Solution for EE E4830 Digital Image Processing Spring 2003, March 13, 2003

P.1.

(a) (20\%) Eq. (3.5-20 a,b,c)

$$
\begin{gathered}
{\left[\begin{array}{c}
I \\
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 / 3 & 1 / 3 & 1 / 3 \\
-1 / \sqrt{6} & -1 / \sqrt{6} & 2 / \sqrt{6} \\
1 / \sqrt{6} & -1 / \sqrt{6} & 0
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]} \\
H=\tan ^{-1}\left\{v_{2} / v_{1}\right\} \\
S=\left(v_{1}^{2}+v_{2}^{2}\right)^{1 / 2}
\end{gathered}
$$

Using the above equations, we get

	Red	Yellow	Blue	Ref. White
I	$1 / 3$	$2 / 3$	$1 / 3$	1
H	$-\pi / 4$	0	0	0
S	$1 / \sqrt{3}$	$2 / \sqrt{6}$	$2 / \sqrt{6}$	0

(b) (14%)

One possible distance measure between colors in HSI is

$$
D=\alpha\left|I_{1}-I_{2}\right|+\beta\left|S_{1}-S_{2}\right|+\gamma\left|H_{1}-H_{2}\right|
$$

α, β, γ are weights controlling the relative importance among different channels.
Another possible measure is L_{2} distance

$$
D=\left(\left|I_{1}-I_{2}\right|^{2}+\left|S_{1}-S_{2}\right|^{2}+\left|H_{1}-H_{2}\right|^{2}\right)^{1 / 2}
$$

but such metrics may not correspond well to perceived distance.
P.2.
(a) (17\%)

$$
p_{u}(u)=\left\{\begin{array}{lc}
1-|u| & -1 \leq u \leq 1 \\
0 & \text { Otherwise }
\end{array}\right.
$$

We want to design $w=f(u)$ so that pdf of w is as follows:

As described in the class notes, $F_{w}(w)=F_{u}(u)$, where F is the cumulative probability distribution function

$$
\begin{equation*}
\frac{w-w_{\min }}{w_{\max }-w_{\min }}=F_{u}(u), \quad w_{\min } \leq w \leq w_{\max } \tag{*}
\end{equation*}
$$

Now $w_{\text {min }}=-1, w_{\text {max }}=1$

$$
\begin{aligned}
F_{u}(u) & =\int_{-\infty}^{u} p_{u}(x) d x \\
& =\left\{\begin{array}{cc}
(u+1)^{2} / 2 & -1 \leq u \leq 0 \\
-u^{2} / 2+u+1 / 2 & 0 \leq u \leq 1
\end{array}\right.
\end{aligned}
$$

Use equation $\left(^{*}\right)$ above,

$$
w=2 F_{u}(u)-1=\left\{\begin{array}{lr}
u^{2}+2 u, & -1 \leq u \leq 0 \tag{**}\\
-u^{2}+2 u, & 0 \leq u \leq 1
\end{array}\right.
$$

(b) (17%)

Since the pdf of wis uniform, the optimal quantization for w will be the uniform quantizer.

Map $t_{i} \& r_{i}$ for w to the decision and reconstruction values for u.
Use equation $\left({ }^{* *}\right)$ in part (a) to derive the reverse mapping function

$$
\begin{aligned}
& u=\left\{\begin{aligned}
-1+\sqrt{1+w} & -1 \leq w \leq 0 \\
1-\sqrt{1+w} & 0 \leq w \leq 1
\end{aligned}\right. \\
& \therefore \\
& t_{0}=-1 \quad \Rightarrow \quad t_{0}^{\prime}=-1 \\
& t_{1}=-1 / 2 \Rightarrow t_{1}^{\prime}=-1+\sqrt{1 / 2} \\
& t_{2}=0 \quad \Rightarrow \quad t_{2}^{\prime}=0 \\
& t_{3}=1 / 2 \quad \Rightarrow \quad t_{3}^{\prime}=1-\sqrt{1 / 2} \\
& t_{4}=1 \quad \Rightarrow \quad t_{4}^{\prime}=1 \\
& r_{0}=-3 / 4 \quad \Rightarrow \quad r_{0}^{\prime}=-1 / 2 \\
& r_{1}=-1 / 4 \quad \Rightarrow \quad r_{1}^{\prime}=-1+\sqrt{3} / 2 \\
& r_{2}=1 / 4 \quad \Rightarrow \quad r_{2}^{\prime}=1-\sqrt{3} / 2 \\
& r_{3}=3 / 4 \quad \Rightarrow \quad r_{3}^{\prime}=1 / 2 \\
& \begin{array}{c|c|c|c|c|c}
r_{0}^{\prime}=-1 / 2 & r_{1}^{\prime}=-1+\sqrt{3} / 2 & r_{2}^{\prime}=1-\sqrt{3} / 2 & r_{3}^{\prime}=1 / 2 \\
& \times & \times & \times & \times & u \\
\hline
\end{array} \\
& t_{0}^{\prime}=-1 \quad t_{1}^{\prime}=-1+\sqrt{2} / 2 \quad t_{2}^{\prime}=0 \quad t_{3}^{\prime}=1-\sqrt{2} / 2 \quad t_{4}^{\prime}=1 \\
& M S E=E\left\{\left(u-u^{\prime}\right)^{2}\right\} \\
& =\sum_{i=0}^{3} \int_{t_{i}^{\prime}}^{t_{i+1}^{\prime}}\left(u-r_{i}^{\prime}\right)^{2} p_{u}(u) d u \\
& =\int_{-1}^{-1+\sqrt{2} / 2}(u+1 / 2)^{2}(1+u) d u+\int_{-1+\sqrt{2} / 2}^{0}(u+1-\sqrt{3} / 2)^{2}(1+u) d u \\
& +\int_{0}^{1-\sqrt{2} / 2}(u-1+\sqrt{3} / 2)^{2}(1-u) d u+\int_{1-\sqrt{2} / 2}^{1}(u-1 / 2)^{2}(1-u) d u \\
& =2\left[\int_{-1}^{-1+\sqrt{2} / 2}(u+1 / 2)^{2}(1+u) d u+\int_{-1+\sqrt{2} / 2}^{0}(u+1-\sqrt{3} / 2)^{2}(1+u) d u\right] \\
& =2(0.0071+0.0018) \\
& =0.0178
\end{aligned}
$$

Computation of integral:
$\int_{a}^{b}\left(u^{\prime}+c\right)^{2}\left(1+u^{\prime}\right) d u^{\prime}$
Let $u=u^{\prime}+c, u^{\prime}=u-c$, then

$$
\begin{aligned}
& \int_{a+c}^{b+c} u^{2}(1-c+u) d u=\int_{a+c}^{b+c} u^{3} d u+(1-c) \int_{a+c}^{b+c} u^{2} d u \\
& =1 / 4\left[(b+c)^{4}-(a+c)^{4}\right]+(1-c) / 3\left[(b+c)^{3}-(a+c)^{3}\right]
\end{aligned}
$$

P. 3 (34\%)

(a) The $1^{\text {st }}$ row is the 1-D DFT of average values of each column. $\Rightarrow \mathrm{N}$ real-valued numbers
(b) similar to (a), excluding the origin point $\Rightarrow \mathrm{N}-1$ numbers
(c)

$$
v(k, N / 2)=v^{*}(N-k, N / 2)
$$

$\begin{array}{ll}\therefore \quad \text { Total Nuber }=(N / 2-1) \times 2+1, ~ e x c l u d i n g ~ \\ & (0, N / 2)\end{array}$
(d) Similar to (c), Total Number $=\mathrm{N}-2$, excluding $v(N / 2,0)$ and $v(N / 2, N / 2)$
(e)I

$v(k, l)$ in region [1] is conjugate symmetric with $v(k, l)$ in region [3]
Total number of real numbers
Likewise,- there are $=(N / 2-1)^{2} \times 2$ real numbers in regions [2] $+[4]$
\therefore If we add up the results in (a) - (e)
Total number of real numbers
$=N+(N-1)+(N-1)+(N-2)+(N / 2-1)^{2} \times 2+(N / 2-1)^{2} \times 2$
$=N^{2}$
This is the same as the total number of pixels in $u(i, j)$.
P.4. (34\%)

Since we are interested in the correlation between features at different time, but the same locations, the input vector will be

$$
\mathbf{w}_{i, j}=\left[\begin{array}{c}
f\left(i, j, t_{0}\right) \\
f\left(i, j, t_{1}\right) \\
\ldots \\
f\left(i, j, t_{T-1}\right)
\end{array}\right] \text {, where } \mathrm{T} \text { is the time window }
$$

From T consecutive image frames, we can get $\left(N_{1} / K_{1}\right)\left(N_{2} / K_{2}\right)$ empirical observation of the \mathbf{u} vector.

From the above pool of observation data, we can compute the covariance matrix of \mathbf{u}, R_{u}, which is a T by T matrix.
$R_{\mathbf{u}}(k, l)=\sum_{i=0}^{N_{1} / K_{1}-1} \sum_{j=0}^{N_{2} / K_{2}-1}\left(f\left(i, j, t_{k}\right)-m_{k}\right)\left(f\left(i, j, t_{l}\right)-m_{k}\right)$
where m_{k} is the mean of $f(i, j, k)$ over all possible i, j index values.
Find the eigen vectors of $R_{\mathbf{u}},\left\{\mathbf{f}_{0}, \mathbf{f}_{1}, \ldots, \mathbf{f}_{T-1}\right\}_{\text {. }}$

Form the KLT matrix as follows

$$
\Phi_{T \times T}=\left[\mathbf{f}_{0}\left|\mathbf{f}_{1}\right| \ldots \mid \mathbf{f}_{T-1}\right]
$$

Now given the original image sequence,

we can use the following KLT transform

$$
\mathbf{v}_{i j}=\Phi^{* T} \mathbf{u}_{i j}
$$

Here $\mathbf{v}_{i j}$ is a Tx 1 vector, Φ is a TxT matrix, and $\mathbf{u}_{i j}$ is a Tx1 vector.
Due to the compaction of energy, some frames of \mathbf{v} near the end can be ignored.

