
Exercise 2/06 51

T-61.5100 Digital image processing, Exercise 2/06

Image enhancement in the spatial domain

1. Equalize the histogram of the 8× 8 image below. The image has grey levels 0, 1, . . . , 7.

4 4 4 4 4 4 4 0
4 5 5 5 5 5 4 0
4 5 6 6 6 5 4 0
4 5 6 7 6 5 4 0
4 5 6 6 6 5 4 0
4 5 5 5 5 5 4 0
4 4 4 4 4 4 4 0
4 4 4 4 4 4 4 0

2. Assume that we have many noisy versions gi(x, y) of the same image f(x, y), i.e.

gi(x, y) = f(x, y) + ηi(x, y)

where the noise ηi is zero-mean and all point-pairs (x, y) are uncorrelated. Then we can
reduce noise by taking the mean of all the noisy images

ḡ(x, y) =
1
M

M∑
i=1

gi(x, y).

Prove that
E{ḡ(x, y)} = f(x, y)

and
σ2
ḡ(x,y) =

1
M
σ2
η(x,y)

where σ2
η(x,y) is the variance of η and σ2

ḡ(x,y) the variance of ḡ(x, y).

3. A two-variable continuous function’s Laplace-operator is

52f(x, y) =
∂2f

∂x2
+
∂2f

∂y2
.

From this, it follows that

F{52f(x, y)} = −(2π)2(u2 + v2)F (u, v),

where F (u, v) = F{f(x, y)}. Determine the corresponding operator and the Fourier trans-
form in the discrete case. Compare the result obtained to the continuous case.

4. Show that subtracting the Laplacian from an image is proportional to unsharp masking.
Use the definition for the Laplacian in the discrete case.
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1.

Histogram equalization enhances contrast in an image (more gray levels are used). It is usually
used to improve the visibility of details in images. The discrete equalization is given by

sk = T (rk) =
k∑
j=0

nj
n
,

where rk is the normalized gray level, nk is the number of pixels having gray level k, and n is
the total number of pixels.

First we calculate the gray level histogram:

k 0 1 2 3 4 5 6 7
rk 0 0.143 0.286 0.429 0.571 0.714 0.857 1.0
nk 8 0 0 0 31 16 8 1
pr(rk) = nk/n 0.125 0 0 0 0.484 0.250 0.125 0.016

Then we form the cumulative distribution function:

sk 0.125 0.125 0.125 0.125 0.609 0.859 0.984 1.000

Finally we round the obtained values for the actual gray levels rk:

s′k 0.143 0.143 0.143 0.143 0.571 0.857 1.000 1.000

So, the histogram equalization is done by mapping the gray levels k into the new gray levels k′:

k 0 1 2 3 4 5 6 7
k′ 1 1 1 1 4 6 7 7

Resulting image:

4 4 4 4 4 4 4 1
4 6 6 6 6 6 4 1
4 6 7 7 7 6 4 1
4 6 7 7 7 6 4 1
4 6 7 7 7 6 4 1
4 6 6 6 6 6 4 1
4 4 4 4 4 4 4 1
4 4 4 4 4 4 4 1

2.

The noisy image is now given as

gi(x, y)︸ ︷︷ ︸
noisy image

= f(x, y)︸ ︷︷ ︸
original image

+ ηi(x, y)︸ ︷︷ ︸
noise

,

where noise has zero mean and it is uncorrelated.
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When we average the noisy images

ḡ(x, y) =
1
M

M∑
i=1

gi(x, y)

we get for the expectation

E {ḡ(x, y)} = E

{
1
M

M∑
i=1

gi(x, y)

}
= E

{
1
M

M∑
i=1

f(x, y) +
1
M

M∑
i=1

ηi(x, y)

}
=

1
M

M∑
i=1

E {f(x, y)}+
1
M

M∑
i=1

E {ηi(x, y)}︸ ︷︷ ︸
=0 (zero mean)

= f(x, y)

and for the variance

σ2
ḡ(x,y) = E

{
(ḡ − E {ḡ})2

}
= E


(

1
M

M∑
i=1

(f + ηi)− f

)2
 = E


(

1
M

M∑
i=1

ηi

)2
 =

1
M2

E


(

M∑
i=1

ηi

)2
 =

1
M2

E


M∑
i=1

η2
i +

M∑
j=1, j 6=i

ηiηj

 =
1
M2

 M∑
i=1

E{η2
i }︸ ︷︷ ︸

=σ2
η

+
M∑

j=1, j 6=i
E{ηiηj}︸ ︷︷ ︸

=0




=
1
M
σ2
η,

since the noise had zero mean and it was uncorrelated.

3.

We approximate the derivative in discrete case:

∂f(x, y)
∂x

' f(x, y)− f(x− 1, y)

By ‘derivating’ again, we have

∂2f(x, y)
∂x2

' (f(x, y)−f(x−1, y))−(f(x−1, y)−f(x−2, y)) = f(x, y)−2f(x−1, y)+f(x−2, y).

This is equivalent to filtering with a mask [1,−2, 1]. The mask is most practically used sym-
metrically so that −2 is in the middle, rather than as in the formula above.
Thus

∂2f(x, y)
∂x2

+
∂2f(x, y)
∂y2

' f(x− 1, y) + f(x+ 1, y) + f(x, y − 1) + f(x, y + 1)− 4f(x, y),

which corresponds to mask h(x, y):

1
1 −4 1

1

Next we calculate the Fourier transform of the mask:

H(u, v) =
1
N

∞∑
x=−∞

∞∑
y=−∞

h(x, y)e−j2π(ux+vy)/N =
1
N

(ej2πu/N + ej2πv/N + e−j2πu/N + e−j2πv/N − 4)

=
1
N

[2 cos(2πu/N) + 2 cos(2πv/N)− 4]
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And finally

F{52f [x, y]} =
1
N

(2 cos(2πu/N) + 2 cos(2πv/N)− 4) · F (u, v),
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In the figure there is |H(u, 0)| in discrete and continuous case. Solid line: discrete case, i.e.
|H(u, 0)| = 2− 2 cos(2πu). Dotted line: continuous case, i.e. |H(u, 0)| = (2π)2u2.

4.

Consider the following equation:

f(x, y)−52 f(x, y) = f(x, y)− [f(x+ 1, y) + f(x− 1, y) + f(x, y + 1) + f(x, y − 1)− 4f(x, y)]
= 6f(x, y)− [f(x+ 1, y) + f(x− 1, y) + f(x, y + 1) + f(x, y − 1) + f(x, y)]

= 5{1.2f(x, y)− 1
5
[f(x+ 1, y) + f(x− 1, y) + f(x, y + 1) + f(x, y − 1) + f(x, y)]}

= 5[1.2f(x, y)− f̄(x, y)]

where f̄(x, y) denotes the average of f(x, y) in a predefined neighborhood that is centered at
(x, y) and includes the center pixel and its four immediate neighbors. Treating the constants in
the last line of the above equation as proportionality factors, we may write

f(x, y)−52f(x, y) ∼ f(x, y)− f̄(x, y).

The right side of this equation is recognized as the definition of unsharp masking given in
Eq. (3.7-7). Thus, it has been demonstrated that subtracting the Laplacian from an image is
proportional to unsharp masking.


