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Abstract

Detection and Tracking of Dolphin Vocalizations

Xanadu C. Halkias

The field of audio engineering has predominantly been consumed by hu-

man centered applications. Many scientists have developed numerous success-

ful algorithms that deal with important issues in speech and music processing.

Automatic speech recognition systems, speech to text products or even music

recommendation systems and simple transcription are just a few of the nu-

merous research projects that have escaped research labs worldwide and have

entered our every day lives.

However, audio processing has also affected the field of animal bioacoustics.

Many audio engineers are now using their knowledge to advance our under-

standing of the world that surrounds us and especially that of animals. This

work falls into that category, where the principles of signal processing, com-

munication theory and machine learning are used to analyze the clandestine

world of marine mammals and specifically dolphins. Although substantial ef-

forts have been made in the scientific community, there is still a need for the

creation of an automatic and robust system that will allow for the detection

and tracking of dolphin vocalizations.

In this work, Chapter 1 provides a short description on the physiology

of dolphins focusing on how they produce and use sound for their survival.

Chapter 2 is an overview of the most popular systems in the field for the



analysis of marine mammal vocalizations and provides a framework for the

task at hand.

Continuing, Chapter 3 describes the unique aspects of the data as well as

the different features that are used in order to provide the proposed detection

and extraction schemes.

In Chapter 4 several algorithms are proposed for the successful detection

of dolphin calls in long recordings. Starting with the simple and widely used

thresholding detectors, several advancements are proposed, based on the data,

leading to more intricate classifiers like Support Vector Machines (SVM) that

are known for their robustness.

Chapter 5 provides two systems for pitch extraction. the first system is

based on a probabilistic framework and deals with the extraction of dolphin

whistle calls while providing a first attempt on resolving simple overlaps. The

second system assumes that the desired calls have already been detected and

proceeds to identify the pitch for both whistle and burst calls using hierarchi-

cally driven Hidden Markov Models (HMM).

Finally, Chapter 6 presents the conclusions from the proposed methodolo-

gies and highlights both their advantages and disadvantages. Dolphins are

intensely vocal mammals and although we are still unaware of the purpose or

context of these vocalizations, I hope that by the end of this work we will have

a better idea on how to uncover and approach their sounds, one of the few

doors, that allow us to enter their world.



Contents

1 Introduction 1

2 Technical Introduction 7

2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Summary of contributions . . . . . . . . . . . . . . . . . . . . 16

3 Data overview 17

3.1 Extracting Features from the Data . . . . . . . . . . . . . . . 23

3.1.1 The Spectrogram . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Energy Summation . . . . . . . . . . . . . . . . . . . . 25

3.1.3 Cepstral Features . . . . . . . . . . . . . . . . . . . . . 29

3.1.4 Other features . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Call detection 34

4.1 Detection using energy thresholding . . . . . . . . . . . . . . . 36

4.1.1 Energy thresholding for whistle calls . . . . . . . . . . . 37

4.1.2 Energy thresholding for burst calls . . . . . . . . . . . 39

4.1.3 Energy thresholding for whistle and burst calls . . . . . . 41

i



4.2 Energy detection optimization . . . . . . . . . . . . . . . . . . 44

4.3 Energy detection using gradient descent . . . . . . . . . . . . . 47

4.3.1 Whistle detection using gradient descent . . . . . . . . 50

4.3.2 Burst detection using gradient descent . . . . . . . . . 53

4.4 Energy detection using gradient descent for whistle and burst

calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Thresholding detection using cepstral features . . . . . . . . . 60

4.6 Call detection using Gaussian Models (GM) . . . . . . . . . . 65

4.6.1 Call detection using Gaussian Models and the spectro-

gram feature . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6.2 Call detection using GMM’s and the cepstral feature . 68

4.7 Call detection using Support Vector Machines (SVM) . . . . . 73

4.7.1 Call detection using SVM’s and the spectrogram feature 75

4.7.2 Call detection using SVM’s and the cepstral feature . . 79

4.8 Conclusions on detecting dolphin calls . . . . . . . . . . . . . 82

5 Call pitch tracking 87

5.1 A comparison of pitch extraction methodologies for whistles and

bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.1 Cepstral coefficients with hierarchically driven Hidden

Markov Models (HMM) . . . . . . . . . . . . . . . . . . 91

5.1.2 YIN: A fundamental frequency estimator . . . . . . . . 95

5.1.3 Get f0: A software package for pitch extraction in speech 97

5.1.4 Comparing the different algorithms . . . . . . . . . . . 99

ii



5.2 Pitch extraction using Bayesian inference . . . . . . . . . . . . 106

5.2.1 The front-end: Extracting sinusoidal segments . . . . . 109

5.2.2 The back-end: Forming calls from segments . . . . . . 112

5.3 Conclusions on pitch tracking of dolphin calls . . . . . . . . . . 121

6 Conclusions and future work 125

iii



List of Figures

1.1 Bottlenose dolphin (Tursiops Truncatus) . . . . . . . . . . . . 3

1.2 Dolphin sound production mechanism . . . . . . . . . . . . . . 4

2.1 Examples of a whistle and burst call . . . . . . . . . . . . . . 10

3.1 Histogram of dolphin calls . . . . . . . . . . . . . . . . . . . . 20

3.2 Example of wild dolphin recording . . . . . . . . . . . . . . . 22

3.3 Examples of dolphin calls . . . . . . . . . . . . . . . . . . . . 25

3.4 Example of energy summation feature . . . . . . . . . . . . . . 26

3.5 Energy distribution for dolphin calls . . . . . . . . . . . . . . . 27

3.6 Example of energy summation feature with clicks shown in red

arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 Example of the cepstrum for a burst call . . . . . . . . . . . . 30

3.8 Example of spectrogram (top) and cepstral coefficients (bott-

tom) for a whistle (left column) and burst call (right column) 32

3.9 Example of spectrogram (top) and STAC (bottom) for a whistle

(left column) and burst call (right column) . . . . . . . . . . . 32

4.1 Whistle detection using energy thresholding . . . . . . . . . . . 37

iv



4.2 ROC for whistle calls using energy feature . . . . . . . . . . . 39

4.3 Burst detection using energy threshold . . . . . . . . . . . . . 40

4.4 ROC for burst calls using energy feature . . . . . . . . . . . . . 41

4.5 Whistle and burst detection using energy threshold . . . . . . 42

4.6 ROC for whistle and burst calls using energy feature . . . . . 43

4.7 AUC function vs. frequency channels for whistle calls . . . . . 46

4.8 AUC function vs. frequency channels for burst calls . . . . . . 46

4.9 Gradient descent technique . . . . . . . . . . . . . . . . . . . . 48

4.10 Optimal weights for whistle calls . . . . . . . . . . . . . . . . . . 51

4.11 Example of spectrogram based detection function for whistles

using gradient descent technique . . . . . . . . . . . . . . . . . 52

4.12 ROC for whistle calls using energy feature and L-GD . . . . . 53

4.13 ROC for whistle calls using energy feature and NL-GD . . . . 54

4.14 Optimal weights for burst calls . . . . . . . . . . . . . . . . . . 55

4.15 Example of spectrogram based detection function for bursts us-

ing gradient descent technique . . . . . . . . . . . . . . . . . . 55

4.16 ROC for burst calls using energy feature and L-GD . . . . . . 56

4.17 ROC for burst calls using energy feature and NL-GD . . . . . 56

4.18 Optimal weights for whistle and burst calls . . . . . . . . . . . 58

4.19 Example of spectrogram based detection function for whistles

and bursts using gradient descent technique . . . . . . . . . . 58

4.20 ROC for whistle and burst calls using energy feature and L-GD 59

4.21 ROC for whistle and burst calls using energy feature and NL-GD 59

4.22 AUC vs. number of cepstral coefficients . . . . . . . . . . . . . . 61

v



4.23 Optimal weights for whistle and burst calls using the cepstral

feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.24 Example of cepstral feature using gradient descent technique for

whistles and bursts . . . . . . . . . . . . . . . . . . . . . . . . 63

4.25 ROC for whistle and burst calls using cepstral feature and L-GD 64

4.26 ROC for whistle and burst calls using cepstral feature and NL-GD 64

4.27 Parameters for GM with spectral features . . . . . . . . . . . 69

4.28 ROC for whistle and burst calls using spectral magnitude and

GM’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.29 AUC as a function of the number of components used in a GMM

(50 cepstral dimensions) . . . . . . . . . . . . . . . . . . . . . 70

4.30 Parameters for GM with cepstral features . . . . . . . . . . . . 72

4.31 ROC for whistle and burst calls using the cepstrum and GM’s 72

4.32 ROC for whistle and burst calls using spectral magnitude and

SVM’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.33 ROC for different clips using spectral magnitude and SVM’s . 78

4.34 ROC for whistle and burst calls using the cepstrum and SVM’s 80

4.35 ROC for different clips using the cepstrum and SVM’s . . . . . 81

4.36 Comparative results for clips with only whistles or only bursts 83

4.37 Comparative results for clips with whistles and bursts . . . . . 84

4.38 Comparative results for clips with whistles and bursts . . . . . 84

5.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Whistle call and distance function from YIN . . . . . . . . . . 98

5.3 Burst call and distance function from YIN . . . . . . . . . . . 98

vi



5.4 Data histogram and bimodality . . . . . . . . . . . . . . . . . 100

5.5 Yin frame rate vs. HHMM frame rate for every call . . . . . . 102

5.6 Example of pitch extraction for a whistle call . . . . . . . . . . 104

5.7 Example of pitch extraction for a burst call . . . . . . . . . . . 105

5.8 System overview for whistle extraction . . . . . . . . . . . . . . 107

5.9 Front-end for whistle extraction . . . . . . . . . . . . . . . . . 109

5.10 Example of the front-end of the system for a simple clip . . . . 113

5.11 Example of the front-end of the system for a clip with overlaps 113

5.12 Back-end for whistle extraction . . . . . . . . . . . . . . . . . 114

5.13 Example of the back-end of the system for a simple clip . . . . 118

5.14 Example of the back-end of the system for a clip with overlaps 118

5.15 Resolving overlaps . . . . . . . . . . . . . . . . . . . . . . . . 119

5.16 Comparative results for pitch extraction of whistles and bursts 123

vii



List of Tables

3.1 Average statistics for whistle and burst calls . . . . . . . . . . . 21

4.1 Energy threshold for whistle calls . . . . . . . . . . . . . . . . . 37

4.2 AUC for whistle calls . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Energy threshold for burst calls . . . . . . . . . . . . . . . . . 40

4.4 AUC for whistle calls . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Energy threshold for burst calls . . . . . . . . . . . . . . . . . 42

4.6 AUC for whistle and burst calls . . . . . . . . . . . . . . . . . 43

4.7 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 AUC for whistle calls using gradient descent . . . . . . . . . . 52

4.9 AUC for burst calls using gradient descent . . . . . . . . . . . 54

4.10 AUC for whistle and burst calls using gradient descent . . . . 59

4.11 AUC for whistle and burst calls using gradient descent with

cepstrum and best results from simple energy thresholding and

optimized spectral feature system . . . . . . . . . . . . . . . . 64

4.12 AUC for whistle and burst calls using GM’s with spectral mag-

nitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.13 AUC for whistle and burst calls using GM’s with cepstral features 71

viii



4.14 AUC for whistle and burst calls using SVM’s with spectral mag-

nitude feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.15 AUC for different clips using SVM’s with spectral magnitude

feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.16 AUC for whistle and burst calls using SVM’s with cepstral features 79

4.17 AUC for different clips using SVM’s with cepstral features . . 80

4.18 Results on detection algorithms . . . . . . . . . . . . . . . . . 86

4.19 Computation cost for detection algorithms . . . . . . . . . . . 86

5.1 Pitch extraction methodologies . . . . . . . . . . . . . . . . . 90

5.2 Comparative results for different systems . . . . . . . . . . . . . 101

5.3 Rates for whistle system . . . . . . . . . . . . . . . . . . . . . . 121

ix



Acknowledgments

Special thanks to Robert Turetsky for his relentless support and for not only

showing me where the traps are, but for helping me out when I would fall in

them...

Also, to my advisor Prof. Dan Ellis, who was willing to go on this journey

with me and taught me the principles of scientific research.

Also, to Prof. Diana Reiss for not only providing me with the data of captive

dolphins, but for also sharing her passion for marine mammals.

Many thanks to my dissertation committee for honoring me with their time

and constructive comments.

A big thank you to Prof. Ed Coffman for his beautiful teachings and for

standing up for me...

My deepest appreciation to Laura Wechsler and Rosemarie Raffa who went

above and beyond to help me and ensured that I would be able to finish.

To Azlyn, Elsa, Kevin, Michelle and everybody at the EE department, thank

you for always being there with a smile and willingness to help.

x



To my father, Christos Halkias for setting the bar high...

To my mother, Christina Antonopoulou for instilling in me that there is no

bar high enough...

and to my late stepfather, Takis Moshos who left us enduring so much pain

and fear, and with that...

taught me how to live without them

xi



1

Chapter 1

Introduction

“Which flutes’ beloved sound

Excites to play,

Upon the calm and placid sea”

Pindar’s words about the Dolphin found in Plutarch’s Morals

In Greek mythology, dolphins first appear in the tale of the Tyrrhenian

pirates and the god Dionysos. According to the myth, the pirates captured

the god Dionysos who was traveling under disguise in the Aegean sea and

were planning to sell him off as a slave. In anger, Dionysos filled the ship with

spreading vines and snakes and when the pirates jumped over board to save

themselves he transformed them into dolphins so that they would help those

in need at sea.

Anecdotal stories about the friendly nature of dolphins as well as their

close bond with humans are found throughout human history. Even in modern

times people seem to have a special relationship with dolphins more than any
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marine mammal, in fact. It is astounding how there exists an overall common

notion when it comes to the abilities and intelligence of dolphins. Most people,

believe that dolphins are highly intelligent and encompass human qualities. An

indicator of their cognitive abilities and evolution can be found in the work

of Reiss and Marino [44] on mirror self-recognition in the bottlenose dolphin.

However, scientific research has yet to establish the range of their cognitive

abilities with irrefutable evidence.

The first written record on dolphins is found in Aristotle’s (384 BC-322

BC) Historia Animalium (History of Animals). Aristotle was the first to clas-

sify the dolphin as a mammal and to also give an estimate of its life span e.g.

approximately 25-30 years, although now understood to be between 30 − 60

years. His observations were later used and compared by modern scientists in

order to get a better understanding of marine mammals. In recent years more

attention has been given in the study of marine mammals. Several organiza-

tions have facilitated a more comprehensive research on whales and dolphins

not only for conservation and population preservation purposes, but also for a

well-rounded understanding of the abilities of these mammals through devel-

opmental and cognition studies.

In terms of their taxonomy, whales and dolphins are classified as cetaceans.

Those can be further categorized into baleen whales (mysticeti) and toothed

whales and dolphins (odontoceti). Dolphins belong in the family of Delphinidae

(oceanic dolphins). There exist 33 species of dolphins and the scope of this work

is based on the vocalizations of the bottlenose dolphin (Tursiops truncatus),

as seen in Figure 1.1.
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Figure 1.1: Bottlenose dolphin (Tursiops Truncatus)

The bottlenose dolphin is the most widely researched dolphin. Its abun-

dance through out the world’s seas as well as its proximity to humans have

allowed scientists to study the physiology and behavior of this marine mam-

mal. Dolphins are known for their cooperative and playful personality. There

exist numerous anecdotal stories of them approaching and helping humans in

various situations. They are social animals and they live in pods of multiple

individuals, while creating strong bonds amongst themselves [51]. In terms of

their physiology, we know that they don’t posses a sense of smell, but do have

a strong sense of taste and feel [41]. Although, dolphins have good eyesight

both in and out of the water, they rely heavily on their hearing and sound

production for their survival.

In the late 1960’s, the first in depth experiments on dolphin communication

were presented through the work of Dreher, Evans and Lilly [14, 29]. In these

experiments, the researchers studied the vocalizations of dolphins attempting a

first contextual analysis as well as an effort to identify and classify the different
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Figure 1.2: Dolphin sound production mechanism

types of vocalizations. Research on the understanding of marine mammals was

further promoted with the enactment of the Marine Mammal Protection Act

(MMPA) that came into effect in 1972. Much of the physiological work on the

mechanics of sound production in dolphins was performed by Sam Ridgway [47]

then employed by the Navy and is now continued by Cranford [12]. A simplified

description of the mechanics of sound in dolphins is shown in Figure 1.2 1.

Sound in dolphins is received through their lower jaw and transferred via

surrounding fatty tissue to the middle ear.

Dolphins produce sound by passing air through air sacs that are located in

their head. The sound is produced mainly through the blowhole and is guided

with the help of the melon due to strong reflections within the skull [41].

Overall, scientists can consider two main types of vocalizations in the bot-

tlenose dolphin based on their function:

• Navigational, Foraging Vocalizations: Echolocation/Clicks/Sonar

1Image from Dolphin Acoustical Structure (1991) Scheifele, P. M. NUSC TR 3080
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• Social/Communication Vocalizations: Whistles, bursts/squeeks

These two broad categories have long been of interest in the scientific com-

munity. Although a lot of attention has been given to the echolocation abilities

of dolphins due to their usefulness in the Navy, researchers have always been

attracted and have tried to decipher dolphins’ social vocalizations.

The origins and purpose of whistle calls has led to a widespread debate in

the marine mammal community giving rise to two different camps concerning

what is known as the “Signature whistle hypothesis” that was first proposed

by Caldwell and Caldwell [7, 8]. Tyack [53] along with Caldwell and Caldwell,

believe that dolphins possess an individual identifier, similar to a name in

humans. On the other hand, Reiss and McCowan [45, 46] attempt to refute

the findings of Tyack and the existence of a signature whistle, by showing that

it is most likely that dolphins possess a shared whistle type each with individual

distinctiveness. These whistles could give rise to different contextual instances

e.g. alarm whistles, but overall appear to have similar contours across different

pods. This could be analogous to human dialects that stem from the same

language.

Although the exploration of the validity of the “Signature whistle hypoth-

esis” is beyond the scope of this work, it is worth noting that in the analysis

that will follow there is an inclination to approach whistle vocalizations as

belonging to larger sets that are shared across all dolphins.

It is also worth noting that when it comes to dolphins’ social vocalizations,

research done by Caldwell et al [9] has indicated a change in their repertoire

given their state of freedom, e.g. captive or wild. Apparently, dolphins have
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a strong mimicking ability and when in captivity, usually in small groups of

individuals, tend to alter their vocalizations in variety and frequency range to

match those of their humans trainers. Unfortunately, most of the subsequent

work on the analysis of whistles and bursts is based on captive dolphins, thus

not allowing us to have a clear view of the full range and diversity of their calls.

Although there is currently a huge interest in collecting sound recordings from

the wild, scientists have yet to come up with solutions to several problems

in acquiring the right data, e.g. right hardware, noise suppression, individual

tagging. Reports of these efforts [24] however, indicate that wild dolphins have

a much larger repertoire of whistles and bursts and are far more vocal and in

wider frequency ranges than captive dolphins.

In this work there is an effort of trying to provide a generalized view of the

analysis of social calls in dolphins. Recordings of dolphins both in captivity

and in the wild are used and their differences are highlighted in order to get a

better understanding of their interactions and increasing complexity.

In conclusion, I will try to provide a clear understanding of the tools that

are needed in order to analyze and extract social vocalizations from long record-

ings. Several issues such as low Signal-to Noise ratio (SNR) and interferences

classify this as a challenging task. There will be an effort to show case these

highly modulated signals that are of great interest and provide comparative

results that identify their variations while allowing the reader to get a good

idea in recognizing these vocalizations.
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Chapter 2

Technical Introduction

“Those images that yet

Fresh images beget,

That dolphin-torn, that gong-tormented sea”.

Byzantium by William Butler Yeats

Since the 1950’s when Ken S. Norris [38] first started studying whales and

dolphins leading him to verify the existence of echolocation, several other re-

searchers have been fascinated with the study of dolphin sounds. One needs to

mention John Lilly [29] who, some might say, was responsible for the widely ac-

cepted view of dolphins in the public. Through his experiments, Lilly, pushed

the intellectual limits and tried to provide a framework for the dolphin “lan-

guage”.

With the advances in technology and with the Navy showing extreme in-

terest in dolphin research, scientists from different fields started converging

towards the study of dolphin vocalizations. Engineers and mathematicians
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started collaborating with marine biologists and animal cognitionists in order

to provide a computationally feasible analysis of dolphin sounds; while explor-

ing through several algorithms the existence or not of patterns within those

sounds.

The ability to record dolphin vocalizations with the use of hydrophones

led to the existence of massive quantities of data with diverse characteristics.

The difficulty of indexing and analyzing it is clearly one of the major obstacles

in this field of study. Without the use of automatic and robust algorithms

it would be extremely difficult to provide an in depth analysis of dolphin

vocalizations since the simple task of detecting the presence of a desired sound

in a recording is really daunting when performed manually. It is also worth

noting that as of now there is no standard in the field when it comes to

obtaining underwater recordings. This leads to non-uniform recordings due to

the use of different hardware which could have different sampling frequencies

or lower tolerance in noise. With the analysis of dolphin recordings in silico,

better insights can be obtained and large scale information on the different

vocalizations can be extracted yielding meaningful conclusions.

As mentioned in Chapter 1 dolphin vocalizations can be distinguished into

two broad categories depending on their functionality and context. Marine

mammals and dolphins especially, utilize sound for two main purposes: naviga-

tion/foreaging and interaction/communication. Although the former has been

of great interest in the scientific community due to the intricate mechanisms

of echolocation (a.k.a sonar), this work focuses on the analysis of vocalizations

that are used for inter and intra-species interaction.
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When interacting in a social context, dolphins use two main types of calls:

• Whistles: Whistle calls are highly AM-FM modulated signals. They

are narrow band high-pitched signals and usually appear tonal. In the

case of bottlenose dolphins the fundamental frequency is most commonly

centered at around 7kHz. However, accounting for all dolphin species,

whistle calls can be found to have a range of about 80kHz.

• Bursts: Burst calls are also AM-FM modulated signals. They are low-

pitched and highly harmonic wideband signals. In the case of bot-

tlenose dolphins the fundamental frequency is most commonly centered

at around 700Hz. Burst calls are often seen after a long string of click

pulses (echolocation). In general their pitch can range anywhere from

50Hz to 1kHz throughout the different species.

It is worth noting that although the categories above describe the two main

vocalizations of dolphins that serve a social function, researchers have also

identified other types of wide band signals such as squeels, pops etc. However,

scientists focus on whistles and bursts since they are more frequently used in

dolphins’ interactions. Figure 2.1(a) is an example of a dolphin’s whistle call

and figure 2.1(b) is an example of a burst call.

From Figures 2.1(a), 2.1(b) it is clear that there are inherent differences

between these two types of calls. It is worth noting though that researchers

have focused mostly on the analysis of whistle calls since they exhibit a wide

variation on their contour indicating that there might be possible information

encoding. This has led to a debate in the marine mammal community con-
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(a) Whistle call
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(b) Burst call

Figure 2.1: Examples of a whistle and burst call

cerning the nature of the information present in these whistle calls. Tyack

et al [53] support the theory that dolphins posses a “signature whistle” that

they utilize as an identifier e.g. like humans use a name and that call remains

the same throughout their life. On the other hand, Reiss et al [45, 46] argue

that dolphins have a predominant type of whistle call is shared among indi-

viduals. Moreover, Dreher and Evans [14] show that there is a predominant

whistle call used by several species of cetaceans. However, these whistle types

exhibit slight differences across different pods that might indicate other type

of information e.g. origin, species e.t.c. In this work, I tend to favor the latter

theory since it provides a more general approach in the analysis of whistle calls.

However, no conclusive decision is made since there needs to be specific data

with contextual tags in order to explore the whistle hypothesis. Such data,

unfortunately, is yet to be collected by researchers who are on the field.

This brings up a very important aspect when it comes to the collection

of dolphin vocalizations in both captive and wild environments. There exist

many researchers who employ their own hydrophones and recording equipment



11

in order to get sound recordings from dolphins. However, all the collected

data remains unexploited since it requires some individual to hand label the

presence of calls, a task that is understandably daunting. In order to alleviate

this problem engineers who work on passive acoustics have employed several

methodologies and created software packages that marine biologists can take

with them in the field and use for their different needs.

These efforts are mainly supported by the Navy and especially the Office

of Naval Research (ONR). Several software packages have emerged recently.

They have as a primary goal to facilitate data collection and analysis for non-

engineers. One of the most widely popular packages is Ishmael [35] by D. K.

Mellinger. Ishmael is a visualization tool that allows on site recording and off

line analysis. It provides semi-automatic detection based on the work by D.

K. Mellinger [36, 37] on template matching of whistle calls. One of its most

popular applications is the ability to provide automatic localization techniques

on recordings of clicks. Overall, Ishmael is publicly available software package

that allows for simple tasks and is also compatible with Matlab.

A more sophisticated package has been produced by Cornell’s Ornithology

lab based on the work by Chris Clark [11]. Raven: Interactive Sound Analysis

Software, is a privately licensed software package that also provides the ability

to record sounds and visualize them in real time. Due to their collaboration,

Raven also includes similar call detection schemes like Ishmael. The main

difference is that Raven is mostly focused on the acquisition and visualization

of multiple signals instead of the processing and automatic extraction of the

desired calls.
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Another effort coming from the same lab at Cornell is XBAT: Extensible

Bioacoustic Tool. This is also an open source project and is based on the

Matlab platform. Once again this package does not provide sophisticated

solutions for the automatic detection and tracking of dolphin vocalizations.

However, its simplicity and extensibility allows for a growing number of not

just users, but also developers.

Finally, it is worth noting the work of Serge Masse. His creation of Leafy

Seadragon [33, 32], an open source software package for interactive dolphin

communication research, actually adds an interesting component in the collec-

tion of dolphin vocalizations. His work aside from allowing the visualization of

sound it also allows for an interaction between the user and dolphins with the

playback of recorded sounds and thus allowing for the creation of contextual

data.

This was just an overview of those packages that have gained a wide ac-

ceptance from the scientific community due to their applications and ease of

use. There are several other attempts by researchers around the world. These

efforts will eventually yield an all inclusive, robust and automatic tool for the

real time recording, detection and analysis of dolphin vocalizations. However,

most of the work when it comes to the intricate algorithms for the extraction

of the desired calls, are in a primitive state. The field has yet to embrace

the more advanced methodologies from machine learning and pattern analysis.

Algorithms that have been extensively used in speech and music processing

are slowly explored in the marine mammal community. This work focuses

on applying several algorithms, that have not been used before, on dolphin
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recordings.

Focusing on detection and tracking of dolphin vocalizations, several issues

arise that highlight the difficulties of the task at hand. One of the most diffi-

cult problems to overcome is the existence of noise originating from different

sources. Firstly, there is noise from the surrounding environment e.g. other

marine life, bottom reflections. Also, there is hardware noise present from

either the recording equipment or even worse the boat. This of course is true

for recordings of wild dolphins. In the case of captive dolphins the conditions

can be controlled slightly better. Overall, though we are dealing with signals

of low Signal to Noise ratio (SNR). One more interesting aspect of dolphin

vocalizations is that because they are social animals they tend to vocalize cre-

ating major overlaps. That increases the difficulty of tracking the calls of a

single individual. This is not a problem that can be easily solved, but several

approaches are proposed in this work that can at least resolve simple cases of

overlaps.

So far, when it comes to detection of dolphin whistles and bursts in long

recordings there exist two types of methodologies. Firstly, there is the ap-

proach of a simple energy threshold used on the spectrogram of the calls. This

is popular due to its simplicity, but requires manual interaction for the fine

tuning of the free parameter, the threshold. Secondly, there is a class of tech-

niques based on template matching of several kernels. Both Mellinger [36, 37]

and Clark [36, 37] are proponents of this method which implies the existence

of a call “lexicon” in order to account for all the different types of calls. Once

the right kernel is found then a simple autocorrelation with the target record-
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ing will provide us with the matching calls. Clearly, this methodology has the

drawback of requiring prior knowledge of the desired call in order to create

the template/kernel.

Continuing, there hasn’t been much advancement in the area of dolphin

call tracking. This requires the use of both parametric and non-parametric

techniques in order to achieve the best results given the inherent difficulty of

the problem. So far, slight advances have been made to extract a desired fre-

quency contour using cross-correlation procedures while once again requiring

a semi-automatic way of capturing the desired calls.

2.1 Related work

As mentioned earlier, scientists have so far identified 33 species of dolphins.

Although this work is based only on vocalizations of the bottlenose dolphin,

thus rendering it species specific, it is important to note efforts that have been

made by fellow scientists in the analysis of other species of dolphins.

Clearly, other species of dolphins have different vocal characteristics. How-

ever, several methodologies that have been proposed in the existing literature

could be modified in order to account for the different types of calls of the

bottlenose dolphin. Especially when dealing with recordings obtained in the

wild one can assume that it is hard to isolate different species and thus it

would be really useful to have an automatic species classifier. Extensive work

has been done by Roch [48, 52] on classifying different types of dolphins e.g.

Risso’s dolphin and Pacific white-sided dolphin using features extracted from
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their echolocation clicks. These methodologies are based on the use of machine

learning tools on features extracted from the echolocation clicks.

In Chapter 1 a distinction was made between calls for social purposes and

calls for navigation purposes. The latter, are of extreme interest in the scien-

tific community for localization, survival and navigation tasks for these marine

mammals. Echolocation clicks could provide species specific information and

are considered one of the most intriguing acoustic abilities of dolphins and

whales. Several methodologies based on localization techniques using inter-

click times, have been proposed by Olivier and Glotin [19, 30] that will aid in

the creation of tracking systems for pods in the wild. Also, Stylianou [28] has

offered significant advancements with the use of phase information and energy

operators in the task of detecting the onsets of these clicks. Continuing, I

proposed a system for estimating the number of marine mammals by cluster-

ing features extracted from echolocation clicks [22]. All the above mentioned

systems constitute the growing interest for the exploration of marine mammal

vocalizations.

Finally, it is worth noting that in terms of interaction vocalizations in other

species of dolphins, the work of Brown [4, 5] on the automatic classification

of killer whale stereotypical pulsed vocalizations, is an indicator of the major

improvements that can be accomplished in the field with the use of tools that

are widely popular in speech and music processing. Dealing with such extreme

phenomena as biphonation [6] e.g. two independent simultaneous sources or

a single source producing a sound with two fundamental frequencies resulting

in overlaps of pulsed calls, highlights the several approaches in the field that
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will lead to a better understanding of marine mammals in general.

2.2 Summary of contributions

In this work I try to provide a variety of methods and approaches into dealing

with the aforementioned problems when it comes to the detection and tracking

of dolphin vocalizations. Several machine learning techniques are used and sev-

eral informative features are extracted in order to achieve a generic and robust

detector as well as a pitch tracker for both whistles and bursts. Specifically,

Chapter 3 gives a detailed description of the data and the features that are

used throughout this work. Chapter 4 focuses on the detection of whistles and

bursts in long recordings. Several advancements are proposed with the use

of optimization techniques such as gradient descent and also, other classifiers

are explored, such as Gaussian Mixture Models (GMM) and Support Vector

Machines (SVM). Continuing, Chapter 5 proposes two novel systems for pitch

extraction of whistles and bursts and actually approaches one of the hardest

problems in the field, overlap resolution. These systems have already been pub-

lished in special issues of Canadian Acoustics [23] and Applied acoustics [21]

respectively. Finally, Chapter 6 provides comparative conclusions and future

attempts on all the proposed systems in this work.
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Chapter 3

Data overview

“Diviner than the dolphin is nothing yet created...”

Halieutica by Oppian

The most important thing when dealing with the analysis of dolphin vo-

calizations is the type and quality of the existing data. As mentioned in

Chapter 2 there exists a large volume of recordings. However, due to the lack

of a standardized methodology when it comes to the collection of the data e.g.

hardware specifications, species etc. researchers are yet to take full advantage

of the possible insights the dolphin vocalizations might convey. Acquiring the

right kind of data is not only a difficult task, but probably the most deciding

factor when it comes to the success of any theory and methodology applied on

said data.

Dolphin recordings can be classified into two broad categories given their

environment:

• Captive dolphin recordings
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• Wild dolphin recordings

Each of these categories has both advantages and disadvantages as one could

imagine. In the case of captive dolphin vocalizations there is an inherent

advantage that arises from the observer’s ability to control the environment.

Labeling becomes easier as all individuals are visible thus favoring the use of

data loggers or even bubble stream production approaches. Also there is a

much better quality of the acquired signal, empirically of the order of 8dB.

Continuing, the researcher can limit the number of individuals in the tank

and control the different social interactions. However, the drawback of captive

dolphin recordings is that the calls that are produced are biased from either

the existence of trainers or other factors associated with dolphins in captivity.

On the other hand, wild dolphin recordings offer a huge diversity in their

call repertoire and also provide a much better understanding of their interac-

tions and use of sound. In wild environments dolphins are not isolated and

field researchers are often witnesses to unknown behavioral patterns e.g. hos-

tility. However, it is almost impossible for a field researcher who is located

on a boat to be able to clearly observe and provide contextual as well as in-

dividual labels for what is happening in any situation. The lack of tagging

in these situations is one of the biggest obstacles when it comes to applying

machine learning techniques on the data since in order to be able to get a good

discrimination training data and ground truth is needed.

Moreover, wild dolphin recordings suffer from really low SNR due to the

existence of several noise sources. Interference from different species of marine

life also constitute a type of noise since when trying to analyze and detect
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the desired dolphin calls one needs to take into account the existence of these

calls that might be similar to the ones we are trying to extract. Overall,

although each type of data has its own characteristics it is fair to say that

captive dolphin recordings appear to be slightly more manageable for audio

processing techniques and machine learning algorithms. In this work, most

of the methodologies are applied to captive dolphin recordings and a small

comparison is obtained using a smaller set of recordings from wild dolphins.

I obtained captive dolphin recordings from Dr. Diana Reiss. These are

recordings from the keyboard experiment [45] performed at Marine World-

Africa aquarium in Vallejo California. There are two adult female dolphins

present in the pools. The adult females were wild caught. Also there are two

young male dolphins that were born in captivity. There is interaction with

the researchers through the use of a sound emitting underwater keyboard that

the dolphins are trained to use in order to obtain toys and/or food from the

observers. All recordings were obtained with the use of a hydrophone. The

recording is approximately 3 hours long of which approximately 40% is vocal-

ized. The segments that contain whistles and bursts are diverse and of different

levels of difficulty. In order to extract training data for the different method-

ologies applied, 100 whistle calls and 100 burst calls were manually extracted

from the recording. A semi-automatic process was used in order to obtain the

ground truth on a per frame level. This semi-automatic way of extracting the

pitch ensured a better quality of the training data and reduced the time spent

on the arduous process of labeling. I used de Chevigne’s YIN [13] which is

an easy time domain technique based on a modified and normalized autocor-
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Figure 3.1: Histogram of dolphin calls

relation function. Once the pitch tracker was employed over the data, then

I proceeded to manually inspect the results and correct the errors that were

found.

Table 3.1 provides some of the basic statistics of the extracted calls that

were used as training data. As seen, both the average whistle and burst have

a duration of around 0.5sec. The recording of captive dolphins has an average

12dB SNR. It is worth noting that the SNR was obtained by averaging the

peak SNR computed at each frame of each call through the use of the short

time autocorrelation function, as seen in Equation 3.1.

pSNR = dB(
r(τ = p)

r(0)− r(τ = p)
) (3.1)

Where r(0) is the energy of the signal plus the noise and r(τ = p) is the energy

of the signal with period at lag τ = p.

Finally as mentioned earlier the main difference between burst and whistles

is the fundamental frequency. Most whistles have a fundamental frequency of
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Whistles Bursts

Length 0.55sec 0.62sec
SNR 12.4dB 12.8dB
Pitch 6.9kHz 713Hz

Table 3.1: Average statistics for whistle and burst calls

approximately 7kHz while bursts have a fundamental frequency of around

700Hz. This can be better visualized in Figures 3.1(a), 3.1(b) which show the

histogram of the per frame pitch for the training data.

In order to obtain a better generalization as well as an understanding of

the different systems created using captive dolphin recordings, I also applied

the methodologies on a small set of wild dolphin recordings. These recordings

have distinct differences not only from one another, but also from the ones the

systems were created on.

There are two different sets of wild dolphin recordings. The first set was

obtained from the Macaulay Library. Created by Cornell’s Ornithology Lab it

houses one of the biggest selection of natural animal sounds for the study of

animal behavior. The sounds are accessible to the public and can be obtained

directly from the library. There are six stereo recordings of wild bottlenose

dolphins totaling approximately 1 hour and 7 minutes. These recordings were

obtained in August of 2003 by Barlow Jay at Clipperton island in the North

Pacific ocean. A Sony-TCD-D7 recorder was used along with a AN/SSQ-57

hydrophone. All recordings have a sampling rate of 48kHz.

In these recordings there are multiple individuals vocalizing, but there is

no knowledge of the size of the pod. In the recordings there are instances

of whistles and clicks, but no bursts. This could be a characteristic of wild
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Figure 3.2: Example of wild dolphin recording

dolphins or it could be that the hardware was not sensitive enough to capture

the low pitched sounds. The recordings have an SNR of 9dB An example of

the data is seen in Figure 3.2. It is clear form the figure that the extraction

of single whistles is not possible due to the severe overlaps that are present.

it is worth noting that this is probably the hardest case that any automatic

system for the detection and tracking of dolphin vocalizations would have to

encounter.

In conclusion, it has been shown that there are inherent differences between

wild and captive dolphin recordings. In order to create a robust and automatic

system for the detection and tracking of the desired dolphin calls I chose to

use the cleaner captive dolphin recordings. Although these recordings do not

offer the realistic environment in which the system would need to operate in,

they provide a good enough framework for the exploration and analysis of

dolphin vocalizations. It is also worth noting that it is most likely to identify

possible contextual vocalizations in a captive environment since it is easier to
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control and monitor the different individuals. However, I also use wild dolphin

recordings in order to test the limits of the systems that will be showcased in

this work. That will allow for a better understanding of the task at hand and

will highlight possible future recommendations.

3.1 Extracting Features from the Data

One of the most challenging tasks when dealing with machine learning algo-

rithms is the extraction of suitable features from the data that will ensure the

success of the algorithm. Finding good and descriptive features depends highly

not only on the task at hand, but also on the nature of the data. Choosing

the correct features will strongly alleviate possible issues when dealing with

discrimination tasks, while providing a better understanding of the process

that drives the data.

As mentioned in Chapter 2 the goal of this work is to create suitable

algorithms for the automatic detection and tracking of the desired dolphin

vocalizations. Although accuracy of detection is really important, one needs to

also take into consideration the computational cost of extracting such features.

Ideally there needs to be a balance between the two since the ultimate goal is

for the system to be used on the field by non-engineers.

Dolphin vocalizations are highly AM-FM modulated signals described in

the existing literature seen in Eq. 3.2.

x(t) = a(t)cos(2πf(t)) (3.2)
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Where a(t) is the amplitude function and f(t) is the modulating signal. In

order to visualize these signals the 512 point spectrogram is used with a 50%

overlap, yielding a frequency resolution of 86.13Hz. Given the inherent time-

frequency resolution trade-off in the creation of the spectrogram, these param-

eters provided a more balanced scheme for the dolphin calls. All recordings

have a sampling frequency, Fs = 44100Hz

3.1.1 The Spectrogram

One of the easiest and most common features to use in audio processing is the

raw spectrogram. The spectrogram is obtained form the short-time Fourier

Transform (STFT) [39] and is derived through Eq. 3.3.

X[k, m] =
N−1∑
n=0

x[n]w[n−mL] exp(−j
2πk(n−mL)

N
) (3.3)

Where x[n] is the time domain signal, w[n] is the window, usually Ham-

ming [39], L is the length of the window, k, m are the frequency and time

indices respectively and N is the number of points for the calculation of the

Fast-Fourier Transform (FFT).

Depicting the amount of energy at every frequency it provides a good

starting point for discrimination tasks. One of the major drawbacks when

using the spectrogram as a feature is that it usually suffers from being a high-

dimensional space e.g. in our case 257-dimensional vector. That of course

can lead to computation tractability issues although there are several ways to

alleviate such problems. Spectrograms are often depicted using the logarithm
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Figure 3.3: Examples of dolphin calls

e.g. in dB of the absolute value. However, when using the spectrogram as a

feature for a discrimination task there is an inclination to use its linear form

e.g. simple magnitude, for several reasons such as better separation or creating

a positive valued feature vector etc. Figures 3.3(a), 3.3(b) show examples of

spectrograms as well as the time-domain waveforms for a whistle and burst

dolphin call respectively.

3.1.2 Energy Summation

Originating from the spectrogram, many other features can be extracted. One

of the most popular ones when it comes to detecting a desired audio clip in

long recordings, is the summation of the amplitude/energy across all frequency

channels. This is better shown in Equation 3.4

SE[m] =
∑

k

|X[k, m]| (3.4)
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Figure 3.4: Example of energy summation feature

Once again the summation is computed on the magnitude of the STFT.

Energy summation is widely popular due to its simplicity and ability to

discriminate between high and low energy signals. It has been used in many

applications both in speech segmentation/detection as well as in previous at-

tempts to detect marine mammal sounds. [37, 11]

Figure 3.4 gives a clear example of the spectrogram (top) and the energy

summation (bottom) for a clip that includes both desired calls, bursts and

whistles. The solid vertical lines show the boundaries of the calls that we want

to detect. One can clearly see a distinction between the foreground, desired

calls, and the background, ambient noise. Overall, the energy summation will

adequately represent high energy signals

It is worth noting that there are several drawbacks when it comes to us-

ing the energy summation feature. As mentioned before, the success of the

feature depends on the energy difference between the calls to be detected and

the background. However, it will not provide a good discrimination between
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Figure 3.5: Energy distribution for dolphin calls

two high energy signals. For example the use of the energy feature is not rec-

ommended for the distinction between burst and whistle dolphin calls. This is

explained visually in Figures 3.5(a), 3.5(b) where the acquired distributions for

both whistles and bursts are depicted. Clearly, there is no separation between

the two different types of calls as the distributions are overlapping. Both dis-

tributions appear to be close to log-normal for the energy feature as shown

with the solid red lines.

Continuing, another issue with the energy summation feature is its high

sensitivity to existing background noise and/or interferences. As mentioned

in Chapter 1 recordings of dolphin vocalizations suffer from a low SNR as

well as the existence of several interferences. One of the most prominent

ones being the echolocation vocalizations/clicks. These trains of pulses, that

appear as energy across all frequencies in the spectrogram can lead to a number

of false positives in the detection process. A simple example is shown in

Figure 3.6. The spectrogram (top) and energy summation feature (bottom)

are shown along with red arrows indication the location of clicks. Clicks appear
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Figure 3.6: Example of energy summation feature with clicks shown
in red arrows

as high peaks in the energy summation function and unless some type of post-

processing manipulation is applied then a simple detection system will mistake

these frames as desired call frames.

In conclusion, the use of the energy summation offers both advantages

and disadvantages. It provides a really simple and easily computable feature

that will adequately discriminate between simple cases of calls and noisy back-

ground. Unfortunately, its sensitivity to interferences indicates that it will not

provide us with a good discrimination since most dolphin recordings are fairly

complex. However, as it will be shown in the next Chapter, there are ways of

adapting the energy summation feature in order to highlight the desired calls

while suppressing the background noise.
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3.1.3 Cepstral Features

Whistles and bursts are periodic signals. As mentioned earlier, one of the

distinct characteristics that distinguish between the two types of calls is their

period. Whistles are high-pitched sounds while bursts are low-pitched sounds,

as shown in Figures 3.1(a), 3.1(b). When dealing with pitched signals, the

cepstrum has long been used in speech and music processing in order to locate

the pitch and compactly describe a given signal. First introduced in 1963 by

Bogert et al [2] it is based on the source and filter model were the goal be-

comes to separate and identify the excitation/source from the resonance/filter.

The real cepstrum, most commonly used in audio processing, is described in

Equation 3.5.

cn =
∑

l

(log |
∑

k

x[n]e−j 2πkn
N |)ej 2πln

N (3.5)

Where
∑

k x[n] exp−j 2πkn
N describes the Discrete Fourier Transform (DFT). Ba-

sically the real cepstrum is the inverse Fourier transform of the logarithm of

the absolute magnitude of a given signal’s Fourier transform.

A better way of understanding Eq. 3.5 is to think about it as a deconvo-

lution process, since the convolution of the source and filter, or in general of

any two signals, is expressed as the addition of their cepstra. In general when

computing the real cepstrum, the desire is to separate the resonance from the

fine structure and actually reveal a pitch peak, which is due to the fact that

both whistles and bursts are periodic signals. An example of computing the

cepstrum is shown in Figure 3.7. The spectrogram and time slice are shown

in vertical red line (top) along with the spectral magnitude of the time slice
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Figure 3.7: Example of the cepstrum for a burst call

(middle) and real cepstrum (bottom) with the pitch peak indicated by a red

cross. In order to get a better visualization only one frame of a burst call is

shown. From the ground truth I know that the pitch of the burst varies at

approximately 480Hz. This can be verified by the pitch peak which is located

at quefrency 93 which translates to approximately 475Hz.

When computing the cepstrum for machine learning applications it is cus-

tomary to exclude the first cepstral coefficient, c0, as it captures the average

energy of the signal which reflects factors not relevant to classification such

as the gain used in the particular recording device. Because the calculation

of the cepstrum is a deconvolution process it offers a crude decorrelation of

the data. This leads to better fits on the given data while minimizing the

number of parameters that are used. Of course this also has an impact on

the computational efficiency of any applied algorithm. Clearly, the number

of cepstral coefficients that are chosen will determine the dimensionality of



31

the feature vector allowing the control of the trade off between accuracy and

computation.

Figure 3.8 provides examples of the cepstral coefficients that were used as

a feature vector for both burst and whistle calls. In the case of the whistle

call the pitch peaks are evident in the low coefficients, as expected, since

whistles are high-pitched signals. On the other hand, the pitch peaks appear

in higher coefficients for a burst call given that these are low-pitched sounds.

Although the cepstrum provides a highly compact way of extracting the pitch

of a periodic signal, it is highly sensitive to possible constant background noise

e.g. hardware noise. In practice, for interference with a stationary and sparse

spectrum, it may be possible to employ a simple pre-processing filter to remove

it from the recordings.

In conclusion, the cepstrum provides one of the most appropriate feature

selections for the given data. Its ability to capture the different pitch and

describe the underlying signal compactly, while possibly allowing for a dimen-

sionality reduction of the feature vector, explains its wide popularity in speech

and music signal processing.

3.1.4 Other features

Having seen and explored the most commonly used features for detection and

tracking of periodic signals, it should be noted that there also exist several

other variations of these features that can provide us with a good selection for

the task at hand.

Continuing, a promising feature that has been used in speech processing
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Figure 3.8: Example of spectrogram (top) and cepstral coefficients
(botttom) for a whistle (left column) and burst call (right column)
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and provides information on the pitch of a periodic signal is the short-time

autocorrelation function (STAC). A normalized version of the autocorrelation

function is used in de Chevigne’s YIN [13] that I will also apply on dolphin

vocalizations. Equation 3.6 defines the short-time autocorrelation function

where ` is the lag, n is the local time index, and N is the length of the signal.

R[`, n] =
N∑

m=0

x[m + n]x[m + n + `] (3.6)

An example of the STAC is shown in Figure 3.9 for a whistle and burst call

respectively. The differences in pitch between whistles and bursts are easily

observed in the short-time autocorrelation function. By simple peak picking

one can extract the pitch at a per frame level and actually track the frequency

contour of each signal. The autocorrelation function is a suitable feature when

there are no overlaps of periodic signals or other interferences e.g. clicks.

However, there are several pre-processing normalization techniques that can

be employed in order to enhance the signal.

In conclusion, a variety of features have been presented that will aid in the

detection and tracking tasks of dolphin vocalizations. The usefulness of these

features will be evaluated in the following chapters. They were chosen not only

because of their ability to compactly describe the underlying data, but also

because of their popularity in the speech and music processing community.
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Chapter 4

Call detection

“The voice of the dolphin in air is like that of the human

in that they can pronounce vowels and combinations of vowels,

but have difficulties with the consonants”.

Historia Animalium by Aristotle

Automatically detecting dolphin vocalizations in long recordings has long

been a focus of research amongst engineers in the field. Given the amounts of

data that exist from both captive and wild environments, scientists are faced

with the difficult task of analyzing the data in an off line manner while relying

on semi-automatic ways for the detection of the desired calls.

Several approaches have been explored by many researchers in order to get

the most accurate detection system that will be able to adapt to the diversity

of the recordings. As mentioned in Chapter 2, dolphin recordings suffer from

low SNR as well as multiple interferences e.g. clicks, bottom reflection. These

are attributes that can hinder any detection process leading to false positives.
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In Chapters 1, 2, I discussed the basic differences between the two broad

types of dolphin vocalizations. Throughout this work the term call detection

refers to the detection of social vocalizations, which are comprised of whistles

and bursts. Navigational vocalizations e.g. clicks are of no interest and are

treated as an interference. Since detection is performed at a per frame level,

a call is defined as a single, bounded element, that may or may not have

harmonics. In the case of overlaps between calls, no attempt to separate the

calls will be performed and the detection will be considered successful if the

total length of the overlap is identified e.g. beginning of call A to end of call

B.

The most common detection systems in the existing literature are based

on two simple methodologies.

• Energy thresholding

• Kernel cross-correlation

Software packages like Ishmael, Raven and XBAT use energy thresholding in

a semi-automatic way. The linear spectrogram is added across all frequency

channels yielding the energy summation feature that was previously described

in Chapter 3, and the user then chooses a threshold while visually inspecting

the results.

On the other hand, kernel cross-correlation depends on the creation of

synthetic kernels that resemble specific types of whistles or even the use of

manually extracted whistles. These are then cross-correlated with the rest of

the signal and possible other instances are therefore highlighted. This proce-
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dure could be perceived as a simple template matching technique were a prior

knowledge of the template is required.

Given that this work focuses on a robust automatic detection scheme that

will not require the user’s interaction, only energy thresholding techniques

are taken under consideration. In the sections that follow several algorithms

are proposed and compared in order to obtain the best detection scheme for

dolphin vocalizations.

4.1 Detection using energy thresholding

In Chapter 3 I presented the training and testing data on which these algo-

rithms are going to be employed. Also, a description of the energy feature was

given in Eq. 3.4. Although in most recordings both whistles and bursts ap-

pear interchangeably, there is a need to separate the detection process between

them in order to obtain a better insight to the limitations of the features as

well as the classifier. Initially, results of the detection task will be presented

solely on whistles, then on bursts alone, and finally on the combination of the

two.

All results from the detection process will be presented through Receiver

Operating Characteristic curves (ROC) [15]. These are obtained by altering

a parameter of the system e.g. threshold and plotting the curve of the true

positive rate (TPR) vs. the false positive rate (FPR) at each instance of the

parameter. Continuing, the success of the classification/detection task will be

reflected on the area under the ROC curve (AUC) [3]. This is considered to be
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Figure 4.1: Whistle detection using energy thresholding

Energy feature

Call Type Threshold (ϑw)
Whistle 19.5 Arbitrary Units

Table 4.1: Energy threshold for whistle calls

a reliable metric that will allow us to directly compare the different proposed

systems.

4.1.1 Energy thresholding for whistle calls

Whistles are high-pitched AM-FM modulated signals. They don’t always have

harmonics and are usually centered at around 7kHz. Dolphins appear to

use whistle calls more frequently than burst calls in their social interactions.

Having manually extracted 100 whistle calls as the training data, I can obtain

an initial simple threshold, Table 4.1, represented by the mean of the energy

feature across the training data.

Once the threshold has been obtained the detection system simply classifies
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Energy feature

Call Type AUC
Whistle 83.94%

Table 4.2: AUC for whistle calls

as call frames anything that is greater than ϑw and dismisses anything lower

than that. Figure 4.1 shows an example of the threshold system for a dolphin

clip that only includes whistle calls. Specifically, the spectrogram (top) and the

energy summation feature (bottom) are shown along with the red horizontal

line representing the threshold and the vertical lines indicating the location of

the boundaries for every whistle present in the clip. It is clear from the figure

that some clicks in the background will actually be misclassified as call frames.

Also, the energy threshold cannot capture those whistles that are of low energy

leading to false negatives. This can be seen in Figure 4.1 at around 3sec where

the threshold fails to capture the whistle call present in the recording.

Figure 4.2 shows the ROC curve for a longer test clip that only has whistle

calls. The desire in ROC curves is to have a high TPR for low values of FPR.

The dashed line in the figure represents the boundary for random classification.

If the ROC spans below the dashed line then the system has overall failed to

correctly detect the whistle frames within the recording. Table 4.2 provides

the overall AUC for the whistle detection task indicating the success of the

system.

Clearly, the energy feature and threshold system appears to work fairly well

for the detection of whistle calls in long recordings. If an error of approximately

20% is allowed then from Figure 4.2 one can see that a TPR of 70% is achieved.



39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

TP
R

Figure 4.2: ROC for whistle calls using energy feature

As mentioned before, the reason behind the obtained results is that low energy

whistles as well as click interferences are misclassified. It is likely that the use

of a different feature could increase the system’s accuracy.

4.1.2 Energy thresholding for burst calls

Bursts are low-pitched AM-FM modulated signals. They always have harmon-

ics an their pitch is centered at around 700Hz.Bursts are less frequently used

by dolphins and are seen mostly in captive environments. As in the case for

whistles, 100 bursts were manually extracted as training data. A similar en-

ergy threshold was obtained by taking the mean of the energy feature across

all the training data. This is shown in Table 4.3.

Figure 4.3 depicts an example of the threshold system for a dolphin clip

that only includes burst calls. Specifically, the spectrogram (top) and the

energy summation feature (bottom) are shown along with the red horizontal

line representing the threshold, ϑb, and the vertical lines indicating the location
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Figure 4.3: Burst detection using energy threshold

Energy feature

Call Type Threshold (ϑb)
Burst 17.07 Arbitrary Units

Table 4.3: Energy threshold for burst calls

of the boundaries for every burst present in the clip. Once again burst calls

that are of low energy will not get correctly identified using the simple energy

threshold and there are some instances of background noise being wrongly

classified as call frames.

The system was applied to a test clip that only has burst calls. The result-

ing ROC is shown in Figure 4.4. Also, Table 4.4 provides the AUC metric for

the classification process. Overall, it appears that the burst calls are better

represented using the energy feature and threshold. If, for example, we allow

for a 20% error then we get approximately 90% FPR. Interestingly, bursts

appear to be better detected than whistles. This could be because burst calls

have their energy spread out to multiple frequency channels, thus the energy

summation will exceed the threshold. Another interesting factor is that bursts
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Figure 4.4: ROC for burst calls using energy feature

Energy feature

Call Type AUC
Burst 94.46%

Table 4.4: AUC for whistle calls

tend to have a less smooth distribution of their energy compared to whistles.

4.1.3 Energy thresholding for whistle and burst calls

Having shown the ability of the system on each of the calls individually, it

is important to see how the energy feature and threshold perform on realistic

recordings were both whistles and bursts are present and no distinction is made

between the two. In this case, the recordings are more difficult to decipher

since there is interference from clicks and overlaps between the calls. The

energy threshold, ϑbw is, once again, obtained through the training data and

is shown in Table 4.5. Continuing, an example of a typical clip that comprises

both whistles and bursts is depicted in Figure 4.5. Specifically, the spectrogram
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Figure 4.5: Whistle and burst detection using energy threshold

Energy feature

Call Type Threshold (ϑbw)
Burst, Whistle 18.22

Table 4.5: Energy threshold for burst calls

(top) and the energy summation feature (bottom) are shown along with the red

horizontal line representing the threshold, ϑbw, and the vertical lines indicating

the location of the boundaries for every burst present in the clip.

From Figure 4.5 it is evident that there will be instances where noise or

click frames are misclassified as call frames. The overlaps between the calls

tend to favor this method since it drives the energy to cross the threshold.

However, the use of single detectors for each type of call is not recommended

since they wouldn’t offer any improvement in the overall detection.

The results of the energy detection system performed only on whistles or

bursts appear to be very optimistic. When the system is applied to realistic

clips where both types of calls are present and multiple overlaps occur then

the simple energy threshold does not provide an adequate detection accuracy.
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Figure 4.6: ROC for whistle and burst calls using energy feature

Energy feature

Call Type AUC
Whistles, Bursts 76.75%

Table 4.6: AUC for whistle and burst calls

It appears that applying the energy feature detection on test data consisting

of a realistic vocal environment that includes other, non-communicative calls,

a lower overall accuracy is obtained. This is shown better in Figure 4.6 and

the overall AUC metric is given in Table 4.6.

Finally, when applying the energy feature detector on test data that repre-

sent a more realistic vocal environment, a lower overall accuracy is obtained.

A closer look at the ROC reveals that for an allowable FPR of about 30%

there is a TPR of approximately 70%. Table 4.7 shows the confusion matrix

for the specific clip and it is evident that 30% of call frames get misclassified

as noise frames, while another 30% of noise frames get misclassified as call

frames. So the energy feature is biased towards low energy call frames and

high energy noise frames. One could imagine that in wild dolphin recordings
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Confusion matrix when allowing for a FPR of 30%

Positive Result Negative Result
Positive Label 68.69% 31.31%
Negative Label 30.01% 69.99%

Table 4.7: Confusion matrix

the energy feature and threshold detector will fail to correctly identify the de-

sired calls. The usefulness of the energy detection scheme cannot be dismissed

since it works adequately well for simple cases that have minimal overlaps or

interference. Its popularity is justified by the fact that its mostly used in a

semi-supervised manner allowing for a variable threshold set by the user.

4.2 Energy detection optimization

Previously, the use of the energy feature and threshold was explored for the

detection of dolphin calls in recordings. The energy feature, Eq. 3.4, appears

to perform well for simple cases where there are few overlaps and interferences.

However, the energy feature tends to misclassify low energy calls or high energy

background noise. One simplification contributing to these confusions is that

each frequency channel is assumed to have equal importance when computing

the feature. In Figures 3.1(a), 3.1(b) the pitch distribution of both whistle and

burst calls is shown and one can see that they have distinct and characteristic

pitches. This implies that the energy of bursts and whistles might be located

in select frequency channels.

Clearly if one can indicate that most of the energy is located in specific

frequency channels for both whistles and bursts then only those channels could
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be considered when calculating the energy feature. That would lead to a better

detection scheme since it would minimize misclassifications due to the noisy

background.

In order to explore the above assertion, a scheme for measuring the clas-

sification “strength” of every frequency channel is explored. To achieve that,

artificial clips of 30sec length are created from the manually extracted train-

ing data. ROC curves are computed for each of the frequency channels and

finally, the AUC metric is obtained. This procedure will yield an AUC func-

tion across the different frequency channels and hopefully will highlight the

“stronger” channels e.g. channels with high AUC value.

Figures 4.7, 4.8 show the AUC function, as described above, for whistles

and bursts respectively. Both figures indicate that there are indeed dominant

channels where most of the information is located. Taking advantage of this

information might lead to a better detection system for dolphin calls. Inter-

estingly, whistles appear to have a clear region of channels unlike bursts that

appear to have a wider range of “strong” channels. This, of course, could be

attributed to the fact that bursts have harmonics at multiples of the funda-

mental frequency and the energy spans across those channels as well.

The question now is, how does one choose the appropriate channels. I

can arbitrarily assume that the channels that exhibit an AUC above 70% will

provide the best set. However, that will introduce a variable parameter in

the system and might lead to over-fitting of the data. In what follows I will

consider less arbitrary approaches to optimizing the use of individual channels.
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Figure 4.7: AUC function vs. frequency channels for whistle calls
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4.3 Energy detection using gradient descent

The AUC function indicated that there are predominant channels for both

whistle and burst calls. Taking advantage of these channels will increase the

detection accuracy of the energy feature system. However, choosing an arbi-

trary high enough value for the AUC as a threshold, that will define a suitable

channel range, would add an unknown to the system. A better solution would

be to theorize that given the AUC function there should be a set of weights,

~w, that will offer the best possible combination of frequency channels so that

the system can discriminate between call and noise frames.

This desired set of weights, ~w, can be obtained using gradient descent [15, 1].

Gradient descent also known as steepest descent, is an optimization technique

that became very popular with the use of neural networks. A simplistic expla-

nation is given in Figure 4.9. Suppose we want to locate the minimum of an

error function. In terms of neural networks this can be viewed as the error the

network makes when classifying the training data as a function of the weights

of the network. Ideally this error function needs to be minimized. Clearly, as

seen in the Figure I want the error to move towards w∗. In order for that to

happen we need to move along the slope of the error function, which is the

path of steepest descent.

Analytically, if we consider the unthresholded perceptron [15, 1] then its

output is shown in Eq. 4.1 where ~x is the input data.

o(~x) = ~w · ~x (4.1)
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Figure 4.9: Gradient descent technique

We can consider a training error, E as the mean squared error between the

target output and the actual output of the network, Eq. 4.2. That allows the

error to be a function of the weights, ~w.

E(~w) =
1

2

∑

k∈K

(tk − ok)
2 (4.2)

Since E is a multi-dimensional function of ~w it can be viewed as a surface.

The gradient of this surface, ∇E, represents a vector whose direction points

to the greatest increase of the error function, E. Clearly, in order to achieve

a decrease of the error I would want to move towards the opposite direction,

−∇E. So basically I can obtain a new set of weights, ~w with the following

updating rule, Eq.4.4.

~w ← ~w − η∇E(~w) (4.3)

This can be re-written as:

wi ← wi + ∆wi (4.4)
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Where ∆wi = −η ∂E
∂wi

and η is known as the learning rate and basically defines

how big of a step is taken to reach the desired minimum. Continuing, from

Equations 4.2, 4.4 one can get:

E(~w) =
1

2

∑

k∈K

(tk − ~w · ~x)2

∂E

∂wi

=
∑

k∈K

(tk − ~w · ~x)(−xik) ⇒

∆wi = η
∑

k∈K

(tk − ok)xik (4.5)

It is interesting to note, though, that gradient descent has the inherent

drawback of not being able to guarantee that it will converge to a global

minimum. Because of that, the choice of both the learning rate, η, as well as

the initialization of the weights become very important as to not “trap” the

descent into a local minimum.

The algorithm described in Eqs. 4.1- 4.5 is based on the unthresholded

perceptron implying that the data we are trying to manipulate is linearly

separable and in this case, the globally optimal solution could be found by

solving the Normal equation. However, linear separability is too limiting an

assumption to make, especially when it comes to dolphin vocalizations where

so far the feature distributions are overlapping indicating that there is no single

surface that can successfully separate/detect the desired calls.

In order to account for the non-linearly separable case and thus create a

more generalized system the threshold function of the perceptron is replaced

by the sigmoid function,σ(y) = 1
1+e−ky . An interesting fact about the sigmoid
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function is that dσ
dy

= kσ(1 − σ). This of course alters the error function of

Eq. 4.2. The new error function is shown in Equation 4.6.

E(~w) =
1

2

∑

k∈K

(tk − σ(~w · ~x))2 (4.6)

In a similar way as described before the weight update rule is obtained and

∆wi is shown in Equation 4.7

∆wi = η
∑

k∈K

((tk − σ(wk · xk))(1− σ(wk · xk))σ(wk · xk) · xk) (4.7)

In the experiments that follow for the detection of whistle and burst calls, both

linear (L-GD) and non-linear (NL-GD) gradient descent are used.

4.3.1 Whistle detection using gradient descent

Having extracted the whistle training data, gradient descent is applied in order

to find a set of optimal weights, w, that will highlight the frequency channels

that contribute the most in the detection process. Once the set of optimal

weights are extracted and applied on the test data, a spectrogram based detec-

tion function similar to the energy feature is obtained, and the simple detection

scheme that was introduced in the previous section is used.

In Figures 4.10(a), 4.10(b) the optimal weights, wi are presented for both

L-GD and NL-GD. These weights are for whistle calls only. In both cases the

initial weights are randomly chosen and there are insignificant changes across

multiple runs with different initializations. Continuing, Figure 4.11 shows the
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Figure 4.10: Optimal weights for whistle calls

spectrogram (top), and new energy feature when using the optimal weights

obtained from L-GD (middle) and NL-GD (bottom) respectively. Once again

the red horizontal line represents the detection threshold and the vertical lines

represent the boundaries for the whistle calls. It is evident from the figures

that the noisy background has been hugely suppressed when using the optimal

weights. However, in light of the large number of parameters being set, there

remains the possibility of overfitting the training data in the L-GD system.
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Figure 4.11: Example of spectrogram based detection function for
whistles using gradient descent technique

Finally, Figures 4.12, 4.13 depict the ROC curves for a whistle clip when

L-GD and NL-GD are used respectively. Table 4.8 provides the AUC metric

for the two different systems.

It is evident from the computed results that both L-GD and NL-GD per-

form equally as well. There is a small variation of .34% that could be attributed

to a statistical error e.g. weight initialization. However, one should keep in

Whistle Optimized Energy feature

GD AUC
Linear 94.08%

Non-linear 93.74%

Table 4.8: AUC for whistle calls using gradient descent
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Figure 4.12: ROC for whistle calls using energy feature and L-GD

mind that the AUC measures the detection accuracy of whistles against noisy

background and that the later addition of bursts might interfere with the lin-

ear separability of the data. Overall, the results for the simple energy feature

detector and the optimized energy detector are similar. When looking closer

to the ROC curve and if an FPR of 20% is allowed then the optimized weight

system outperforms the vanilla energy system by approximately 2%.

4.3.2 Burst detection using gradient descent

The same experiments that were performed for the whistle calls are now de-

picted for the burst calls. A different set of optimal weights,w is extracted and

the same analysis is depicted in the following figures.

In Figures 4.14(a), 4.14(b) the optimal weights, wi are presented for both L-

GD and NL-GD. These weights are for burst calls only. In both cases the initial

weights are randomly chosen. Continuing, Figure 4.15 shows the spectrogram

(top), and new energy feature when using the optimal weights obtained from L-
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Figure 4.13: ROC for whistle calls using energy feature and NL-GD

Burst Optimized Energy feature

GD AUC
Linear 92.58%

Non-linear 96.56%

Table 4.9: AUC for burst calls using gradient descent

GD (middle) and NL-GD (bottom) respectively. Once again the red horizontal

line represents the detection threshold and the vertical lines represent the

boundaries for the whistle calls.

Finally, Figures 4.16, 4.17 depict the ROC curves for a burst clip when

L-GD and NL-GD are used respectively. Table 4.9 provides the AUC metric

for the two different systems.

Unlike whistle calls, in burst calls the NL-GD outperforms the L-GD by

4%. Clearly the optimization technique favors their detection compared to the

one of whistles, which can be attributed to the existence of harmonics. Overall,

the gradient descent increases the detection accuracy by approximately 2%.
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Figure 4.14: Optimal weights for burst calls
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Figure 4.15: Example of spectrogram based detection function for
bursts using gradient descent technique
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Figure 4.16: ROC for burst calls using energy feature and L-GD
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Figure 4.17: ROC for burst calls using energy feature and NL-GD
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4.4 Energy detection using gradient descent

for whistle and burst calls

In the previous sections it was shown that the optimization technique of gra-

dient descent increased the detection accuracy for whistles or bursts when

applied on the energy feature. The use of a set of weights, w that highlights

those frequency channels with the most discriminatory strength allows for the

suppression of the noisy background. However, in realistic recordings there

are multiple interferences and whistles and bursts not only co-exist, but more

often than not overlap. In order to explore how gradient descent performs in

these cases, the same set of experiments is applied.

In Figures 4.23(a), 4.23(b) the optimal weights, wi are presented for both

L-GD and NL-GD. These weights are for burst and whistle calls. In both cases

the initial weights are randomly chosen. Continuing, Figure 4.19 shows the

spectrogram (top) and the new energy feature when using the optimal weights

obtained from L-GD (middle) and NL-GD (bottom) respectively. Once again

the red horizontal line represents the detection threshold and the vertical lines

represent the boundaries for the whistle and burst calls.

Finally, Figures 4.20, 4.21 depict the ROC curves for a whistle clip when

L-GD and NL-GD are used respectively. Table 4.10 provides the AUC metric

for the two different systems.

As expected, the optimization technique of gradient descent increases the

accuracy of the detection scheme. For example there is an approximate 2%

accuracy increase when using L-GD and a 6% when using NL-GD. Clearly,
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Figure 4.18: Optimal weights for whistle and burst calls
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Figure 4.19: Example of spectrogram based detection function for
whistles and bursts using gradient descent technique
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Figure 4.20: ROC for whistle and burst calls using energy feature
and L-GD
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Figure 4.21: ROC for whistle and burst calls using energy feature
and NL-GD

Whistle and burst Optimized Energy feature

GD AUC
Linear 78.94%

Non-linear 83.24%

Table 4.10: AUC for whistle and burst calls using gradient descent
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the non-linearity of the optimal decision surface is now more prevalent which

is why the NL-GD outperforms the L-GD.

4.5 Thresholding detection using cepstral fea-

tures

The cepstrum was described in Chapter 3. It is computed as seen in Equa-

tion 3.5. The advantage of the cepstrum is that it provides pitch information

for periodic signals. Based on the source filter model, it also allows for a crude

decorrelation of the data. Since both whistle and burst calls are periodic

signals I expect that the cepstrum will be able to effectively reveal this key,

discriminating attribute of these signals, which remains hidden in the purely

energy-based features used above.

In all the experiments presented in this section, the real cepstrum was used.

The feature for the detection system was the summation of these coefficients

in the same manner that the energy feature was extracted. Given that the

optimization technique of gradient descent outperformed the use of simple

features, both L-GD and NL-GD are used with the cepstrum.

For every frame of the data 50 cepstral coefficients were computed. The

number of coefficients was empirically chosen because it provides a large di-

mensionality reduction while not compromising significantly the accuracy of

the detection task. The above assertion can be better seen in Figure 4.22.

Given the extracted training data, artificial clips were created and the AUC

metric was obtained through the detection process for a different number of
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Figure 4.22: AUC vs. number of cepstral coefficients

cepstral coefficients. This was performed for whistles alone and bursts alone.

In that manner an upper bound on the detection process was obtained.

Clearly from the figure and in the case of whistle calls (solid line) there is

a very small variation in the AUC when increasing the number of coefficients

(< 1%). In the case of burst calls the variation is in the order of 3%, but

theoretically 50 coefficients will provide a detection accuracy of approximately

87.5%. However, it is interesting to note that the use of the cepstrun feature

favors whistle calls rather than burst calls. This is mainly because burst calls

evolve from clicks that get captured by the cepstrum.

Unlike before with the energy feature where results for bursts and whistles

were given individually, to avoid redundancy with the cepstrum, only results

performed on realistic clips are depicted. Once again, Figures 4.23(a), 4.23(b)

show the optimal set of weights, w for both linear and non-linear gradient

descent. Since I am only using 50 cepstral coefficients there are only going to

be 50 weights. Continuing, Figure 4.24 provides an example of the spectrogram
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(top) and optimized cepstral feature for L-GD (middle) and NL-GD (bottom).

Once again, the red horizontal line represents the threshold for the detection

process and the vertical black lines are the bounds for the calls in the recording.

From the figure one can see that the L-GD on the cepstral coefficients

appears to lead to many false positives capturing the background noise. It

is also worth mentioning that the threshold, simple average of the cepstral

summation, for the detection task was obtained from the training data and

was set at 16.

Finally, Figures 4.25, 4.26 depict the ROC curves for a whistle clip when

L-GD and NL-GD are used respectively. Table 4.11 provides the AUC metric

for the two different systems. It appears that the NL-GD on the cepstral

features outperforms the L-GD by 4%. This is expected due to the fact that

the cepstrum decorrelates the data allowing the underlying non-linearities to

be highlighted. However, the use of the cepstral feature for simple detection of

the desired calls does not offer an increased accuracy. On the contrary, there is

an approximate 10% decrease on the AUC when comparing the performance of

the cepstral features with the simple energy features. This can be attributed to

the fact that the cepstrum is very sensitive to the type of noise and interference

e.g. clicks present in the recordings. Overall, the use of the cepstrum for simple

detection with a threshold is fair as it seems to not perform well for the case

of burst calls.
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Figure 4.23: Optimal weights for whistle and burst calls using the
cepstral feature
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Figure 4.25: ROC for whistle and burst calls using cepstral feature
and L-GD
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Figure 4.26: ROC for whistle and burst calls using cepstral feature
and NL-GD

Whistle and burst Opt. Cepstral feature

GD AUC
Linear 70.41%

Non-linear 74.48%

Table 4.11: AUC for whistle and burst calls using gradient descent
with cepstrum and best results from simple energy thresholding and
optimized spectral feature system
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4.6 Call detection using Gaussian Models (GM)

Gaussian Mixture Models (GMM) [15, 1, 26] are a semi-parametric clustering

and density method that has long been used successfully to model the densities

of a variety of signals. Based on the fact that most data found in nature can

be modeled using Gaussian distributions and given that dolphin calls have a

log-normal distribution as seen in Figures 3.5(a), 3.5(b), GMM’s appear to be

suitable to model the data.

The idea behind GMM’s is that they provide the ability to model multi-

modal distributions that might also have non-linear correlations. Basically ,

that kind of data can be modeled using a weighted sum of Gausssian distri-

butions as seen in Equation 4.8 where ck is a set of weights and p(x|θk) is a

single Gaussian pdf component with parameters θk.

p(x) =
∑

k

ckp(x|θk) (4.8)

An easy way to view this is that every data point is drawn from the distri-

bution p(x|θk) with probability ck. The question becomes how to compute the

parameters of the mixture model. The unknowns are the weights/priors, ck and

the mean and variance of the individual gaussian components, θk = {µkΣk}.
In some cases we might know not only the number of classes, but also which

data belongs to which class. In these cases, we can directly obtain the un-

known parameters. When that information is not available then a general

procedure is employed called expectation-maximization (EM) [1, 26, 20]. EM

is an iterative algorithm based on maximizing the log-likelihood of the training
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data. In order to achieve the maximization, the unknown parameters require

to be updated until the algorithm converges. That of course implies that the

initialization will define whether the method gets trapped in a local optimum

or not. This is one of the drawbacks in most optimization techniques like

gradient descent and EM, since none of them can guarantee that they will

converge to the global optimum.

In the case of dolphin recordings, having extracted the training data man-

ually, I have the labels for each of the classes so the Gaussian distributions

can be fitted directly on the data. However, I also employed EM to verify the

parameters of the distributions. Since the task at hand is to detect calls from

a noisy background, I only need two components, one component to model call

frames and another to model noise frames, as shown in Equation 4.9, where c

designates the call model, n designates the noise model and N is the number

of dimensions of the data.

p(x|c) =
1

(2π)
N
2

exp(−1

2
(x− µc)

>Σ−1
c (x− µc))

p(x|n) =
1

(2π)
N
2

exp(−1

2
(x− µn)>Σ−1

n (x− µn)) (4.9)

Once a model has been fit on the training data then Bayes rule [40, 20]

can be used to classify all new data into one of the two components presented

before. This is also known as maximum-likelihood (ML) [40, 26, 20] since a new

data point is classified as a noise or call point according to the value of each

posterior when evaluated for each of the components. Since I am only using

a single Gaussian per class this process can be viewed as a more simplistic
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approach of simple Gaussian modeling.

4.6.1 Call detection using Gaussian Models and the spec-

trogram feature

One of the most common methods for clustering in speech and music is the use

of GMM’s with the spectrogram magnitude as a feature. Given its popularity

and success in several similar tasks the use of this system on dolphin calls

might provide useful insights. Since the magnitude of the spectrogram is used

as a feature, as described in Chapter 3, the feature space has 257 dimensions.

However, in order to get the GM to work the data had to be pre-processed.

This is due to the fact that the raw data is rank deficient, which led to non-

positive covariance matrices. In order to avoid this problem the data was

standardized by frame i.e. for each time slice, the features were scaled and

offset to achieve zero mean and unit variance. This process provides a solu-

tion because it introduces a randomness in the data that will not allow the

individual covariances go to zero.

Continuing, single components were used for each of the classes. In Fig-

ure 4.27 the parameters for the two components are shown with the top row

depicting the mean and covariance matrix for the call class distribution and

the bottom row showing the mean and covariance matrix for the noise class

distribution.

Finally, Figure 4.28 depicts the ROC curve for a realistic recording of

increasing difficulty where multiple overlaps and interferences exist. The re-
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GM and spectral mag.

Call AUC
Whistle, burst 84.69%

Table 4.12: AUC for whistle and burst calls using GM’s with spectral
magnitude

sulting AUC metric can be seen in Table 4.12.

Overall, the use of the GMM with the spectral magnitude as a feature

appears to outperform every other system so far. It has a better accuracy of

approximately 10% compared to the use of cepstral features with the simple

thresholding technique and almost 1% higher from the energy feature thresh-

olding using NL-GD. Although that is encouraging for the use of GMM’s in a

wider scale when it comes to dolphin recordings caution needs to be taken when

extracting and using the training data since without a suitable pre-processing

technique there might be issues of non-positive definite covariance matrices.

4.6.2 Call detection using GMM’s and the cepstral fea-

ture

Previously, the use of GMM’s with the spectral magnitude indicated that this

might be a suitable method for the detection of whistle and burst calls in

dolphin recordings. Although, it offers the best accuracy so far the previous

system faces rank deficiency issues with the use of the specific feature. One of

the main reasons for this problem is the highly dimensional feature space that

includes redundant and correlated dimensions. In order to avoid this problem

the cepstrum is used as a feature, Eq. 3.5. In the same manner as before 50
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Figure 4.27: Parameters for GM with spectral features
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Figure 4.28: ROC for whistle and burst calls using spectral magni-
tude and GM’s
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cepstral coefficients are extracted from every data frame and the first cepstral

coefficient is excluded since experiments performed with the inclusion of the

first cepstral coefficient didn’t improve the resulting accuracy.

Since the dimensionality of the feature space has now been reduced to 50 di-

mensions instead of 257 and because of the underlying decorrelation performed

by the cepstrum, there is no need to standardize the data. This allows the ex-

ploration of an increasing number of components. Figure 4.29 shows the AUC

metric for an increasing number of call components. The difference between

the different components is statistically insignificant and thus for comparative

purposes a single component for the call distribution is used.

Continuing, Figure 4.30 shows the parameters for the class distributions

where the top row depicts the mean and covariance matrix for the call class

and the bottom row the mean and covariance matrix for the noise class. Fi-

nally Figure 4.31 depicts the ROC curve for a realistic recording of increasing
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GM and cepstrum

Call AUC
Whistle, burst 86.03%

Table 4.13: AUC for whistle and burst calls using GM’s with cepstral
features

difficulty where multiple overlaps and interferences exist. The resulting AUC

metric can be seen in Table 4.13. As expected the use of GMM’s with cepstral

features outperforms not only the previous GMM system by over 1% but also

every previously employed detection system.

In conclusion, spectral and cepstral features are well modeled by normal dis-

tributions. However, given that GM’s with cepstrum perform approximately

3% better from the second best system, energy thresholding using NL-GD, seen

in Table 4.10 the idea of finding an optimal set of weights/hyperplane to sep-

arate the data needs to be explored further. Overall, in multiple experiments

with GD the random initialization had statistically insignificant variations i.e.

< 2% to the final accuracy, thus it is hard to know what level of difference will

provide said statistical significance.
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and GM’s
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4.7 Call detection using Support Vector Ma-

chines (SVM)

Throughout this chapter I have described several methodologies and features

that will be able to discriminate between noise and call frames in long dolphin

recordings. In order to provide a more generalized system that will encompass

the positive attributes of the previously described methodologies the use of

Support Vector Machines (SVM) [10] is explored in this section. SVM’s are

considered one of the most powerful machine learning tools. They provide a

robust and compact way of dealing with both linear and non-linear decision

surfaces.

Unlike GMM’s which can be considered as a generative process, SVM’s

belong to the category of discriminative methodologies. The main difference

is that before, distributions were created over the input data trying to capture

all aspects of the task at hand. However, for simple call detection one only

needs to focus on the classification decision which is of course a binary decision.

SVM’s offer that ability. They are binary classifiers based on the ideas

of risk management. In simplistic terms and similar to gradient descent the

idea is to minimize an expected error function e.g. risk. However, in order

to avoid issues of over-fitting in SVM’s there is an allowable margin of error

by actually trying to minimize the bound of the error function. This idea,

based on Vapnik’s theorem [10] gives SVM’s the flexibility they need to handle

multiple types of data.

In their most simplistic way SVM’s can be viewed as linear classifiers
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that employ risk minimization on unseen test data by maximizing the mar-

gin on the training data. This can be analytically seen in Equation 4.10 where

(xi, yi), ...(xN , yN) with xi ∈ <D and yi ∈ −1, 1.

f(x; θ) = sign(w>x + b) (4.10)

The separating hyperplane/decision surface is clearly w>x+b = 0 and in order

to maximize the margin, 2
‖w‖ one needs to minimize ‖w‖. So the SVM problem

can be stated as, Equation 4.11.

min
1

2
‖w‖2 subject to yi(w

>x + b)− 1 ≥ 0 (4.11)

The above formulation will handle binary cases of linearly separated data.

However, SVM’s have been extended to deal with non-linear data. The idea

behind it is to map the input data into a higher dimension space and solve

the classification problem in that space. In order to do that one can design

different kernel functions that will map the data into that space and then solve

the SVM. The new formulation is described in Equation 4.13.

K(xi, xj) = Φ(xi) · Φ(xj) (4.12)

f(x, (Λ, b)) =
∑

i

λiyiK(xi, xj) + b (4.13)

Where xi,j is the training data, λ are the Lagrange multipliers, yi are the class

labels and b is the bias.

Clearly, the use of the appropriate kernel, K, will define how well the clas-
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sification task proceeds. Given that both whistle and burst calls appear to be

modeled well by normal distributions I chose to use a general purpose classifier

such as a Gaussian kernel, which represents a Radial Basis Function (RBF)

classifier. The general formula for such a kernel is given in Equation 4.14.

K(x, y) = exp(−γ‖x− y‖2) (4.14)

As seen in Equation 4.14 there is one more parameter that needs to be tuned

by the user according to the available training data. That is the variance,

σ2 for the Gaussian kernel since γ = 1
2σ2 . Also, the weights λ can be used

either by solving the full QP or by a fairly new approach of SVM’s known in

the literature as Sequential Minimal Optimization (SMO) [42, 54]. This leads

to the dual problem described in Equations 4.15- 4.17 where C are the box

constraints.

max
λ

M∑
i=1

λi − 1

2

M∑
i,j=1

λiλjyiyjK(xi, xj) (4.15)

such that
M∑
i=1

λiyi = 0 (4.16)

and 0 ≤ λi ≤ C (4.17)

4.7.1 Call detection using SVM’s and the spectrogram

feature

Given that SVM’s provide a combination of the classifiers that have been de-

scribed in the previous sections the first approach would be to use the simplest
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feature possible in order to get a baseline on the strength of the classifier. As

described in Chapter 3 using the magnitude of the spectrogram is perceived

as the most common feature. Of course the use of the spectral magnitude has

the drawback of being a high dimensional feature space, thus increasing the

computational complexity of the system.

In order to get the SVM to work several parameters need to be tuned.

As seen in Equation 4.13 one needs to specify the variance, σ2 for the RBF

kernel that controls the width of the kernel. Continuing, another important

parameter is the constraint on the Lagrange multipliers, λ, for solving the

quadratic problem. This constraint, C is also known as the box constraint and

it is responsible for the allowable “slackness” in the method. For example, a

high value of C implies a larger margin and thus controls the number of outliers.

On the other hand a small value of C implies a tight margin and less tolerance

on the existence of outliers. In order to achieve the best accuracy with the

SVM an initial wide search was performed for high values of (C, γ). According

to performance that was narrowed down to a grid search varying their values

(C, γ) = (0.01...10, 1, ...3). The best pair was found by evaluating on the

training data and it is (C, γ) = (10, 1). All experiments for the SVM’s were

performed on WEKA (Waikato Environment for Knowledge Analysis) [25].

WEKA is a very popular machine learning software written in Java and is

freely available. It contains a collection of visualization tools and machine

learning algorithms.

The SVM is initially trained on artificial clips created by the manually

extracted data from the recordings. Figure 4.32 depicts the ROC curve on a
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Figure 4.32: ROC for whistle and burst calls using spectral magni-
tude and SVM’s

SVM and spectral mag.

Call AUC
Whistle, burst 96.65%

Table 4.14: AUC for whistle and burst calls using SVM’s with spec-
tral magnitude feature

long dolphin clip that is comprised of bursts and whistles and multiple inter-

ferences. Also Table 4.14 shows the AUC metric for the detection task using

SVM’s and the spectral magnitude feature.

From the resulting ROC curve and AUC metric it is evident that the use

of the SVM is superior to any other classifier and feature combination used

so far. It appears that the combination of the RBF kernel with the spectral

magnitude feature allows for a really good classification accuracy since if an

error of approximately 20% is allowed then the system can actually attain a

TPR of more than 95%. In order to check for the generalization ability of

the SVM’s and given their really good performance I decided to apply the
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Figure 4.33: ROC for different clips using spectral magnitude and
SVM’s

SVM and spectral mag.

Call AUC
Easy 96.24%

Moderate 97.49%
Difficult 96.61%

Table 4.15: AUC for different clips using SVM’s with spectral mag-
nitude feature

same system on three different dolphin clips of increasing difficulty. The first

clip having no interferences and the second and third clips having increasing

difficulty with multiple overlaps. Figure 4.33 shows the ROC curves for the

three different clips and Table 4.15 shows the AUC metric for each of the

different clips.

Clearly, SVM’s depict a superior performance in all three types of clips.

That is a testament to their robustness and their generalization ability since

they have an AUC of more than 95% for all types of clips.
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SVM and cepstrum

Call AUC
Whistle, burst 96.08%

Table 4.16: AUC for whistle and burst calls using SVM’s with cep-
stral features

4.7.2 Call detection using SVM’s and the cepstral fea-

ture

The success of SVM’s relies on solving a quadratic problem in a higher dimen-

sion space through kernel dot products. That, of course, is computationally ex-

pensive and can be exacerbated by the dimensionality of the input data/feature

vector since the cost of computing the kernel distances is proportional to the

number of dimensions. In order to compensate for computation complexity it

is wise to use a feature space with lower dimensions. Using the cepstral coeffi-

cients as in previous implementations of other detection schemes will provide

a lower computational cost and an insight on how pitch information might aid

the detection task.

Computed as presented in Equation 3.5 and used in the same manner as

described in previous sections, 50 cepstral coefficients are computed and used

as the input data. The first coefficient is excluded since it does not offer

any improvement to the overall accuracy. Figure 4.34 depicts the ROC curve

for the SVM with cepstral coefficients on a realistic dolphin recording and

Table 4.16 provides the AUC metric representing the classification accuracy.

Once again the use of SVM’s with cepstral features highlights the success

of this machine learning tool. In order to explore the robustness of the system
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Figure 4.34: ROC for whistle and burst calls using the cepstrum
and SVM’s

SVM and cepstrum

Call AUC
Easy 95.89%

Moderate 96.92%
Difficult 95.75%

Table 4.17: AUC for different clips using SVM’s with cepstral fea-
tures

and compare its accuracy when using a different feature, the system is tested

on three different clips of increasing difficulty. The resulting ROC curves

are shown in Figure 4.35 and the respective AUC metrics are presented in

Table 4.17.

From the above results it is clear that the use of SVM’s seems to be favor-

able for the task of detecting whistle and burst calls in long noisy recordings.

When using the cepstral features there is a small decrease, likely insignificant,

in the overall accuracy of the detection. However, this slight decrease in accu-

racy is accompanied by a major decrease in the computational cost of training
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Figure 4.35: ROC for different clips using the cepstrum and SVM’s

the SVM and extracting the support vectors. Due to the lower dimensionality

of the feature space the computation is cut to half compared to the spectral

magnitude features.

Finally, in this chapter several classifiers and features were used in order

to explore the task of detecting whistle and burst calls in dolphin recordings.

Simple features that have been widely used in speech and music processing

along with classifiers that have successfully been used in the machine learning

community. Throughout this chapter a better insight on the data and how

they need to be modeled was attained. In Chapter 5 a different approach

will be explored where the dual task of detecting and extracting the pitch is

analyzed.
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4.8 Conclusions on detecting dolphin calls

In this chapter several approaches were discussed for detecting whistle and

burst calls in dolphin recordings. Starting from the simplest features and clas-

sifiers such as energy thresholding, the most popular detection scheme in the

field, an in-depth analysis of the data revealed that the inherent characteristics

of these calls dictate the evolution of the algorithms in such a way where the

distributions of the features are modeled and the use of robust classifiers is

preferred.

The first class of algorithms is based on simple thresholding as well as the

addition of the optimization technique of gradient descent. The idea being that

bursts and whistles have energy in distinctive frequency channels and thus as

seen in Chapter 4 there should be an optimal set of weights that would be able

to separate them. Two types of gradient descent were used, linear and non-

linear, referring to the decision boundary. Figure 4.36 depicts the AUC results

for simple thresholding, L-GD and NL-GD with the use of the energy feature

for only whistle and burst calls. Clearly, the success rates can be considered

high, but one needs to take into account that in realistic environments both

types of calls are present along with interferences.

When the same algorithms are employed on realistic clips where there

is a need to detect both whistle and burst calls the overall rates decrease.

Figure 4.37 depicts the AUC’s for the different algorithms as before when

using the energy feature (white bar) and the cepstrum feature (black bar). It

appears that in this class of algorithms the use of NL-GD is superior when
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Figure 4.36: Comparative results for clips with only whistles or only
bursts

used with the energy feature. It was expected that NL-GD would outperform

the other algorithms since bursts introduce non-linearities in the data and the

error surface is able to separate them. However, the cepstral features seem to

capture enough background noise to introduce an approximate 10% decrease

in the AUC metric. Results for simple thresholding on the ceptral features are

not reported since they would be very similar to the ones obatined with the

energy feature.

Continuing, and given that in Chapter 3 it was shown that the data is

distributed in a log-normal fashion, a generative approach is applied on the

detection by using GM’s. This is a simple procedure widely used in speech

and music and the idea is to capture the information and differences in the

data. A much more powerful tool is also used to combine the ideas of finding

a hyperplane in a higher dimension while modeling the data according to

a normal distribution. SVM’s offer the ability to separate non-linear data

through the use of different kernels. Figure 4.38 provides the comparative
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Figure 4.38: Comparative results for clips with whistles and bursts
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results for GM’s and SVM’s on clips that include both whistle and burst calls.

Both methodologies are employed using the spectral magnitude feature (white

bar) and the cepstral features (black bar).

In conclusion, when it comes to the detection of dolphin calls in long

recordings the use of SVM’s with either the cepstral or energy features outper-

forms every other methodology. This was expected given the principles behind

SVM’s. Table 4.18 depicts the sorted results across all proposed methodolo-

gies. However, their success in inversely proportional to their computational

cost. All algorithms presented, fall under the category of supervised classifiers

requiring the use of training data. In order to use the classifiers on new test

data there is a computational cost associated with their training. Table 4.19

presents, on average, the computational cost for employing the aforementioned

algorithms on approximately 1min clips. It is worth noting that the training

of the classifiers is only required once if there is a large training set at hand.
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Detection Results

Classifier AUC
SVM with spectrum 96.65%
SVM with cepstrum 96.08%
GM with cepstrum 86.03%
GM with spectrum 84.69%

NL-GD with spectrum 83.24%
L-GD with spectrum 78.94%
Energy Thresholding 76.75%

NL-GD with cepstrum 74.48%
L-GD with cepstrum 70.41%

Table 4.18: Results on detection algorithms

Computational Cost

Classifier Time(minutes)
SVM with spectrum 120
SVM with cepstrum 45

NL-GD energy/cepstrum 4
L-GD energy/cepstrum 1.5

Table 4.19: Computation cost for detection algorithms
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Chapter 5

Call pitch tracking

“It is of interest to note that while some dolphins are reported to

have learned English, up to 50 words used in correct context,

no human being has been reported to have learned dolphinese.”

Carl Sagan

In Chapter 4 several systems were presented with the goal of detecting

whistle and burst calls in noisy dolphin recordings. Given the copious amounts

of available data, creating a robust and automatic call detector is an intricate

part in the process of analyzing and understanding dolphin vocalizations. Once

the desired calls have been detected then a more thorough statistical analysis

can be performed.

In this work, I am interested in the analysis of dolphins’ interaction calls.

As seen in Chapter 3 whistles and bursts are periodic signals. The most im-

portant information one can extract from periodic signals is their fundamental

frequency, f0. In humans, periodic signals are often perceived as having a
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pitch which is determined by their fundamental frequency.

When dealing with dolphin vocalizations there are several characteristics

that need to be taken into consideration. In terms of whistle calls, they do not

always have harmonics and therefore appear as single, modulated sinusoids.

That implies that pitch extraction in these cases can be viewed as a frequency

contour extraction. Also, in some cases the harmonics might not be visible

due to the low sampling frequency used in recording the sounds. On the other

hand when it comes to burst calls, harmonics are always present, but in most

cases there is little or no signal energy visible at the fundamental frequency

itself. This is a common problem in music although it is known that the lack

of a fundamental frequency doesn’t necessarily interfere with the perceived

pitch. This phenomenon can be attributed to several factors. For example,

burst calls are low pitched sounds e.g. centered around 800Hz and the low end

of the spectrum is occupied by mostly noise in dolphin recordings e.g. tank

reflections. Also, it could be part of the sound production system of dolphins

or even a characteristic of the hardware used to record the sounds e.g. range

of hydrophone.

In this work pitch extraction/tracking refers to the identification of the fun-

damental frequency, f0 at a per frame level. Ground truth has been extracted

in a semi-automatic way and due to the discrete nature of processing round-

ing errors are expected and permitted. In the following sections two systems

will be presented for the task of pitch extraction in dolphin recordings. The

first system assumes that the detection process has already been successfully

employed and a proposed algorithm is compared to baseline methodologies for
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the pitch extraction of whistles and bursts. The second system can be viewed

as a dual system for both detection and pitch tracking focusing on whistle calls

and providing a first attempt to resolve overlaps between them.

5.1 A comparison of pitch extraction method-

ologies for whistles and bursts

In this chapter the goal is to provide possible systems that will be able to

resolve the problem of pitch extraction without manual interaction. Several

methodologies that have been previously employed in speech and music pro-

cessing can be utilized on dolphin recordings. However, these algorithms need

to take into account the intricacies and differences that are present in dolphin

recordings. As mentioned in Chapter 3 dolphin recordings have a low SNR

requiring a careful selection of features. Continuing, the different vocalizing

range of dolphins clearly limits the use of several off-the-shelf algorithms de-

signed for speech. This wider range also implies that a high dimensional feature

space might be needed to capture the information present in the recordings.

One of the most unfortunate issues with dolphin recordings is that in many

cases the frequency range of their calls exceeds the Nyquist rate of most com-

mon underwater recording devices leading to a loss of information in the high

end of the spectrum.

In this section, a proposed algorithm is compared to widely used pitch

extraction methodologies in speech and music. It is important to note that the

proposed systems assume that the desired calls have already been detected and
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Algorithm Feature Classifier
Cepstrum and HMM 256 cepstral coef HMM

YIN Autocorrelation Local Min
get f0 LPC residual Dynamic programming

Table 5.1: Pitch extraction methodologies

segmented. One can imagine that this is possible by employing the different

algorithms already described in Chapter 4.

Given that there are inherent differences in the frequency ranges of dolphin

vocalizations i.e. the whistles and the bursts introduced in Chapter 3, it is

worth exploring two-stage systems where the different calls are first clustered

together using a different classifier. This implies the use of hierarchical systems

that will have different parameters for bursts and whistles.

In order to provide a well rounded approach on pitch extraction of dolphin

calls, three different algorithms are used and compared. The first algorithm

is based on the use of Hidden Markov Models (HMM) [15, 43]. HMM’s can

be used either directly on the spectrogram or in combination with descriptive

features. In this work the use of the cepstral coefficients is preferred. The

second algorithm, YIN [13] has long been used successfully in speech processing

for single pitch extraction and is based on a modified autocorrelation method

and finally get f0 [50, 18] a popular off-the shelf pitch tracker. Table 5.1

summarizes the algorithms that are used.
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5.1.1 Cepstral coefficients with hierarchically driven Hid-

den Markov Models (HMM)

HMM’s have been extensively used in many natural sequences such as speech,

language and handwriting. They are a valuable tool for the analysis and

extraction of information of time dependent data. The idea behind them is

that the system being modeled is assumed to be a first order Markov process

and the goal is to determine the hidden parameters based on the observations

e.g. data. A simple Markov model is a finite state machine where the states

are directly visible. In a hidden Markov model the states are not directly

visible, but their dependence on the observations are known and thus some

information can be extracted on the sequence of the states.

Since HMM’s are a first order Markov process their behavior depends

only on the current state and thus simplifications can be made due to in-

dependencies in order to compute the desired values. HMM’s are specified

by several parameters, Θ. Firstly, the states, qi, the transition probabilities,

ai,j = p(qj
n|qj

n−1) defining the probability of being at a specific state now given

that I was in a different state in time n− 1. Also, the emission distributions,

bi(x) = p(x|qi) representing the probability of seing a specific observation

given that I am at state qi and finally the initial state probabilities/priors,

πi = p(qi
1) [15, 43].

Once these parameters have been defined there are three main issues re-

garding the function of HMM’s.

• The evaluation problem: Determining the probability that a particular
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sequence of states was produced by the model obtained through the use

of the Forward algorithm [15]

• The decoding problem: Given a set of observation determining the most

likely sequence of hidden states that led to the observations, obtained

through the use of the Viterbi algorithm [15]

• The learning problem: Given a set of training observations extract the

parameters, Θ of the HMM, obtained through the use of the Forward-

Backward algorithm or Baum-Welch [15]

HMM’s can be used with a variety of features. For the task of pitch ex-

traction I chose the use of cepstral features described in Chapter 3. This will

ensure a more compact way of describing the data and will allow for a lower

dimensionality in the feature space which will ease the computational cost.

Since as shown in Figures 3.1(a), 3.1(b) whistle and bursts occupy differ-

ent regions of the frequency spectrum it can be stated that the data depicts a

bimodality dependent on the call type. This information can be taken advan-

tage with the use of a hierarchy in the system. In simple terms, the system

can be described as follows. Initially, two HMM’s are created with different

number of hidden states corresponding to the different types of calls. For ev-

ery input vector both HMM’s are evaluated using the forward algorithm and

the one that gives the highest likelihood is activated for the implementation

of Viterbi decoding, thus obtaining the most likely path across the hidden

states. Figure 5.1 provides a schematic overview of the system. It is clear that

since there are two different HMM’s there are two different sets of parameters
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Figure 5.1: System overview

representing two different frequency ranges respectively.

Each HMM is defined through parameters, Θ that are extracted directly

from the training data. Both HMM’s are continuous, which means that each

state q has an emission that is described by a single Gaussian probability

density function. The first HMM is modeling whistle calls and its parameters

are shown in Equation 5.2.

Θ1 = 〈π1, A1, E1〉, (5.1)

π1 = (π11, π12, ...π1N), N = 1, 2, ...18

A1 = {α1ij}i,j=1,2,...N , α1ij = p(q1t = j|q1t−1 = i)

E1N(o) = N(o; µ1N , σ1N), N = 1, 2, ...18

In the same manner the second HMM is modeling burst calls and its pa-
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rameters are shown in Equation 5.3.

Θ2 = 〈π2, A2, E2〉, (5.2)

π2 = (π21, π22, ...π2M),M = 1, 2, ...52

A2 = {α2ij}i,j=1,2,...M , α2ij = p(q2t = j|q2t−1 = i)

E2M(o) = N(o; µ2M , σ2M), N = 1, 2, ...52

The states q1, q2 represent the frequency ranges of approximately 2.2kHz−
11kHz and 440Hz − 740Hz respectively. Also a noise state is added for each

HMM in order to capture the lack of pitch in a particular frame. Each state

q represents a call with a pitch delay/period in samples that can be directly

mapped to a specific frequency. Also, π1, π2 define the priors on the states and

are directly obtained from the statistics of the ground truth as described in

Chapter 3. A1, A2 are the transition matrices for the state sets also obtained

from the training data. Finally, E1, E2 are the emission distributions for each

state set. These are single 256 dimensional Gaussian distributions obtained

from the cepstral coefficients.

Once the parameters for each of the HMM’s have been extracted then

every call needs to be evaluated in order to identify its frequency range i.e.

evaluating the best-path likelihood for both models. The last stage of the

system is the application of Viterbi decoding yielding the most likely path

across the evaluated state set, thus extracting the desired pitch at every frame.

This is shown in Equation 5.3.
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if p(Y1) > p(Y2) then we want

argmaxq1...T
p(Q|Y ) = argmaxq1...T

p(Y |Q)p(Q) (5.3)

Where Yi, i = 1, 2 is a sequence of observations, Qi, i = 1, 2 is a sequence of

the hidden states, qi, i = 1, 2, ...T is the maximum probability state path.

5.1.2 YIN: A fundamental frequency estimator

The algorithm YIN [13] was briefly discussed in Chapter 3. Created by de

Cheveigne and Kawahara it is widely used for the estimation of the fundamen-

tal frequency/pitch of speech or monophonic musical sounds. it is based on

a modified autocorrelation method and it is extremely successful in extract-

ing single pitches. It is a time domain based system and its simplicity and

computational efficiency certainly add to its popularity.

Dolphin vocalizations are periodic signals, xt with period T . YIN is based

on the autocorrelation of the signal defined in Equation 5.4.

rt(τ) =
t+W∑

j=t+1

xjxj+τ (5.4)

Where rt(τ) is the autocorrelation at lag τ calculated at time t and W is the

integration window size. From the above equation it is easy to see that it still

stands even if one takes the square and averages over a window, W . This

implies that a difference function can be formed where an unknown period
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may be found while searching for those lag values, τ for which the function is

zero. This new function is seen in Equation 5.6.

dt(τ) =
W∑

j=1

(xj − xj+τ )
2 (5.5)

dt(τ) =
W∑

j=1

x2
j +

W∑
j=1

x2
j+τ − 2

W∑
j=1

xjxj+τ (5.6)

The main problem with Equation 5.6 is that it has a zero value at zero lag

and that often it has a non-zero value at the lag corresponding to the period

due to imperfections in the periodicity. However, it’s worth noting that both
∑W

j=1 xj and
∑W

j=1 xj+τ don’t change much with τ , meaning that minima of

dt will occur where there are maxima in rt. Clearly, the use of the difference

function will fail to pick the correct pitch since it will always be minimal for

the zero lag. In order to alleviate this problem, the authors propose the use of

the cumulative mean normalized difference function as seen in Equation 5.7.

f(τ) =





1 if τ = 0

dt(τ)

[ 1
τ

∑τ
j=1 dt(j)]

otherwise
(5.7)

This function will actually take on the value of one at zero lag and will

stay large at small lags. There are several more steps that can be employed

to ensure a better pitch estimate. These steps are described in detail in [13].

Overall, the desired pitch can be obtained by picking the smallest value of the

lag/pitch delay, τ that gives the minimum d. Figures 5.2, 5.3 show examples

of whistle and burst call spectrograms (top) along with the distance function
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proposed by YIN (bottom).

From the figures, one can clearly see the differences between whistle and

burst calls when they are represented by YIN’s distance function. Since the

function measures in pitch delay e.g. samples,whistles that are high pitched

sounds are going to appear with lots of peaks in the distance function. On

the other hand, bursts that are low pitched sounds will have less peaks in the

distance function. Once again, according to YIN the pitch at every frame is

identified as the lag where the lowest peak is located.

5.1.3 Get f0: A software package for pitch extraction

in speech

Get f0 is part of a widely used software package called Entropic Signal Process-

ing Systems(ESPS) and Waves [18]. Used for pitch tracking it is quite popular

amongst speech researchers. It is based on Doddington’s and Secrest’s 1983

algorithm [50] for pitch tracking in speech systems.

Their proposed algorithm uses the linear prediction coding (LPC) residual

error signal in order to extract the desired pitch candidate. In the same way as

the cepstrum, LPC is based on the source filter model described in Chapter 3.

This indicates that it is theoretically expected that the residual signal will

provide the excitation information.

In order to alleviate some problems of high frequency noise, the authors

devise and employ a de-emphasis filter as a pre-processing tool. With that,

they low pass filter the residual signal, s in the voiced regions and high pass
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Figure 5.2: Whistle call and distance function from YIN

Time

F
re

q
u

e
n

cy

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

x 10
4

−50

−40

−30

−20

−10

Time

P
itc

h
 la

g

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

50

100

150

200

250

0.5

1

1.5

Figure 5.3: Burst call and distance function from YIN
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filter in unvoiced regions. These filters are highly tuned for human speech

and unfortunately do not work for dolphin vocalizations so the algorithm is

not expected to perform well for the task at hand. In theory the filters could

be modified to deal with dolphin ranges, but this was not easily accessible

through the software package.

To extract the candidate pitch at each instance the peaks of the normalized

cross-correlation are acquired as seen in Equation 5.8.

C(τ) =

∑m−1
j=0 s(j)s(j − τ)

(
∑m−1

j=0 s(j)
∑m−1

j=0 s(j − τ))1/2
(5.8)

Where τ is the lag and m is the number of samples to be correlated. As

previously mentioned, the candidate pitch values are the lags at the peaks

of C and the “goodness” measure is the corresponding value of C at those

lags. Once these values have been extracted, dynamic programming [50] is

performed in order to extract a smooth pitch contour. This requires the use of

a penalty metric in order to decide what the best path amongst the candidates

is. The cumulative penalty for each pitch candidate consists of a transition

error in going from one frame to another. This methodology provides a good

pitch extractor although it is highly specialized for speech.

5.1.4 Comparing the different algorithms

The algorithms described above are applied to the data that have been man-

ually extracted. The data described in Chapter 3 are comprised of 200 calls,

balanced number of whistles and bursts. No overlaps are present and these
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Figure 5.4: Data histogram and bimodality

are single calls. The statistics of the calls are provided in Table 3.1. In these

experiments the ground truth is given in pitch delay/lag for every frame. As

expected there are some errors with the extraction of the ground truth due

to resolution and rounding limitations, thus incorporating bias in the final

results. Once the ground truth had been extracted the analysis of the data

indicated the existence of the bimodality. This is seen in Figure 5.4 and led to

the choice of hierarchically driven HMM’s. Two distinct frequency ranges are

evident allowing the insertion of a decision level in the system. Arguably, one

might explore the reasons for not choosing a single dynamic model. In sev-

eral experiments, a single system suffered from erroneous “doublings” and/or

“halvings” at a per frame level probably caused by the choice of the cepstral

feature. Table 5.2 provides the comparative results for all three algorithms pre-

sented. In order to provide a good analysis of the results, three new metrics

have been introduced. Firstly, the strict rate, which implies that the resulting

pitch is an exact match with the ground truth. Secondly, the relaxed rate of
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Average per frame accuracy (%)

HMM cepstrum Yin getf0
Strict Rate (%)

66.12 47.09 29.3
Relaxed Rate ±1 pitch delay (%)

76.01 54.35 N/A
Relaxed Rate ±2 pitch delay (%)

77.9 55.11 N/A

Table 5.2: Comparative results for different systems

±1 pitch delay (lag) and finally a relaxed rate of ±2 pitch delays (lag). Basi-

cally, this implies a soft boundary or range of acceptable error. The relaxed

rates correspond to an approximate 1.5% and 3% deviation from the ground

truth, which in many applications could be considered acceptable.

It is important to note that all results for the HMM were obtained us-

ing leave-one-out cross-validation i.e. 200 evaluations, otherwise known as

round-robin. Although this procedure usually overestimates the rates that

are obtained due to overfitting of the data, it is considered a popular way for

testing on a moderate size data set.

In all cases the novel approach of using hierarchically driven HMM’s with

the cepstral features is superior to the baseline algorithms by over 10%. As

expected the get f0 package fails to give comparable results for the relaxed

rates due to the fact that it is highly tuned for human speech and is not able

to track the desired pitch in dolphin vocalizations, which exhibit a much wider

frequency range.

Continuing, Figure 5.5 provides a scatter plot of the results on the individ-

ual calls for the proposed HMM with cepstrum and the Yin algorithm with
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Figure 5.5: Yin frame rate vs. HHMM frame rate for every call

the strict rate (top), relaxed rate ±1 (middle) and relaxed rate ±2 (bottom).

As seen in the figure there is a clear shift of the points towards the right side

of the plots. This is indicative of the superiority of the system where there is

a higher percentage of calls that are achieving above 80% frame accuracy. In

addition there is an interesting fact that arises from the plots. There appears

to be a constant number of calls giving a near 0% match. The discrepancy

is caused due to the error that is introduced with the use of the hierarchy.

Basically, these calls fail to get classified in the correct frequency range, thus

the pitch extraction fails completely.

Finally, a closer look is presented for two calls when the HMM and Yin
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algorithms are performed. Figure 5.6 depicts the resulting pitch extraction

for a whistle call. It is evident from the figure that the proposed algorithm

of the HMM and the cepstral features works better than simple YIN. Also in

Figure 5.7 the HMM again depicts superior performance than YIN although

it appears to misclassify several frames at the end of the call where even the

ground truth is questionable indicating the errors of the semi-automatic way

of labeling.

Overall, the proposed algorithm of the HMM with the cepstral features

seems to outperform the baseline algorithms of Yin and get f0. Although the

existence of the bimodality in the data needs to be explored in much larger

data corpuses it appears to be the key point in the success of the algorithm and

also it offers an impressive reduction to the computational cost. The hierarchy

level introduces and overall error of about 4% when it comes to deciding the

range of every new call.
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(a) Example of whistle call

Time

P
itc

h 
la

g

0 0.05 0.1 0.15 0.2

50

100

150

200

250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
ground truth

(b) Distance function and ground truth

Time

P
itc

h 
la

g

0 0.05 0.1 0.15 0.2

50

100

150

200

250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Yin

(c) Distance function and resulting pitch us-
ing YIN

Time

P
itc

h 
la

g

0 0.05 0.1 0.15 0.2

50

100

150

200

250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
HHMM+cep

(d) Distance function and resulting pitch us-
ing HMM and cepstrum

Figure 5.6: Example of pitch extraction for a whistle call
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Figure 5.7: Example of pitch extraction for a burst call
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5.2 Pitch extraction using Bayesian inference

Dolphin vocalizations meant for interaction are classified into whistle and burst

calls. The main differences of these types of calls have been described in Chap-

ter 3. It is worth noting that through the examination of these recordings it

has been found that when it comes to their social functionality whistle calls are

more prominent than burst calls. Dolphins appear to vocalize whistles more

than burst calls, thus adding to the variety of these calls. Researchers theorize

that if there is some type of information encoding scheme in dolphin vocal-

izations then the most likely “carrier” of such information would be whistle

calls.

Detecting and extracting the pitch of these whistle calls in an automatic

way would offer a great amount of help for the understanding and descrip-

tion of these calls. Given the amounts of data accessible and their distinct

characteristics a probabilistic approach is proposed based on Bayesian infer-

ence [15, 40, 26]. The novelty of the system is that it actually attempts to

resolve overlaps between whistle calls. As described previously, the hardest

problem when dealing with dolphin sounds is that due to their social behav-

iors e.g. existing in pods, dolphins tend to have multiple “conversations”.

This can be seen in Figure 3.2 where the difficulty of separating these overlaps

becomes clear.

The proposed system [21] is based on a probabilistic framework with the

goal being to detect and extract dolphin whistle calls. A schematic overview

of the proposed system is depicted in Figure 5.8. Whistle calls are AM-FM
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Figure 5.8: System overview for whistle extraction

signals that are described in Equation 3.2. The overall system is based on a

Bayesian probabilistic framework that can be described as follows. The goal is

to find the most probable call structure, C, given the observations, recordings,

o. Through Bayes rule this can be obtained by Equation 5.9.

p(C|o) =
p(o|C)p(C)

p(o)
(5.9)

Where p(o|C) is the probability of seeing the actual observation given the

hypothesized call parameters that define the call structure, and p(C) is the

prior of that call structure.

The observation signal, defined by the recordings, can be described as seen

in Equation 5.10

o(t) = y(t) + n(t) (5.10)

Where o(t) is the observed signal, y(t) is the ideal track waveform and n(t) is

the noise.This formulation allows us to define the likelihood shown in Equa-

tion 5.11, which implies that the observation can be modeled using a normal

distribution with mean equal to the underlying call, and variance resulting

from the noise.

p(o|y) = N(o; y, σn) (5.11)
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As mentioned before, C is the call structure that can be described through

some global characteristics e.g. frequency range e.t.c. that will be presented

later. One can then define p(C) as the prior distribution on these parame-

ters. This distribution can be modeled by a D-dimensional Gaussian given by

Equation 5.13.

p(C) = N(µD, ΣD) (5.12)

Continuing, the ideal waveform y(t) is randomly related to the call pa-

rameters, C, which implies the existence of the p(y|C) distribution and thus

introducing it in the computations. Having described the main parameters in

this formulation it is evident that the desired result is to obtain the probability

of a specific call given the observations. The analytical formulation for that

can be seen in Equation 5.13

p(C|o) ∝
∑

y

p(o|y)p(y|C)p(C)

p(o)
(5.13)

In order to get the maximum likelihood inference of the call parameters, C

one needs to maximize only the numerator since the denominator p(o) does

not depend on the call parameters, C. In Figure 5.8 the system is described

as being comprised of two sub-systems. The front-end, responsible for the

extraction of segments that belong to calls, and the back-end, responsible for

connecting these segments in order to form the calls. In Equation 5.13 the

sinusoidal modeling scheme [20, 17] reduces the search to only a few possible

choices for y, namely those that consist of sinusoidal components from the

front-end of the system which is reflected on the term p(o|y). The back-end of
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Figure 5.9: Front-end for whistle extraction

the system is reflected on the p(y|C)p(C) term representing the formation of

the calls based on the call parameters.

5.2.1 The front-end: Extracting sinusoidal segments

Sine wave modeling is based on modeling the sound as AM-FM sinusoids. This

fits perfectly with the case of dolphin calls that are highly AM-FM signals.

In practice, sine wave modeling can be performed directly on the spectral

magnitude. Basically, one needs to find the local maxima of the spectral

magnitude along all frequencies. Once the local maxima have been found,

they are tracked along time while making sure to identify their boundaries.

The goal for the front-end of the system is to extract as many fragments

of calls without having a high false positive rate e.g. extracting segments that

might belong to noise background. Figure 5.9 provides a schematic description

of the front-end of the system.

Initially, when applying sine wave modeling the spectrogram is scanned

across all frequencies and the regional maxima are extracted. Regional max-

ima are defined as a set of connected points of constant value from which it

is impossible to reach a point with a higher value without first descending.
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However, if one extracts initial segments using the regional maxima then they

will definitely encounter a large number of false positives. This is mainly due

to the noisy recordings as well as the interferences that are present in dolphin

recordings.

In order to alleviate the problem of false positives a hybrid regional maxima

technique is employed. This is an iterative algorithm based on the variance of

the spectrum at each time frame. The algorithm can be seen in Equation 5.14.

peakt,i = max(RegMaxt,i+1), while ϑ < 0.65

ϑ =
var(RegMaxt,i+1)

var(RegMaxt,i)

RegMaxt,i+1 = {RegMaxt,i} \ {peakt,i} (5.14)

Where peakt,i defines the extracted peaks from each time slice, t at every

iteration, i. RegMaxt,i are the maxima of that time slice, t at each iteration,

i. RegMaxt,i+1 are the maxima of time slice, t and iteration i+1 excluding the

extracted peaks at time slice t and iteration i.Continuing, ϑ is the threshold

that determines the number of peaks that are extracted at each time slice.

It basically measures the variance ratio at each iteration, i and it changes

at every time slice, t and iteration, i. Empirically and through the training

data the upper bound of the threshold has been found and it can be shown

that the algorithm can extract the correct regional maxima when ϑ < 0.65.

The algorithm is initialized for i = 1 where the regional maxima of slice t are

extracted and the first peak extracted is the global maximum for that time

slice, t.
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This hybrid methodology will separate the desired signal from its noisy

background using the fact that the signal appears as accentuated peaks in the

spectrum. These peaks will have a larger amplitude than that of the existing

noise. Although the methodology cannot guarantee a complete lack of false

positives it will significantly reduce their number.

Once the peaks have been extracted using the hybrid regional maxima

technique, quadratic interpolation is performed on the amplitudes and corre-

sponding frequencies [34]. This will provide a smoother effect on the extracted

segments that will later be joined to create the desired calls.

Once the peaks have been extracted for a time slice, t there needs to be a

decision regarding their connection with the peaks extracted in the subsequent

time slices. That decision is based on two parameters:their frequency and their

amplitude.

Each peak lies within a specific frequency channel and in order for it to be

connected with a subsequent peak then they cannot be separated by more than

a predetermined frequency “distance”. Empirically, and given that whistle

calls have steep frequency slopes the allowable frequency distance is set to 5

frequency channels/bins e.g. 5 · 44100
512

= 430Hz/msec. An exhaustive search is

employed across the peaks and a preference is given to the ones that have the

smallest distance.

Understandably, the above process is very likely to lead to several ties in

the frequency domain. In order to resolve these instances, a second level of

decision is employed through the use of the ratio of the amplitudes that cannot

exceed a predefined amount.
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The procedure is repeated at every time step, t, and a segment is considered

extracted if there is no continuation found after a number of time steps, that

are called dead steps. In all the experiments the number of dead steps was

set to 3 time frames. Finally, once the segments have been extracted a post

smoothing is employed and segments that don’t satisfy a minimum length

criterion are excluded, thus keeping only those segments that have more than

two points.

Figures 5.10, 5.11 show examples of the front-end of the system. These sam-

ple recordings of whistles present an instance that would be considered simple

with no overlaps. Specifically, the spectrogram (top) and segment extraction

(bottom) with black circles indicating beginning of segments are depicted. The

second clip shows an example of how the front-end would deal with overlaps.

Specifically, the spectrogram (top) and segment extraction (bottom) with black

circles indicating beginning of segments are depicted.

From the figures, it is evident that the majority of the call segments have

been extracted and that there is a small percentage of error due to either the

extraction of segments that are actually part of the noise background (false-

positives) or because some of the extracted segments are excluded due to length

requirements (false-negatives).

5.2.2 The back-end: Forming calls from segments

The goal for the back-end of the system is to connect the extracted segments

from the front-end according to some decision made through maximum likeli-

hood. Once the segments have been extracted using the algorithm described
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Figure 5.10: Example of the front-end of the system for a simple
clip
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Figure 5.11: Example of the front-end of the system for a clip with
overlaps
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Figure 5.12: Back-end for whistle extraction

in the previous section the problem of connecting them can be formulated into

two basic categories:

• Intra-call discontinuities

• Inter-call discontinuities

Intra-call discontinuities can be defined as connecting gaps that appear

within the same segment. In order to connect these gaps a time gap parameter

is defined that allows for the maximum gap within the segment. When such

gaps are found linear interpolation of the edges is performed in both frequency

and amplitude. This procedure will account for those calls that have a large

amplitude difference within them which leads to gaps of fewer than the “dead

steps” count of frames, where the parameter extraction for a single track was

lost for one or two frames.

Inter-call discontinuities account for the main part of the back-end and

basically refer to connecting a segment with a best choice out of a set of

fragments. Figure 5.12 provides a schematic overview of the back-end of the

system.

The first thing that needs to be defined in order to locate candidate frag-

ments is a suitable search neighborhood. This neighborhood is adaptive ensur-
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ing that every segment has a neighbor. The neighborhood can be perceived

as a grid defined by two parameters, frequency and time. These parameters

define the final boundaries of the search area e.g. ±50 frequency bins, ±10

time steps. It should be noted that each segment has two search areas, one

for each tip and a restriction is placed so as to ensure that the segments are

not overlapping in time, by having an asymmetry in time depending on the

directionality of the tips i.e. +10 steps when looking forward in time, thus

obtaining temporal consistency.

In order to decrease the size of the search neighborhood even more a tip

directionality criterion is used. For each of the tips of each segment within

the same search neighborhood its slope is measured by taking the average

gradient over 5 time steps closer to the edges. From the training data normal

distributions have been fitted on the slopes of instances of pairs of segments

with an upward or a downward directionality that belong to the same track.

There were 60 pairs for each directionality and they were obtained by running

the front-end of the system on the training data and then manually inspecting

and extracting each pair. The slope of the tips is used to figure out the

directionality likelihood for a pair of segments. The segments that have the

highest likelihood are the ones that are considered. This is more clearly seen

in Equation 5.15.

p(slup|θup) = N(µx,y, Σ2x2)

p(sldown|θdown) = N(µx,y, Σ2x2)

if p(slup|θup) > p(sldown|θdown) ⇒ upward (5.15)
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Where p(slup|θup) describes the likelihood of a pair of segments belonging

to the same call and having an upward directionality. The distribution is

approximated through a 2D Gaussian whose parameters are the slopes of pairs

of tips that belong to the same track. These values were obtained from the

training data. The same procedure is employed for the downward directionality

thus providing a smaller set of neighbors to a segment. This is necessary when

dealing with multiple overlaps in order to ensure that possible connections

from false segments are limited in the next stage.

Once all the possible paths have been identified then it can be assumed

that there are three kinds of possibilities for these paths.

• Sure path: A segment that only has a single connection

• Lonely path: A segment that has no possible connections

• Multiple paths: A segment that has multiple connections

The cases of sure and lonely paths are straightforward. However, in the

case of multiple paths there needs to be a decision regarding which path will

lead to the extraction of the correct call. In order to make the decision fea-

tures extracted from the training data are used by forming a combination of

scalar normal distributions. The features that are chosen are the smoothness

in the curvature of the frequency and the change in energy as seen in Equa-

tions 5.16, 5.17.

Fsm = |mean(
d2f

dt2
)| (5.16)
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Esm = |mean(
de

dt
)| (5.17)

Once the distributions have been fitted on values extracted from the hand-

labeled training data, a decision can be made by using maximum likelihood

since the likelihood of a path can be evaluated as seen in Equation 5.18.

p(possible path) = p(Fsm|true path)p(Esm|true path) (5.18)

Also, in order to alleviate the overall computational costs of the system a

greedy search amongst the eligible paths is performed choosing the one with

the highest likelihood e.g. highest p(possiblepath). The algorithm proceeds in

that manner to connect the different segments and only keeps the paths whose

likelihood does not drop more than a specific percentage e.g. 10%. Once the

connections are established then the segments are merged according to their

linearly interpolated value to provide a smoother contour. If for some reason

to paths fail to meet the criterion then they are set aside.

Figures 5.13, 5.14 provides examples on how the back end of the system

will actually merge the different segments in order to extract the correct calls.

Specifically, the spectrogram (top) and call extraction (bottom) with black

circles indicating beginning of calls are shown.

From the figures one can see that the majority of the calls in the recordings

are correctly extracted by the system. In some cases, in Figure 5.13 there are

some false negatives but overall the system performs well at a per frame level.

In Figure 5.14 a more elaborate clip is presented with multiple whistle overlaps.
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Figure 5.13: Example of the back-end of the system for a simple clip
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Figure 5.14: Example of the back-end of the system for a clip with
overlaps
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Figure 5.15: Resolving overlaps

Once again there are several false negatives here especially when it comes to

harmonics. However, one of the most interesting points of this system is its

ability to resolve simple whistle overlaps. In Figure 5.15 an example of a

whistle with a double overlap is shown. Specifically, the original spectrogram

(top), final extraction of calls (middle), and example of call with resolved

and non-resolved overlap (bottom) are shown. The overlap is resolved in one

instance, but not on the other instance. This is due to the allowable steps

within a segment as well as due to the fact that there are click interferences

in the background.

In Table 5.3 results are depicted on 5 min clips that were manually labeled.

These recordings have 400 calls of moderate difficulty. The frequency contour

of these calls was manually extracted via peak picking on the spectrum and all

overlaps were visually inspected in order to be resolved. The front-end of the
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system was used to obtain the segment slopes for the training data. Annotation

was an arduous process given that there were several parameters that needed

to be obtained in both a frame and segment level. The data used are wild

dolphin recordings as obtained from Cornell University’s MaCaulay Library.

All recordings have a sampling frequency of 44100Hz. It is worth noting that

in order to obtain the rates that are presented, the performance of the system

needs to be assessed. Given that the system is comprised of two different

sub-systems, the overall success of the extraction algorithm depends not only

on how well the front-end performs, since if a segment is not extracted then

that call will not be represented, but also if the segments that are connected

correspond to existing calls. It is necessary to explore other types of metrics

for the evaluation of this system, but this would be suitable for future work.

Taking the above into consideration, an overall extraction rate is provided

that is obtained on the frame level. Thus, for every track that is extracted

from the back-end of the system, the number of correct points is measured

and compared with the ground truth independent of which track they belong

to. Also, a true positive and false positive rates are provided, but on the

segment level. This is obtained by counting the number of correct and non-

correct connections respectively and provides information on the success of the

decisions of the system. The false positive rate is fairly high due to the fact

that the system is created under the assumption that the extracted segments

are more likely to be close to each other when belonging to the same call and

their connection is desired.
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Rates Bayesian Inference

Frame Level
Success Rate 82%

Segment Level
FPR 5%
TPR 97%

Table 5.3: Rates for whistle system

Overall, this system performs well for easy and moderate clips of whistle

calls. The big advantage of the system is that it can actually handle simple

cases of overlaps, the most difficult problem in dolphin vocalization analysis.

The main drawback is that it is a computationally expensive system comprised

of two sub-systems thus allowing for the existence of errors and also it requires

a lot of parameters to be tuned according to the different recordings.

5.3 Conclusions on pitch tracking of dolphin

calls

This work has been divided into two major tasks consisting of the detection and

pitch extraction of dolphins’ social vocalizations. Considered one of the most

difficult things in the field, pitch tracking of dolphin vocalizations presents

challenging issues. In this chapter two different systems were proposed and

compared with baseline algorithms that have been widely used in the audio

processing community. These two systems are based on a probabilistic frame-

work, incorporating time dependencies.

The first system implies that the detection task has successfully been per-
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formed and one needs to automatically extract the pitch on the detected whis-

tles and/or bursts. However, this system cannot handle overlapping calls.

Once again the use of a probabilistic framework appears to favor the task of

pitch extraction. Compared to other widely known algorithms in the field of

audio processing such as YIN and get f0 the proposed algorithm of hierarchi-

cally driven HMM’s with the use of the cepstral features is far more superior.

The key of the system is the exploitation of the bimodality present in the data

as seen in Figure 5.4. A decision level is inserted that basically classifies an

incoming test call as a whistle or burst according to its frequency range. Of

course that will introduce an error for false classification, but in the experi-

ments performed that error did not exceed 4%.

Figure 5.16 presents the resulting accuracies for the pitch detection task

of the first system verifying the success of the proposed algorithm. If the

system is allowed a soft margin of error of 3% then there is an accuracy rate

of approximately 78%. Both Yin and get f0 trail by a lot when it comes to

pitch extraction. Overall the system behaves well and the use of cepstral

coefficients aids in the description of the pitch while allowing a much needed

flexibility in the dimensionality of the feature space, unlike the use of the

spectral magnitude.

The second system uses Bayesian inference and only deals with the pitch

extraction of whistle calls. Using specific characteristics of these calls, distri-

butions are obtained and used in order to decide at a per frame level how and

where a whistle call is formed. Given the nature of the system several issues

arise such as the need for a large training set or the use of parameters that
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Figure 5.16: Comparative results for pitch extraction of whistles
and bursts

are dependent on the different recordings e.g thresholds. However, this system

provides the ability to resolve simple overlaps of whistles. The problem of

overlaps in dolphin calls is considered as probably the hardest to solve. This

is the first system in the field that will actually successfully extract simple

overlapping whistles. As seen in Chapter 5 the system will actually perform

fairly well by having a success rate at a per frame level of 82%. In order to

create a more generalized approach one would need larger data corpuses as

well as the use of other descriptive features unique to each type of call.

Overall, the task of pitch extraction is adequately represented in this work

since the systems proposed offer the best accuracies in the field so far. The

difficulties that are inherent in pitch tracking, especially for these signals that

suffer from a low SNR as well as multiple overlaps and interferences, require the

use of generative models. In order to account for the wide variety of dolphin

calls it would probably be preferable to build advanced Bayesian networks that
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will be able to handle the detection and pitch tracking while accounting for

the intricacies of dolphin vocalizations. This work offers an insight on how to

approach dolphin vocalizations and describes those methodologies that appear

to be suitable for the detection and pitch extraction of whistles and bursts.

Further analysis and experimentation is required in order to obtain a global

automatic system able to deal with the variations found not only in different

recordings, but also the different dolphin species that exhibit diversities in

their vocalizations.
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Chapter 6

Conclusions and future work

“So long, and thanks for all the fish”

Message left by the dolphins when they departed planet earth

Douglas Adams, Hitchhiker’s Guide to the Galaxy

Throughout this work the goal was to provide valuable tools for the anal-

ysis of dolphin vocalizations. Given that audio processing has been mostly

identified through tasks performed on human speech and music analysis, most

existing methodologies are highly tuned for those genres. It is understandable

that most engineering researchers are inclined to tackle problems in speech

and music due to their highly commercial applicability. Unfortunately, that

has resulted to a slower advance rate in fields such as animal bioacoustics.

Specifically, the field of marine mammal bioacoustics has not been explored in

a more robust engineering manner until fairly recently.

Until the Marine Mammal Protection Act in 1972 was enforced by the Navy,

little information was publicly known about the many abilities of dolphins
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and their highly acoustic world. The Navy, which had been interested in the

echolocation abilities of these mammals outreached to institutions and labs

around the world in order to get more scientists to explore and analyze marine

mammal vocalizations. That led to a massive attempt by marine biologists and

animal cognitionists to approach and understand marine mammals. On site

researchers started using specialized hardware in order to record the sounds

made by dolphins, both in wild and captive environments. As a result, an

immense amount of data was created, but the tools for analyzing said data

were still in a primal state. Without the existence of automatic and robust

software packages that would detect and extract the desired signals in long

underwater recordings, scientists are unable to formulate new theories on the

interactions of dolphins and provide an insight into their universe.

Audio and machine learning engineers are now realizing the intrinsic and

exciting problems that comprise of the analysis of dolphin vocalizations. Deal-

ing with underwater sound and sounds emitted by a different species demands

the collaboration of different fields in order to extract meaningful conclusions.

It is my belief that in the work presented here I have been able to provide

a better understanding of these exciting creatures while offering important

suggestions and solutions to problems that have long been identified when it

comes to creating automatic systems for the detection and tracking of dolphin

vocalizations such as whistles and bursts.

Overall in this work, two major tasks have been described. Initially, the

task of detecting dolphins’ interactive calls e.g. whistles and bursts in long

recordings, Chapter 4, and secondly the task of extracting the pitch of these
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calls, Chapter 5.

In Chapter 4 a variety of methodologies are explored. Starting from the

simple energy thresholding, that is widely used in the field, a closer look at

the data uncovers that there seem to be “preferred” channels in both whistles

and bursts. In order to exploit this information the optimization technique

of gradient descent is used in both linear and non-linear manner. Continuing,

more intricate models are also employed such as Gaussian models in an effort

to provide a general fit of the data. Also, a more robust classifier, Support

Vector Machines (SVM) is used given its strength in similar classification tasks

in speech and music. SVM’s outperform every other methodology regardless

of which features are used i.e. spectral or cepstral.

Although SVM’s outperform every other algorithm, one can imagine that

the use of each algorithm is dependant on the nature of the task i.e. if the

system is needed for on site detection we might need to sacrifice accuracy for

computation, thus the use of GM’s in an online fashion might be preferable.

Also, the choice of the different proposed features during detection indicates

that the success of the systems lies mostly on the choice of classifier.

In Chapter 5 two main systems were proposed for the pitch extraction of

whistles and bursts. The first system could be considered as an add-on on the

detection schemes since it assumes that all calls have already been detected and

segmented. Based on hierarchically driven HMM’s, each call is first classified

as a whistle or burst according to its frequency range and then the pitch is

extracted with the use of HMM’s. The proposed algorithm is compared to

YIN and get f0 where its superior performance is highlighted.
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The second system is based on a probabilistic framework and deals with the

detection and extraction of whistle vocalizations. based on sinewave modeling

and learned statistics directly from the training data, this system offers a first

approach on handling the most difficult problem in the field, whistle overlaps.

At this point it is worth mentioning that several other approaches were

considered for the analysis of dolphins’ social vocalizations. Given that these

sounds are produced through non-linear systems, one would argue that the

straight forward linear approach widely used throughout this work might not

be suitable. As presented in Chapter 3, the tool that I used for visualization

and analysis of these calls is the spectrogram. The spectrogram is known for

its inherent trade-off of frequency and time resolution. In order to explore

a different non-linear transform that might provide better analysis, the Fan-

Chirp [16] transform was used. The Fan-Chirp is a wavelet, whose mother

function is a frequency modulated signal that can be adjusted to match desired

signals. Although, the use of a wavelet eliminated the resolution issues, it

showed a preference to specific signals based on the tuning of the modulation

index. Clearly, in order to be able to take advantage of wavelets for dolphin

calls there needs to be a predetermined set of whistles and bursts that need

to be identified.

Also, non-linear features such as the fractal dimension, FD were explored in

order to try and discriminate between whistles and bursts. Fractal dimension

is based on the Minkowski-Bouligand dimension [49] and basically measures

the fractal nature of a signal. Basically, for a signal to be considered as a fractal

it’s fractal dimension needs to be higher than it’s topological dimension e.g.
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for an audio signal to be a fractal it’s FD needs to be above 1. The fractal

dimension was measured for all 100 whistles and bursts comprising the training

data. In the case of whistles the average FD is 1.45 and in the case of bursts

the average FD is 1.54. Although both signals can be considered to belong in

the fractal set, this feature is not enough to provide discriminatory information

between the two types of calls.

Moreover, given the nature of these signals and their highly modulated char-

acter, I experimented with a non-linear demodulation algorithm as presented

by Maragos [31] and known as Demodulation Energy Separation Algorithm

(DESA). Based on the Teager-Kaiser [27] energy operator this methodology

is able to extract the instantaneous frequency and amplitude of a signal. Ba-

sically, the energy operator can be viewed as a quadratic filter that is used

to analyze the signal. Although, this method provides crucial information on

whistles and bursts and is able to discriminate between the two on simple

cases, problems arise when overlaps occur between the different calls or when

there are multiple interferences from clicks. Because of the drawback, the more

mainstream tools and machine learning algorithms were prefered in order to

tackle the problems of detection and pitch extraction.

Overall, in this work, a broad understanding of how to manipulate and ex-

tract useful information from dolphin recordings has been presented. In order

to be able to further analyze dolphin vocalizations there is a tremendous need

for an automatic detector and pitch extractor for the desired calls. A variety

of methodologies has been provided for both tasks giving insights on these

signals. Future work might include the exploration of several other call spe-
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cific features i.e. fractal dimension, harmonic mean etc.and more generalized

classifiers such as Bayesian networks that will allow the exploration of different

types of communication calls. One of the most important things when dealing

with dolphin recordings is the need for the existence of standardized species

specific data with behavioral labels that researchers can access and use for

experimentation purposes. It is my belief that with time and further explo-

ration we will be able to uncover the reasons behind dolphins’ communication

vocalizations.
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