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Comparative analysis of nonhuman animal communication systems and their complexity, particularly in
comparison to human language, has been generally hampered by both a lack of sufficiently extensive
data sets and appropriate analytic tools. Information theory measures provide an important quantitative
tool for examining and comparing communication systems across species. In this paper we use the
original application of information theory, that of statistical examination of a communication system’s
structure and organization. As an example of the utility of information theory to the analysis of animal
communication systems, we applied a series of information theory statistics to a statistically categorized
set of bottlenose dolphin, Tursiops truncatus, whistle vocalizations. First, we use the first-order entropic
relation in a Zipf-type diagram (Zipf 1949, Human Behavior and the Principle of Least Effort) to illustrate the
application of temporal statistics as comparative indicators of repertoire complexity, and as possible
predictive indicators of acquisition/learning in animal vocal repertoires. Second, we illustrate the need for
more extensive temporal data sets when examining the higher entropic orders, indicative of higher levels
of internal informational structure, of such vocalizations, which could begin to allow the statistical
reconstruction of repertoire organization. Third, we propose using ‘communication capacity’ as a
measure of the degree of temporal structure and complexity of statistical correlation, represented by the
values of entropic order, as an objective tool for interspecies comparison of communication complexity.
In doing so, we introduce a new comparative measure, the slope of Shannon entropies, and illustrate how
it potentially can be used to compare the organizational complexity of vocal repertoires across a diversity
of species. Finally, we illustrate the nature and predictive application of these higher-order entropies
using a preliminary sample of dolphin whistle vocalizations. The purpose of this preliminary report is to
re-examine the original application of information theory to the field of animal communication,
illustrate its potential utility as a comparative tool for examining the internal informational structure of
animal vocal repertoires and their development, and discuss its relationship to behavioural ecology and
evolutionary theory.
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Quantitative tools for comparing animal communication systems:

The comparative analysis of animal communication sys-
tems and their complexity, particularly in comparison to
human language, has been generally limited by both a
lack of sufficiently extensive data sets and appropriate
analytic tools. Information theory measures, in their
original application (Shannon 1948; Shannon & Weaver
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1949), provide important quantitative tools for examin-
ing and comparing communication systems across
species. These measures represent statistical information
that is imperative for analysing communicative reper-
toires objectively, and for elucidating repertoires of
unknown structure or function (Pea 1979). This statistical
characterization is independent of the kind of communi-
cation system of interest and thus allows a comparative
examination of the complexity of vocal repertoires and
their organization, both with respect to human language
(Zipf 1949, 1968) and, more generally, in relationship to
behavioural ecology and evolutionary theory.
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Information theory has been applied to animal com-
munication by various authors since Shannon & Weaver
(1949) established the field. Many applications have been
conducted on the communicative interactions among
individuals, within or between species, including aggres-
sive displays of hermit crabs (Hazlett & Bossert 1965),
aggressive communication in shrimp (Dingle 1969),
intermale grasshopper communication (Steinberg &
Conant 1974), dragonfly larvae communication (Rowe &
Harvey 1985), and Altmann’s (1965) study of macaque
social communication. Preston (1978) used information
theory in a unique analysis of the communication in a
symbiotic relationship between a vertebrate, the goby,
and two species of shrimp. Less frequent applications of
information theory have been conducted on some struc-
tural aspects of communication systems including the
waggle dance of honeybees (Haldane & Spurway 1954),
chemical paths of fire ants (Wilson 1962), Chatfield &
Lemon’s (1970) brief application to the structure of
songs in cardinals and wood pewees, and the sequential
analysis of chickadee ‘notes’ (Hailman et al. 1985, 1987;
Hailman & Ficken 1986; Ficken et al. 1994; Hailman
1994). Information theory has also been applied to
specialized communication topics such a Beecher’s
analyses of vocal recognition in Mexican free-tailed bats,
Tadarida brasiliensis mexicana (Beecher 1989).

All of these studies have brought important insights
into the study of animal communication. However, we
suggest that information theory can be applied to animal
communication systems at the level for which the tool
was originally designed: to examine mathematically the
channel capacity and the structure and organization of
communication systems. Shannon originally illustrated
the concepts in information theory using statistically
significant samples of human language. As we will
demonstrate in this paper, large sample size is essential
for the information theoretic approach to realize the full
potential of its analytical capabilities. Most past studies
have used information theory for modelling small
samples of contextually restricted behavioural inter-
actions between individuals within or between species.
Due to limitations in sample size, few investigators
have been able to apply these measures to sequential
signalling by individuals as a means for deciphering the
structure and organization of a species’ communication
system (but see early work by Chatfield & Lemon 1970).
Continued advances in bioacoustic technology are
beginning to permit the efficient analysis and categoriz-
ation of large samples of acoustic data to be used in such
sequential statistical analyses.

Furthermore, most past research has focused almost
exclusively on the use of Shannon’s measure for informa-
tion (Shannon & Weaver 1949). Shannon’s entropies
examine the information content at increasingly com-
plex levels of signalling organization. As an example from
human speech, information content can be evaluated at
the phonemic or letter level, the word level, and various
levels of sentence organization. Fach level can be repre-
sented by a series of increasing orders (e.g. zero, first,
second, etc.) of entropy. Entropy is defined here as a
measure of the informational degree of organization and

is not directly related to the thermodynamic property
used in physics (although they do possess a common
mathematical ancestor).

Few investigators of animal behaviour have examined
the use of first-order entropic analysis known as Zipf’s law
or statistic (Zipf 1949; see Hailman et al. 1985, 1987;
Hailman & Ficken 1986; Ficken et al. 1994; Hailman
1994). Zipf's statistic examines a first-order entropic rela-
tion and evaluates the signal composition or ‘structure’ of
a repertoire by examining the frequency of use of signals
in relationship to their ranks (i.e. first, second, third
versus most-to-least frequent). It measures the potential
capacity for information transfer at the repertoire level
by examining the ‘optimal’ amount of diversity and
redundancy necessary for communication transfer across
a ‘noisy’ channel (i.e. all complex audio signals will
require some redundancy). In comparison, Shannon
entropies were originally developed to measure channel
capacity, and his first-order entropy is conceptually
and mathematically related to Zipf’s statistic. However,
Shannon’s first-order entropy differs from Zipf’s statistic
in so far as Zipf did not specifically recognize language as
a ‘noisy’ channel, as Shannon did. Shannon higher-order
entropies (second order, third order, and so on) can also
provide a more complex examination of communicative
repertoires. They can be used to examine the organiz-
ational complexity of signal repertoires, for example, at
the level of two-signal sequences, three-signal sequences,
and so forth. Higher-order entropies provide a quantita-
tive measure of the information content at each succes-
sive level and how many levels of informational
complexity the communication system contains.

In this paper we return to the original application
of information theory, that of statistical (objective)
examination of a communication system’s structure and
organization. As an example of the utility of information
theory to the analysis of animal communication systems,
we applied a series of information theory statistics to a set
of dolphin whistle vocalizations that were categorized
quantitatively using the Contour Similarity Technique
(McCowan 1995; McCowan & Reiss 1995a, b). Bottlenose
dolphins, Tursiops truncatus, were chosen as our first
animal model because dolphins produce a large and
complex whistle repertoire (Dreher 1961, 1966; Dreher &
Evans 1964; Burdin et al. 1975; Kaznadzei et al. 1976;
Ding et al. 1995; McCowan & Reiss 1995a, b; Moore &
Ridgway 1995). Little is known about dolphin whistle
repertoire organization and, as a result, the communica-
tive function of dolphin whistles. Whistles and vocal
communication, in general, are probably essential to the
dolphin’s fission—fusion social structure and for negotiat-
ing complex social relationships (Wells et al. 1987;
Connor et al. 1992).

First, we apply Zipf’'s statistic (Zipf 1949, 1968) to
dolphin whistle vocalizations to illustrate its application
as a comparative indicator of the structural complexity of
vocal repertoires, as well as a potential indicator of
acquisition/learning in animal vocal repertoires. We then
demonstrate the need for more extensive data sets when
examining Shannon’s higher-order entropies (Shannon
1948; Shannon & Weaver 1949) of such vocalizations,



which can begin to allow the statistical reconstruction of
repertoire organization. We introduce a new comparative
measure, the slope of Shannon entropies, and suggest
how it can potentially be used to compare the organiz-
ational complexity of vocal repertoires across a diversity
of species. Finally, we illustrate the nature and predictive
application of these higher-order entropies with our
sample of dolphin whistle vocalizations (not yet suffi-
cient for a full analysis of the higher-order entropies).
Again, we emphasize the need for very large data sets that
conserve the temporal sequences of signals as well as
objective classification of such signals if these methods
are to be applied correctly.

In summary, the purpose of this preliminary report is to
re-examine the original application of information theory
(i.e. channel capacity or complexity) and apply it to the
field of animal communication (also see Steinberg 1977;
Beecher 1989; Dawkins 19995), illustrate its potential
utility as a comparative tool for examining the informa-
tional structure and organization of animal vocal reper-
toires and their development, and discuss its potential
predictive application in light of behavioural ecology and
evolutionary theory.

THEORY

Definitions of Information

Serious confusion in the nomenclature surrounding
information theory has prompted us first to define our
terms clearly. Most important is the definition of ‘infor-
mation’, which can be defined in three seemingly con-
flicting ways. Perhaps most commonly, information can
be defined in the ‘contextual’ sense, that is, what infor-
mation is conveyed during a communicative exchange
(i.e. meaning). Information also can be defined in the
‘communicative’ sense, that is, how much information
can be transferred during a communicative exchange.
Finally, information can be defined in the ‘statistical’
sense (as Shannon defined it), as the degree to which data
are noncompressible (e.g. the word ‘meet’ can be com-
pressed by ‘e’ x 2; the word ‘meat’, however, cannot be
compressed without losing information. Thus, there is
more statistical or entropic information in ‘meat’ than
‘meet’).

These three definitions of information can result in
very different measures of information. For example, one
needs to know nothing about ‘contextual information’ to
calculate ‘communicative information’ or ‘statistical
information’. Similarly, ‘communicative information’
differs from ‘statistical information’. Statistical informa-
tion is maximized when sequences of signals are truly
random (or maximally diverse) in nature. Communica-
tive information is maximized when a balance is reached
between highly redundant or highly diverse signalling; a
certain amount of redundancy is necessary for transmis-
sion in a ‘noisy’ communication channel. Therefore, to
avoid any confusion, we define ‘information’ in the
present study using Shannon'’s original use in informa-
tion theory, that of statistical information, also known as
entropy. Information in the ‘communicative’ sense will
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be termed ‘communication capacity’ in the present study
(i.e. complexity of the signalling system). Contextual
information is not discussed in this study but we wish
to stress that examining measures of communication
capacity can lead to insights in contextual information.

Zipf's Law and the Principle of Least Effort

Zipf’s law or the distribution of the logarithm (base 10)
of the signal rank (i.e. first, second, third ... most used)
plotted against the logarithm of actual frequency of
occurrence (i.e. percentage repetition of that signal) for
human languages (Zipf 1949, 1968) has been invoked for
a number of applications, including recently DNA
sequences (Mantegna et al. 1994), with varying inter-
pretations and reliability (Flam 1994; Damashek 1995;
Bonhoeffer et al. 1996; Israeloff et al. 1996; Voss 1996).
Such a function nevertheless remains a valid indication of
both the nonrandomness of a system as well as the
potential capacity for communication transfer of such a
system. Zipf’s law is based on what Zipf (1949) termed the
‘Principle of Least Effort’ in which he proposes that
human speech and language are structured optimally as a
result of two opposing forces: unification and diversifica-
tion. To summarize his argument using a modern
interpretation, if a repertoire is too unified or repetitious,
a message is represented by only a few signals and,
therefore, less communication complexity is conveyed
(remembering that we are reserving the word ‘informa-
tion’ for Shannon entropy measures). If a repertoire is too
diverse or randomly distributed, the same message can be
over-represented by a multitude of signals and, again, less
communication is conveyed. These two opposing forces
result in a ‘balance’ between unification and diversifica-
tion. Zipf’s Principle of Least Effort can be statistically
represented by regressing the log of the rank of signals
within a repertoire on the log of their actual frequency
of occurrence. Balance is indicated by a regression
coefficient (or slope) of — 1.00. Zipf subsequently showed
that a multitude of diverse human languages (e.g. English
words, Nootka varimorphs and morphemes, Plains Cree
holophrases, Dakota words, German stem forms, Chinese
characters, and Gothic root morphemes, Gothic words,
Aelfric’s Old English morphemes and words, Notker’s Old
High German, Pennsylvania Dutch, English writers from
Old English to Present, Old and Middle High German and
Yiddish sources, Norwegian writings), whether letters,
written words, phonemes, or spoken words, followed this
principle and the predicted slope of approximately
—1.00. This balance optimizes the amount of potential
communication that can be carried through a channel
from speaker to receiver. The structure of the system is
neither too repetitive (the extreme would be one signal
for all messages) or too diverse (the extreme would be a
new signal for each message and, in practice, a randomly
distributed repertoire would represent the highest degree
of diversity). Thus, a system exhibiting such balance can
be said to have a high potential capacity for transferring
communication (which we term ‘high potential com-
munication capacity’). It only has the ‘potential’ to carry
a high degree of communication, though, because Zipf’s
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statistic only examines the structural composition of a
repertoire, not how that composition is internally organ-
ized within the repertoire (i.e. higher-order entropies).
However, some vocal repertoires may have a higher
‘potential’ to carry a substantial degree of communication
than others. Therefore, Zipf’s statistic can be used as
one comparative measure of the structural complexity
of repertoires (another comparative measure might be
repertoire diversity, a zero-order entropic relation: see
below).

Shannon’s Higher-order Entropies and
Information Content

The Zipf’s statistic can measure and compare the
structural complexity of vocal repertoires, but it has
limitations in evaluating the actual relationship between
signals in a dynamic repertoire. For instance, Zipf’s
statistic cannot examine how signals interact or are
internally organized within a communicative repertoire.
We need to use higher-order entropic measures to
measure signal system internal dynamics, for example, to
determine the signal sequences within a repertoire. Zipf’s
statistic and Shannon entropic orders, however, are
mathematically related. The Zipf relation is essentially an
examination of the first-order information entropy,
which was first defined by Shannon (1948; Shannon &
Weaver 1949).

The zero-order entropy, H,, is the number of bits of
information required to represent a particular sample of
different events, that is:

Hy=log, N,

where N is the number of different events (i.e. number of
letters, words, phonemes, notes, whistles, etc.). Base 2 is
used because the ‘bit’ can be considered the most familiar
logarithmic form for an information measure (any other
base would do just as well and base 10 is used for the
Zipt's statistic).

The first-order entropy takes into account the different
probability of occurrence of each event as well, giving:

Hq(A)= —p(A;) log, p(A;) —
P(Ay) log, p(Ay) ... — p(Ay) log, p(Ay),

where p(A,) is the probability (i.e. frequency of
occurrence) of event A,, while p(A,) is the frequency of
occurrence of event A,, and so on. An English letter
analogy is the frequency of occurrence of the letter ‘a’ in
a text, then the letter ‘b’, and so on. The uncertainties of
events AA, ... Ay add, while the probabilities multiply,
so that a logarithmic function is appropriate to represent
the uncertainties of each event (the logarithmic function
allows products to add). Because, for H,, the probability
of each event p(A,)+p(4,)+. . .+p(Ay) is independent, the
product of the log of the probability with the probability
for each event is the uncertainty of the first-order
entropy. The entropy therefore measures information
content and varies most quickly for low-likelihood events
(for example, being informed that a word ends in the

letter ‘e’ does not tell one as much as being informed that
it begins with the lesser-used letter ‘q’). Because prob-
abilities are less than unity, their logarithms are always
negative, but informational entropies are positive so that
we have the final first-order entropic form of:

N
H,= Z _P(Aj) log, p(4;)
i=1

The second-order entropy introduces conditional prob-
abilities into the structure of the stream of events being
studied (words, letters, phonemes, musical notes, or, in
our present context, dolphin whistles). An English letter
example would be the probability that the letter ‘u’
follows the letter ‘q’, which is very high, while the
probability that the letter ‘z’ follows the letter ‘x’ would
be very low. Thus the second-order entropy for events B,
through By, given that the events A, through Ay have
occurred, can be defined (after Yaglom & Yaglom 1983)
as:

H, (AB)=—p(A,B,) log, (A,B,) —

p(A,B;) log, (AB;) —. .. p(A,By) log, (A;By)
—p(A;B,) 1og, (A,B,) —

P(A;B;) 108, (AyB;) — ... — p(A;By) log;, (A,By)

— p(AxB,) log, (AxBy) —
P(AxB,) 108, (AxB,) — . . . — p(AnBy) 108, (AxBy)

Because here we are comparing the internal structure of
events with each other, there are the same number of N
events for both first occurrences of events A and second
occurrences of events B (for an alphabetic letter compari-
son, for example, A;B; stands for the probability that the
first letter of the alphabet will follow itself, A,B, that the
second letter of the alphabet will follow the first, and AsB;,
that the tenth letter will follow the fifth, etc.).

Similarly, the third-order entropy of an event includes
the conditional probability given the two preceding
events, and therefore is defined by the expression:

H3(ABC)=H,(AB)+H ,5(C)

where H,5(C) is the entropy of event C given that events
A and B have occurred (similar to the equation for the
second-order entropy, and so on for the higher-order
entropies; see Yaglom & Yaglom 1983).

To define these quantitative measures with respect to
the analysis of animal vocal communication, we provide
the following summary.

(1) Zero-order entropy measures repertoire diversity.

(2) First-order entropy begins to measure simple
repertoire internal organizational structure.

(3) Higher-order entropies (second order, third order,
etc.) measure the communication system com-
plexity by examining how signals interact within
a repertoire at the two-signal sequence level, the
three-signal sequence level, and so forth.

Therefore, as higher-order entropies drop signifi-
cantly in value from one entropic order to the next, less



statistical information (entropy) and more organizational
complexity is present at this order of entropy in the
communication system (we note, however, that the com-
munication system will also begin to lose complexity if it
becomes too redundant). If one plots the slope of the
entropic orders, a higher negative slope would indicate
less statistical information but increasing importance of
sequential organization (and thus higher communication
capacity) at increasing entropic orders. For comparison, a
truly random sequential system would show a slope of
zero and would contain the most statistical information
but less communication complexity. Thus, entropic slope
can provide a measure of organizational complexity that
can be used to compare the importance of sequential
order in the communication systems of different species.
Similarly, a comparison of slopes across different age
groups within species, and the changes in the slopes
from infancy to adulthood across species can provide
a comparative measure of the developmental process
underlying repertoire organization.

METHODS
Dolphin Whistle Data Sets

We categorized infant and adult whistle data sets
independently into whistle types using a quantitative
technique termed the Contour Similarity Technique
which is based on k-means cluster analysis (McCowan
1995). We borrowed the infant data from a subset of
infant data from McCowan & Reiss (1995b). We also
borrowed a subset of the adult data shown from
McCowan & Reiss (1995a). Detailed methods for record-
ing and analysing the dolphin whistles can be found in
McCowan & Reiss (1995a,b) and McCowan (1995).
These data sets include individually identified whistles
from four male infants (<1 month old: N=23 whistle
types using 53 classified whistles; 2-8 months old: N=73
whistle types using 424 classified whistles; 9-12 months
old: N=60 whistle types using 293 classified whistles) and
eight adults (3 males, 5 females; N=102 whistle types
using 600 classified whistles) from two different captive
social groups of dolphins from Marine World Africa U.S.A
in Vallejo, California. We excluded whistle type 1, an
apparent ‘infant cry’ vocalization (McCowan & Reiss
1995a, 1997), from these analyses because infant cry was
not included in the human infant data set for these
analyses (Zipf 1949, 1968). It is important to note that
these whistle data sets were statistically, not experimen-
tally, categorized. Categorical perception and categoriz-
ation experiments are necessary to confirm or modify our
statistical whistle categories (for a full discussion of this
issue see McCowan & Reiss 1995a,b). For whistle
sequences, we included only individually identified
whistles that occurred more than once in the data set and
that also occurred within a sequence (N=27 whistle types
from 147 sequences of two to nine whistles in length
using 493 classified whistles from the adult individuals
only). A whistle sequence was defined by an interse-
quence interval of 1600 ms. Typical interwhistle interval
within a sequence was 300 ms.
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Zipf Relation

We analysed the whistle data sets described above
(McCowan 1995; McCowan & Reiss 1995a, b) from adults
and developing infant dolphins for each of three devel-
opmental periods by regressing the log rank of whistles
against the log of their actual frequency of occurrence, as
conducted by Zipf (1949, 1968) for human languages. We
compared the slopes generated from regression to those
reported for human adults (Zipf 1949, 1968; Ridley &
Gonzales 1994), human infants of 22 months of age
(youngest age for which frequency of word usage could be
obtained; Zipf 1949, 1968), and a randomly generated
data set (10000 randomly generated numbers of 102
types, a number equal to the number of whistle types
found in our sample from adult dolphins).

Higher-order Entropies and Markovian Sequence
Analysis

The calculations for the entropies for English letters,
Arabic letters, Russian letters, Russian phonemes, and
octave-music can be found in Yaglom & Yaglom (1983).
We calculated the entropies for the dolphin whistles
using Uncert statistical software (developed by J. Hailman
& E. Hailman). We analysed whistle sequences from adult
dolphins using first-order Markovian chain analysis
(using the Uncert statistical program). The computer
program generated a matrix of the probability that one
whistle type immediately followed the same or a second
whistle type for each whistle type in the data set. This test
is equivalent to generating a second-order Shannon
entropy test. For example, this type of Markovian analysis
was used in Ficken et al. (1994) to analyse Mexican
chickadee, Parus atricapillus, ‘note’ sequences.

RESULTS
Zipf's Relation

Adult dolphin data (Fig. 1b, Table 1) showed a slope of
—0.95 when log rank of signal was regressed against log
frequency of occurrence indicating that the distribution
of whistles in the dolphins’ repertoire is indeed non-
random and, in fact, closely matches that found for words
in dozens of different human language samples
(slope= —1.00; Zipf's slope is shown in Fig. 1a). Infant
dolphins less than 1 month of age (Fig. 1c, Table 1)
showed a slope (—0.82) closer to that of our randomly
generated data (—0.087; theoretically a slope of zero;
Fig. 1a, Table 1) than to that found for adult dolphins
(—0.95). This is strikingly similar to the Zipf slopes found
for human infants of 22 months (—0.82) and human
adults (—1.00). During months 2-8 (Fig. 1d, Table 1),
infants showed a higher slope (— 1.07) than even adult
dolphins, which also differed considerably from the
slope generated from these same infants at less than one
month of age. This distribution suggests a less diverse (i.e.
random) and more repetitious repertoire during months
2-8 than during the first month of infancy as well as a less
diverse repertoire in comparison to adults. In months
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Figure 1. Regression of log (rank) versus log (frequency of occurrence) and lines of best fit for the whistle repertoires of adult dolphins (b) and
infant dolphins at three developmental stages (c-e). Zipf's slope of human languages (-1.00) and randomly generated data (—0.09) also are

shown (a). Slopes are shown in parentheses (also see Table 1).

Table 1. Regression summary of log (rank) on log (frequency of occurrence) for four age groups of dolphins

Age Adults <1 month 2-8 months 9-12 months
Regression coefficient -0.95 -0.82 -1.07 -0.95
Standard error 0.04 0.04 0.03 0.05
Intercept 1.70 1.04 1.87 1.52
R? 0.91 0.97 0.97 0.93
N (Whistle Types) 102 23 73 60
N (Whistles) 600 53 424 293

9-12 (Fig. le, Table 1), these infant dolphins showed a
slope of —0.95, essentially identical to that found for
adult dolphins. These developmental changes in slope
suggest that the distribution of whistles in the infant’s
repertoire becomes less random over development,
eventually matching that of adults, and these changes

also suggest that infant dolphins acquire or learn the
structure of whistle repertoires (Table 1).

Although the sample sizes of our dolphin analyses were
much smaller than those reported for human languages,
the dolphin whistles we used were adequately sampled
for the Zipf plot (i.e. for a first-order entropic statistical
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Table 2. Slopes of higher-entropic orders for various human languages, dolphin whistles and music

Entropy

Zero First Second Third
Signal system Slope R? order order order order
Russian letters -0.500 0.93 5.00 4.35 3.52 3.01
English letters -0.566 0.96 4.75 4.03 3.32 3.10
Music -0.680 0.99 3.00 2.73 2.00 NA
Arabic letters -0.797 0.96 5.00 4.21 3.77 2.49
Dolphin whistles -1.334 0.86 4.75 1.92 1.15 0.56
Russian phonemes -1.519 0.89 5.38 4.77 3.62 0.70

NA: not available.

analysis). A mean sample size of 10 times the number of
signal types has been the suggested ‘rule of thumb’ for
first-order entropy measures by some investigators (J.
Hailman & E. Hailman; Uncert program). However, a
sample size of four or five times the number of signal
types is usually adequate. Sample sizes for each age class
meet this latter criterion with the exception of the sample
from the youngest infants (<1 month of age). However,
extreme undersampling has the effect of increasing the
slope (the higher-ranking signals are over-represented in a
smaller sample), and thus the slope observed for the
youngest infants might be expected to become even
flatter if the infant data were sampled sufficiently. A
much larger data set, however, would allow us to evaluate
the reliability of our slope measures for all age categories.

In addition, ‘power law noise’, as discussed by some
authors (Flam 1994; Damashek 1995) predicts that higher
regression slopes can result from higher variance in the
data. Thus the relationship between the variance and
slope can result in a spurious coefficient (— 0.6 in an
example of random letters parsed into ‘words’ of random
length; Mandelbrot 1953). However, our data show the
opposite trend (that is, lower variance as the slope
increases). Thus, our results are conservative in the sense
that adjustments for a variance effect on the slopes would
only increase the differences in the slope found, and then
only slightly (see R* coefficients and standard errors in
Table 1).

Higher-order Entropies

Table 2 presents the values and slopes of the higher-
order entropies for English letters, Arabic letters, Russian
letters, Russian phonemes, octave-system musical notes
(Ho, was not available; Pierce 1961; Yaglom & Yaglom
1983), and our preliminary set of dolphin whistle
vocalizations (McCowan 1995; McCowan & Reiss
1995a, b, 1997). Zero-order entropies (H,) simply indicate
sample diversity, while the existence of higher-order
entropies (i.e. with H,values less than H,) indicate the
presence of additional structure in the communication
sequence (the entropy-order slope of a truly random
number distribution would be zero). As predicted, human
written languages as diverse as English, Arabic and
Russian show similar values and slopes for zero- and
higher-order entropies (Table 2). Unfortunately, the

sample shown of Russian phonemes (Yaglom & Yaglom
1983) as well as our sample of dolphin whistles
(McCowan 1995; McCowan & Reiss 1995a, b, 1997) are
presently undersampled for entropic orders of two or
more. Undersampling has the effect of lowering the
higher-order entropies (less statistical informational
structure), and thereby indicating more communication
complexity than could actually be present. As an
example, the extent to which some words follow others
(as in this written sentence) gives an artificially high
representation of their statistical occurrence when only
one sentence is considered. As more sentences are
sampled, we would see, for example, that some words
rarely follow others in a large English sample, even
though they happened to in the one sentence considered.
Therefore, the degree of complexity or slope would
decrease. When the sample is sufficiently large, the value
of the higher-order entropies is reliable (and these higher
terms become substantially less than the initial entropies;
see the equations for H, and Hj), thereby lowering the
value of the overall entropic slope. Thus, as more data are
added, one would expect the slope of Russian phonemes
to approach that of the Russian letters. The determination
of the well-sampled entropic slope of a statistically com-
plete set of dolphin whistle vocalizations remains an
intriguing near-term possibility. As we collect additional
data, we will see what the entropic slope for dolphin
whistles indicates about their organizational complexity,
that is, how much ‘communication complexity’ their
whistle communication system contains.

To determine how much additional sampling is needed
to reliably calculate higher entropic orders, we can calcu-
late how many values per cell (a cell being a combination
probability) for the second-order entropy (first-order
Markov chain) is required. The number of different
ways probable events can be combined (the binomial
equation) is:

N@r)=nl/ri(n —71)!

where r is the number of ways the samples (whistles, in
our case) are taken and n is the total number of sample
(whistle) types. In the case of second-order entropy, # is
equal to 27 and r is 2 (for second-order entropy). Thus, we
calculate: 27!/21(27 — 2)!=351. This puts our sample size
per call at approximately 1.4 samples. For third-order
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Figure 2. One set of two-whistle sequences shown as a probability tree based on a Markovian first-order (i.e. Shannon second-order entropy)
analysis. Numbers in boxes represent whistle types. Percentages and direction of arrows shown represent the probability of one whistle type
immediately following a second whistle type. A curved arrow indicates the probability that a whistle of one type immediately follows itself.
Probabilities below 0.1 are not shown. The number of whistles for each whistle type (WT) included in the diagram were: WT2=188, WT7=15,

WT162=12, WT5=7, WT108=5, WT3=5, WT137=1.

entropy, we should have: 27!/31(27 — 3)!=2,925. This
would put about 0.17 samples per cell for the 493 total
samples (whistles) in our data set. A good sample size per
cell would be 4-10 samples, but for an absolute minimum
indicative value, one should have at least one sample per
cell.

The number of different whistle types can, however,
increase if the system has not been completely sampled
(i.e. the system is still ‘open’). Thus n will increase. By
holding the number of types constant (e.g. 27) we can
estimate the sample sizes required to obtain at least one
sample per cell for different entropic orders (simply mul-
tiply by ‘10’ for 10 samples per cell). As a rough estimate,
using 27 different whistle types, we calculated the sample
sizes required assuming a fully sampled (i.e. closed) sys-
tem. For entropic orders 2, for example, a total of 351
whistles would be sufficient. However, for entropic order
7, a total of 888 030 whistles would be required to
conduct such analyses.

Markovian Sequence Analysis and Probabilities for
Shannon Entropies

We can examine one aspect of the second-order
entropy of our dolphin whistle data set in more detail,
looking at just the complexity of two-whistle sequences
(Fig. 2). Probabilities generated from the Markovian-
chain analysis give a preliminary indication of the
sequential predictability of dolphin whistles. As an
example from Fig. 2, consider whistle type 7. When this
whistle occurs within a string of whistle vocaliz-
ations generated by one dolphin, the probability that the

whistle type immediately following is: for whistle type
162, 13% of the time; whistle type 3, 13% of the time;
whistle type 2, 20% of the time; and whistle type 7, 27%
of the time. We have not calculated the probabilities of a
third whistle occurring in sequence, given that the other
two have occurred within a string of whistles, as our data
set is not yet sufficiently sampled for a reliable result.
Thus, sequences of greater than two whistles within a
string of whistles are not represented in Fig. 2. This
analysis reflects an undersampled second-order Shannon
entropy test. Further sampling of whistles from many
individuals from several different social groups would
allow us to validate this preliminary result and analyse
higher-order entropic sequences (three- and four-whistle
sequences, and so forth). This work is presently in
progress.

DISCUSSION

Zipf's Relation: Comparative Measure of
Repertoire Structural Complexity

These results suggest that Zipf's statistic can be applied
appropriately to animal vocal repertoires, and specifically
to dolphin whistle repertoires and their development.
Both the adult and infant developmental patterns in
comparison to human language and its acquisition sug-
gest that Zipf's statistic may be an important comparative
measure of repertoire complexity both across species and
as an indicator of vocal acquisition or learning of vocal
repertoire structure within a species.
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Zipf's statistic measures the potential communication
capacity of a repertoire using essentially a first-order
entropic relation. This statistic, applied to animal
communication systems, can be interpreted only on a
comparative and/or developmental basis, not unlike the
‘Encephalization Quotient’ (Jerison 1973, 1982, 1985)
used in studies comparing the potential information
processing capacity of different species (Clutton-Brock &
Harvey 1980; Macphail 1982; Connor et al. 1992;
Marino 1996). A negative regression coefficient (nega-
tive slope) approaching —1.00 for a communicative
repertoire suggests high potential for communication
capacity in that repertoire (to be confirmed with higher-
order entropic analysis), analogous to the relationship
between a high encephalization quotient and high
information processing capacity (Clutton-Brock &
Harvey 1980; Macphail 1982; Connor et al. 1992;
Marino 1996). As the regression coefficient moves away
from —1.00 (both negatively and positively), the less
the potential ‘communication’ capacity. For decreasing
negative slopes from — 1.00, towards 0.00, distributions
become more randomly organized (more diverse, less
repetitious). For increasingly steep negative slopes, they
become more singular in content (less diverse, more

repetitious). In each case, they contain less potential
‘communication’ capacity. The Zipf’s statistic can be
used to test predictions on vocal repertoire complexity
in light of behavioural ecology and evolutionary theory.
Zipf's statistic could be examined in relationship to
similarities and differences in social organization, life
history characteristics, social complexity, and other
socioecological parameters across a variety of species.
For example, we might predict that species using vocal
communication as a primary mode of social communi-
cation (e.g. forest-dwelling primates) will show a slope
closer to —1.00 for their vocal repertoires than those
species that do not use vocal communication as a pri-
mary mode of communication (e.g. savanna-dwelling
primates; see Fig. 3a). Similarly, we might predict that
infant vocal repertoires of species that learn vocally,
such as humans and dolphins (Reiss & McCowan 1993;
McCowan 1995; McCowan & Reiss 1995a, b, 1997), will
show a lower slope (a more randomly distributed reper-
toire) at early developmental stages relative to con-
specific adults than infant vocal repertoires of species
that do not learn vocally (see Fig. 3b). However, the
in-depth analysis of communication complexity lies in
an analysis of the higher-order entropies.
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Higher-order Entropies: Comparative Measure of
Repertoire Organizational Complexity

These results suggest that dolphin whistle vocalizations
contain some higher-order internal structure, enough at
least to begin to predict statistically what whistle types
might immediately follow the same or another whistle
type. A more thorough knowledge of such higher-order
entropic structures could eventually allow the reconstruc-
tion of dolphin whistle sequence structure, independent
of any additional kinds of data input (such as actions or
nonvocal signalling; such a reconstruction was first
demonstrated by Shannon in 1949 for English). In
addition, the relationship between entropic values, as
represented by the slope of such values, could provide a
new quantitative tool for comparing the organizational
complexity of repertoires across species. As Zipf's statistic
may provide an initial comparative indicator of repertoire
structural complexity and its development, the slopes
of higher-order entropies may serve as a comparative
indicator of the deeper organizational complexity of
animal vocal communication systems and its develop-
ment. For example, one might expect the entropic slope
to be, generally, more negative in species for which vocal
communication plays an important role in mediating
complex social interactions than in species for which it
does not (see Fig. 3a). Similarly, one might predict that in
species for which learning plays an important role in
vocal development, the entropic slope would become
more highly negative over development (see Fig. 3b). The
utility of these comparative measures, however, depends
upon the collection of extensive signal repertoire data-
bases from many species that conserve the temporal
integrity of signal sequences.

CONCLUSIONS AND FUTURE RESEARCH

Our analysis of dolphin whistle vocalizations using infor-
mation theory measures has yielded potentially import-
ant tools for evaluating and comparing the internal
informational structure of animal communicative
repertoires in relationship to behavioural ecology and
evolutionary theory. Yet this comparison will not be
possible without extensive research and a broader per-
spective on animal communication systems. In addition
to examining our own database, we conducted an exten-
sive review of the literature of animal vocal repertoires in
hope of including other species in this initial evaluation.
We found that the literature contained neither sufficient
information for us to assess the completeness of vocal
repertoires nor the frequency of use of different vocaliz-
ations within repertoires, including the temporal
integrity of vocalization sequences necessary for higher-
order entropic analyses. We encourage all investigators
studying animal vocal communication (and communi-
cation, in general) to collect comprehensive data that
conserve temporal information and to categorize their
data sets using objective (i.e. experimental and/or
statistical) measures. In doing so, we may begin to
quantitatively evaluate qualitatively different animal

vocal communication systems on a truly statistically
comparative scale.

Although this report delineates the potential impor-
tance of information theory measures to the study of
animal communication, further research is necessary to
confirm its utility. First, using a larger dolphin whistle
database, we need to evaluate the integrity of the higher
entropic orders in dolphin development found in this
study and their relationship to vocal learning. We also
need to investigate how our data on whistle repertoires
and development from captive dolphins compare to
those from wild dolphins. Second, we need to study
further how partially to correct mathematically for under-
sampling of a repertoire for the higher-order entropies, so
that we can still make trend predictions based on under-
sampled data. Third, we need to evaluate whether other
areas of repertoire organization and function can be
examined using these information theory measures (for
example, the correlation of frequency of signal use with
signal duration as a possible measure of energy optimiz-
ation). One might also examine components of the Zipf’s
plot for additional information relating to social group
composition (e.g. socially familiar versus unfamiliar indi-
viduals might show a flatter slope at low rank values, that
is for the most frequently used vocalizations, as in
humans; Zipf 1949, 1968). We can also experimentally
test the predictability of statistical vocal sequences and
examine the correspondence between sequences of vocal
and nonvocal behaviours in relation to their contexts.
Most importantly, we must expand the application of
these statistical measures of communicative repertoires to
a diversity of species. We may then begin to determine
how predictions of information theory measures of
animal communication fit within the comparative
frameworks of behavioural ecology and evolutionary
theory.

Acknowledgments

We thank Jon Jenkins, Neal Heather, Sheldon Fisher,
Diana Reiss and Lori Marino for their help and advice
on this project, SETI Institute and Marine World for
providing conference space, and Jack Hailman and two
anonymous referees for their helpful comments. The
research presented here was described in Animal Research
Protocol No. D9002 approved on 15 April 1990 by the
Institutional Animal Care and Use Committee of the
Marine World Foundation at Marine World Africa U.S.A.

References

Altmann, S. 1965. Sociobiology of rhesus monkeys. II: Stochastics of
social communication. Journal of Theoretical Biology, 8, 490-522.

Beecher, M. D. 1989. Signalling systems for individual recognition:
an information theory approach. Animal Behaviour, 48, 248-261.

Bonhoeffer, S., Hertz, A. V. M., Boerlijst, M. C., Nee, S., Nowak,
M. A. & May, R. M. 1996. No signs of hidden language in
noncoding DNA. Physical Review Letters, 76, 1977.

Burdin, V. I., Reznik, A. M., Skornyakov, V. M. & Chupakov, A. G.
1975. Communication signals in the black sea bottlenose dolphin.
Soviet Physics Acoustics, 20, 314-318.



Chatfield, C. & Lemon, R. 1970. Analysing sequences of
behavioural events. Journal of Theoretical Biology, 29, 427-445.
Clutton-Brock, T. H. & Harvey, P. H. 1980. Primates, brain and

ecology. Journal of Zoology, 190, 309-323.

Connor, R. C,, Smolker, R. A. & Richards, A. F. 1992. Dolphin
alliances and coalitions. In: Coalitions and Alliances in Humans and
Other Animals (Ed. by A. H. Harcourt & F. B. M. de Waal),
pp. 415-443. Oxford: Oxford University Press.

Damashek, M. 1995. Gauging similarity with n-Grams: language
independent categorization of text. Science, 267, 843-848.

Dawkins, M. S. 1995. Unravelling Animal Behaviour. New York:
J. Wiley.

Deacon, T. W. 1990. Rethinking mammalian brain evolution.
American Zoologist, 30, 629-706.

Ding, W., Wiirsig, B. & Evans, W. E. 1995. Whistles of bottlenose
dolphins: comparisons among populations. Aquatic Mammals, 21,
65-77.

Dingle, H. 1969. A statistical and information analysis of aggressive
communication in the mantis shrimp Gonodactylus bredini
Manning. Animal Behaviour, 17, 561-575.

Dreher, J. J. 1961. Linguistic considerations of porpoise sounds.
Journal of the Acoustical Society of America, 33, 1799-1800.

Dreher, J. J. 1966. Cetacean communication: small-group exper-
iment. In: Whales, Dolphins and Porpoises (Ed. by K. S. Norris),
pp. 529-543. Berkeley, California: University of California Press.

Dreher, ). ). & Evans, W. E. 1964. Cetacean communication. In:
Marine Bioacoustics. Vol. | (Ed. by W. N. Tavolga), pp. 373-399.
Oxford: Pergammon Press.

Ficken, M. S., Hailman, E. D. & Hailman, J. P. 1994. The chick-a-
dee call system of the Mexican chickadee. Condor, 96, 70-82.
Flam, F. 1994. Hints of a language in junk DNA. Science, 266, 1320.
Hailman, J. P. 1994. Constrained permutation in ‘chick-a-dee’-like
calls of the black-lored tit, Parus xanthogenys. Bioacoustics, 6,

33-50.

Hailman, J. P. & Ficken, M. S. 1986. Combinatorial animal
communication with computable syntax: ‘chick-a-dee’ calling
qualifies as ‘language’ by structural linguistics. Animal Behaviour,
34, 1899-1901.

Hailman, ). P., Ficken, M. S. & Ficken, R. W. 1985. The
‘chick-a-dee’ calls of Parus atricapillus: a recombinant system of
animal communication compared with written English. Semiotica,
56, 191-224.

Hailman, J. P., Ficken, M. S. & Ficken, R. W. 1987. Constraints on
the structure of combinatorial ‘chick-a-dee’ calls. Ethology, 75,
62-80.

Haldane, J. & Spurway, H. 1954. A statistical analysis of communi-
cation in Apis mellifera and a comparison with communication in
other animals. Insectes sociaux, 1, 247-283.

Hazlett, B. & Bossert, W. 1965. A statistical analysis of the
aggressive communications systems of some hermit crabs. Animal
Behaviour, 13, 357-373.

Israeloff, N. E., Kagalenko, M. & Chan, K. 1996. Can Zipf
distinguish language from noise in noncoding DNA? Physical
Review Letters, 76, 1976.

Jerison, H. ). 1973. Evolution of the Brain and Intelligence. New York:
Academic Press.

Jerison, H. J. 1982. The evolution of biological intelligence.
In: Handbook of Human Intelligence (Ed. by R. ]. Sternberg),
pp. 723-791. Cambridge: Cambridge University Press.

Jerison, H. J. 1985. Animal intelligence as encephalization.
Philosophical Transcripts of the Royal Society of London, Series B,
308, 21-35.

Kaznadzei, V. V., Krechi, S. A. & Khakhalkina, E. N. 1976. Types of
dolphin communication signals and their organization. Soviet
Physics Acoustics, 22, 484-488.

McCowan, B. 1995. A new quantitative technique for categorizing
whistles using simulated signals and whistles from captive

MCCOWAN ET AL.: COMPARING ANIMAL COMMUNICATION SYSTEMS 419

bottlenose dolphins (Delphinidae, Tursiops truncatus). Ethology,
100, 177-193.

McCowan, B. & Reiss, D. 1995a. Quantitative comparison
of whistle repertoires from captive adult bottlenose dolphins
(Delphinidae, Tursiops truncatus): a re-evaluation of the signature
whistle hypothesis. Ethology, 100, 194-209.

McCowan, B. & Reiss, D. 1995b. Whistle contour development in
captive-born infant bottlenose dolphins (Tursiops truncatus): role
of learning. Journal of Comparative Psychology, 109, 242-260.

McCowan, B. & Reiss, D. 1997. Vocal learning in captive bottlenose
dolphins: a comparison to humans and non-human animals. In:
Social Influences on Vocal Development (Ed. by C. T. Snowdon & M.
Hausberger), pp. 178-207. Cambridge: Cambridge University
Press.

Macphail, E. M. 1982. Brain and Intelligence. Oxford: Clarendon
Press.

Mandelbrot, B. 1953. Contribution a la theéorie mathématique des
jeux de communication. Publique L’'Institution a L’Université de
Paris, 2, 5-50.

Mantegna, R. N., Buldyrev, S. V., Goldberger, A. L., Harlin, S.,
Peng, C.-K., Simons, M. & Stanley, H. E. 1994. Linguistic features
of noncoding DNA. Physical Review Letters, 73, 3169-3172.

Marino, L. 1996. What can dolphins tell us about primate
evolution? Evolutionary Anthropology, 5, 81-85.

Moore, S. E. & Ridgway, S. H. 1995. Whistles produced by
common dolphins from the Southern California Bight. Aquatic
Mammals, 21, 55-63.

Pea, R. D. 1979. Can information theory explain early word choice?
Journal of Child Language, 6, 397-410.

Pierce, J. R. 1961. Symbols, Signals and Noise: The Nature and Process
of Communication. New York: Harper & Row.

Preston, J. 1978. Communication systems and social interactions in
a goby-shrimp symbiosis. Animal Behaviour, 26, 791-802.

Reiss, D. & McCowan, B. 1993. Spontaneous vocal mimicry and
production by bottlenose dolphins (Tursiops truncatus): evidence
for vocal learning. Journal of Comparative Psychology, 107, 301-
312.

Ridley, D. R. & Gonzales, E. A. 1994. Zipf's law extended to small
samples of adult speech. Perceptual and Motor Skills, 79, 153-154.

Rowe, G. & Harvey, I. 1985. Information content in finite
sequences: communication between dragonfly larvae. Journal of
Theoretical Biology, 116, 275-290.

Shannon, C. E. 1948. A mathematical theory of communication. Bell
System Technical Journal, 27, 379-423, 623-656.

Shannon, C. E. & Weaver, W. 1949. The Mathematical Theory of
Communication. Urbana, lllinois: University of lllinois Press.

Steinberg, J. B. 1977. Information theory as an ethological tool. In:
Quantitative Methods in the Study of Animal Behavior (Ed. by B. A.
Hazlett), pp. 47-74. New York: Academic Press.

Steinberg, ). & Conant, R. 1974. An information analysis of
the inter-male behaviour of the grasshopper Chortophaga
viridifasciata. Animal Behaviour, 22, 617-627.

Voss, R. F. 1996. Comment on ‘linguistic features of noncoding
DNA sequences’. Physical Review Letters, 76, 1978.

Wells, R. S., Scott, M. D. & Irvine, A. B. 1987. The social structure
of free-ranging bottlenose dolphins. In: Current Mammalogy (Ed.
by H. Genoways), pp. 247-305. New York: Plenum.

Wilson, E. O. 1962. Chemical communication among workers of
the fire ant Solenopsis saevissima (Fr. Smith): 2. An information
analysis of the odour trail. Animal Behaviour, 10, 148-158.

Yaglom, A. M. & Yaglom, |, M. 1983. Probability and Information.
Boston: D. Reidel.

Zipf, G. K. 1949. Human Behavior and the Principle of Least Effort.
Cambridge: Addison-Wesley Press.

Zipf, G. K. 1968. The Psycho-Biology of Language: An Introduction to
Dynamic Psychology. Cambridge: Addison-Wesley Press.



	Quantitative tools for comparing animal communication systems: information theory applied to bottlenose dolphin whistle repertoires
	
	Theory
	Definitions of Information
	Zipf†s Law and the Principle of Least Effort
	Shannon's Higher-order Entropies and Information Content

	Methods
	Dolphin Whistle Data Sets
	Zipf Relation
	Higher-order Entropies and Markovian Sequence Analysis

	Results
	Zipf†s Relation
	Figure 1
	Table 1
	Table 2
	Higher-order Entropies
	Figure 2
	Markovian Sequence Analysis and Probabilities for Shannon Entropies

	Discussion
	Zipf†s Relation: Comparative Measure of Repertoire Structural Complexity
	Figure 3
	Higher-order Entropies: Comparative Measure of Repertoire Organizational Complexity

	Conclusions and future research
	Acknowledgments
	References

