)

� Encode the number of consecutive ‘0’s or ‘1’s

� Used in FAX transmission standard
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Predictive Coding

� Signals are correlated � predict and encoding the difference lowers 
the bitrate

� Good prediction is the key: e.g. LPC (linear-predctive) speech coding

G&W Sec. 8.5.1, Jain Sec. 11.3
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Transform Coding

� Review: properties of unitary transform

� De-correlation: highly correlated input elements �
quite uncorrelated output coefficients

� Energy compaction: many common transforms tend to 
pack a large fraction of signal energy into just a few 
transform coefficients



22Video ?= Motion Pictures

� Capturing video

� Frame by frame => image sequence

� Image sequence: A 3-D signal

� 2 spatial dimensions & time dimension

� continuous I( x, y, t ) => discrete I( m, n, tk )

� Encode digital video

� Simplest way ~ compress each frame image individually 

� e.g., “motion-JPEG”

� only spatial redundancy is explored and reduced

� How about temporal redundancy? Is differential coding good?

� Pixel-by-pixel difference could still be large due to motion

� Need better prediction
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(From Princeton EE330 S’01 by B.Liu)

Residue after motion compensation

Pixel-wise difference w/o  motion compensation

Motion estimation

“Horse ride”
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Lecture Outline

� Image/Video compression: What and why

� Source coding 

� Basic idea

� Entropy coding for i.i.d symbols

� Coding symbol/pixel/image sequences

� Source coding systems

� Quality measures

� Image compression system and algorithms: JPEG

� Video compression system and algorithms: MPEG 

� Current developments and future directions
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Image Quality Measures

� Quality measures

� PSNR (Peak-Signal-to-Noise-Ratio)

� Why would we prefer PSNR over SNR?

� Visual quality

� Compression Artifacts

� Subjective rating scale
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Measures for Coding System

� End-to-end measures of source 
coding system: Rate-Distortion

� Other considerations

� Computational complexity

� Power consumption

� Memory requirement

� Delay

� Error resilience/sensitivity

� Subjective quality

image distortion
PSNR (dB)

bit rate

bpp: bit-per-pixel;

Kbps: Kilo-bits-per-second
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Image/Video Compression Standards

� Bitstream useful only if the recipient knows the code!

� Standardization efforts are important

� Technology and algorithm benchmark

� System definition and development

� Patent pool management

� Defines the bitstream (decoder), not how you generate them (encoder)!
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Audio coding vs. Image coding 

Huffman code, 
run-length, 
differential

Huffman codeEntropy coding 

Baseline 
quantization matrix 
+ adaptive rate 
control

Fixed Quantization 
matrix base on 
psychoacoustic 
masking

Quantization

DCTMDCTTransform

BlockFrameData Unit

JPEGMP3 (wideband 
audio coding)



30JPEG Compression Standard (early 1990s)

� JPEG - Joint Photographic Experts Group

� Compression standard of generic continuous-tone still image

� Became an international standard in 1992

� Allow for lossy and lossless encoding of still images
� Part-1  DCT-based lossy compression

� average compression ratio 15:1

� Part-2  Predictive-based lossless compression

� Sequential, Progressive, Hierarchical modes
� Sequential: encoded in a single left-to-right, top-to-bottom scan

� Progressive: encoded in multiple scans to first produce a quick,
rough decoded image when the transmission time is long

� Hierarchical: encoded at multiple resolution to allow accessing low 
resolution without full decompression



31Representation in JPEG

475 x 330 x 3 = 157 KB luminance 
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33Y U V (Y Cb Cr) Components

Assign more bits to Y, less bits to Cb and Cr
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34Baseline JPEG Algorithm

� “Baseline”

� Simple, lossy compression

� Subset of other DCT-based modes of JPEG standard

� A few basics

� 8x8 block-DCT based coding

� Shift to zero-mean by subtracting 128  � [-128, 127]

� Allows using signed integer to represent both DC and AC coeff.

� Color (YCbCr / YUV) and downsample
� Color components can have lower 
spatial resolution than luminance

� Interleaving color components
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complexity

Block-based Transform

� Why block based?

� High transform 
computation 
complexity for larger blocks

� O(  m log m × m  ) per block
in transform for (MN/m2) 
blocks

� High complexity in bit 
allocation

� Block transform captures 
local info

� Commonly used block sizes: 
8x8, 16x16, 8x4, 4x8 … From Jain’s Fig.11.16
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Zonal Coding and Threshold Coding

� Zonal coding

� Only transmit a small predetermined zone of transformed 
coeff.

� Threshold coding

� Transmit coeff. that are above certain thresholds

� Compare

� Threshold coding is inherently adaptive

� introduce smaller distortion for the same number of coded coeff.

� Threshold coding needs overhead in specifying index of 
coded coeff.

� run-length coding helps to reduce overhead
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How Quantization is Performed

� Input: 

� 8x8 DCT image X(u,v)

� Quantization table Q(u,v)

� The quantizer output is:

I(u,v)=Round[X(u,v)/Q(u,v)]

� “round” is to the nearest 
integer

� JPEG default luminance table 
shown on the right

� Smaller Q(u,v) means a smaller 
step size and hence more 
resolution, vice-versa

� Q(u,v) may be scaled by a 
quality factor

9910310011298959272

10112012110387786449

921131048164553524

771031096856372218

6280875129221714

5669574024161314

5560582619141212

6151402416101116
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Quantization of Coefficients JPEG

� Default quantization table

� “Generic” over a variety of images

� Adaptive Quantization (bit allocation)

� Different quantization step size for different coeff. bands

� Use same quantization matrix for all blocks in one image

� Choose quantization matrix to best suit the image

� Different quantization matrices for luminance and color 
components

� Quality factor “Q”

� Scale the quantization table

� Medium quality Q = 50% ~ no scaling

� High quality Q = 100% ~ unit quantization step size

� Poor quality ~ small Q, larger quantization step
� visible artifacts like ringing and blockiness
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Encoding a Block in JPEG
� Basic tools

� Run-length coding

� Predictive coding (esp. for DC coefficient)

� Entropy coding (Huffman, etc.) 

� Scan order

� zig-zag scan for block-DCT to better achieve run-length 
coding gain

Horizontal frequency

Vertical 

frequency

DC
AC01

AC07

AC70

AC77

⇒ low-frequency coefficients,

then high frequency coefficients 



40Encoding a Block in JPEG (2)
� Differentially encode DC (and quantize)

� ( SIZE, AMPLITUDE ), with amplitude range in [-2048, 2047]

� AC coefficients in one block

� Zig-zag scan after quantization for better run-length
� save bits in coding consecutive zeros

� Represent each AC run-length using entropy coding 
� use shorter codes for more likely AC run-length symbols

� Symbol-1:  ( RUNLENGTH,  SIZE )   � Huffman coded

� Symbol-2:  AMPLITUDE  � Variable length coded

RUNLENGTH ∈ [0,15] 
# of consecutive zero-valued AC coefficients
preceding the nonzero AC coefficient ∈ [0,15]

SIZE ∈ [0 to 10 in unit of bits] 
# of bits used to encode AMPLITUDE 

AMPLITUDE ∈ in range of [-1023, 1024]
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Uncompressed (100KB)

JPEG 75% (18KB)

JPEG 50% (12KB)

JPEG 30% (9KB)

JPEG 10% (5KB)
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Y Cb Cr After JPEG (Q=30%)
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JPEG 2000

� Better image quality/coding efficiency, esp. low bit-rate 
compression performance
� DWT
� Bit-plane coding (EBCOT)
� Flexible block sizes
� …

� More functionality
� Support larger images
� Progressive transmission by quality, resolution, component, or 

spatial locality
� Lossy and Lossless compression
� Random access to the bitstream
� Region of Interest coding
� Robustness to bit errors
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Wavelets

� A wavelet is a square integrable function whose 
translates and dilates form an orthonormal basis for 
Hilbert space L2(R

N). 

� Theory

� Algebra, Geometry

� Analysis (mainly studying functions and operators)

� Fourier, Harmonic, Wavelets
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JPEG-2000 V.S. JPEG

(a) (b)

Compression at 0.25 b/p by means of (a) JPEG (b) JPEG-2000
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JPEG-2000 V.S. JPEG

Compression at 0.2 b/p by means of (a) JPEG (b) JPEG-2000

(a) (b)
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The trade-off:

JPEG2000 has a much Higher computational complexity than JPEG,

especially for larger pictures.

Need parallel

implementation 

to reduce 

compression

time.
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Hybrid Video Coding System

mux

de-
mux



50

A Few Key Ideas in Video Coding

� Work on each macroblock (MB) (16x16 pixels) independently for reduced 
complexity
� Motion compensation done at the MB level
� DCT coding at the block level (8x8 pixels)

� Use block or frame correlation to predict new 
data from seen data
� Predict a current block from previously coded 

blocks in the same frame --- Intra prediction 
(introduced in the latest standard H.264)

� Predict a new frame from a previous frame and 
only code the prediction error --- Inter prediction 
on “B” and “P” frames

� Prediction errors have smaller energy than the 
original pixel values and can be coded with 
fewer bits

� DCT on the prediction errors

� Those regions that cannot be predicted well will 
be coded directly using DCT --- Intra coding 
without intra-prediction
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Motion Compensation 
� Help reduce temporal redundancy of video 

PREVIOUS FRAME CURRENT FRAME

PREDICTED FRAME PREDICTION ERROR FRAME

Revised from R.Liu Seminar Course ’00 @ UMD



52Motion Estimation

� Help understanding the content of image sequence

� For surveillance

� Help reduce temporal redundancy of video 

� For compression

� Stabilizing video by detecting and removing small, noisy 
global motions

� For building stabilizer in camcorder

� A hard problem in general!



53Block-Matching by Exhaustive Search
� Assume block-based translation motion model

� Search every possibility over a specified range for the best 
matching block 
� MAD (mean absolute difference) often used for simplicity

From Wang’s 

Preprint Fig.6.6



54Fractional Accuracy Search for Block Matching

� For motion accuracy of 1/K pixel

� Upsample (interpolate) reference frame by a factor of K

� Search for the best matching block in the upsampled reference 
frame

� Half-pel accuracy ~ K=2

� Significant accuracy improvement over integer-pel
(esp. for low-resolution)

� Complexity increase

(From Wang’s Preprint Fig.6.7)



55Complexity of Exhaustive Block-Matching

� Assumptions

� Block size NxN and image size S=M1xM2

� Search step size is 1 pixel ~ “integer-pel accuracy”

� Search range +/–R pixels both horizontally and vertically

� Computation complexity

� # Candidate matching blocks = (2R+1)2

� # Operations for computing MAD for one block ~ O(N2)

� # Operations for MV estimation per block ~ O((2R+1)2 N2)

� # Blocks = S / N2

� Total # operations for entire frame ~ O((2R+1)2 S)
� i.e., overall computation load is independent of block size!

� E.g., M=512, N=16, R=16, 30fps 

=>  On the order of 8.55 x 109 operations per second!

� Was difficult for real time estimation, but possible with parallel 
hardware 
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Exhaustive Search: Cons and Pros

� Pros

� Guaranteed optimality within search range and motion model

� Cons

� Can only search among finitely many candidates
� What if the motion is “fractional”?

� High computation complexity
� On the order of  [search-range-size * image-size]  for 1-pixel step size

� How to improve accuracy?

� Include blocks at fractional translation as candidates 
=> require interpolation

� How to improve speed?

� Try to exclude unlikely candidates
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Fast Algorithms for Block Matching

� Basic ideas

� Matching errors near the best match are generally smaller 
than far away

� Skip candidates that are unlikely to give good match

(From Wang’s Preprint Fig.6.6)
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M24

M15 M14 M13

M16

M11

M12

M5 M4 M3

M17 M18 M19

-6 M6 M1 M2 +6

M7 M8 M9

dx

dy

Fast Algorithm:  3-Step Search 

� Search candidates at 8 
neighbor positions

� Step-size cut down by 
2 after each iteration

� Start with step size 
approx. half of max. 
search range

motion vector 

{dx, dy} = {1, 6}

Total number of computations:

9 + 8×2 = 25  (3-step)

(2R+1)2 = 169  (full search)

(Fig. from Ken Lam – HK Poly Univ. 
short course in summer’2001)



59

Recent Activities in Image Compression

� Build better, more versatile systems

� High-definition IPTV

� Wireless and embedded applications

� P2P video delivery 

� In search for better basis

� Curvelets, contourlets, …

� “compressed sensing”
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Summary

� The image/video compression problem

� Source coding
� For i.i.d. symbols

� For symbol streams

� Image/video compression systems
� MPEG/JPEG and beyond

� Next time: multimedia indexing and image reconstruction in medical 
applications

Part of the slides/materials gratefully taken from: 

Wade Trappe (Rutgers), Min Wu (UMD), Yao Wang 

(poly tech), Xiuzhen Huang (UCSB), Tony Lin (PKU) 


