
Neural Processing Letters (2007) 26:101–119
DOI 10.1007/s11063-007-9045-x

Robust Control of Uncertain Stochastic Recurrent Neural
Networks with Time-varying Delay

Wenwu Yu · Jinde Cao

Received: 18 November 2006 / Accepted: 20 June 2007 / Published online: 26 July 2007
© Springer Science+Business Media B.V. 2007

Abstract In this paper, robust control of uncertain stochastic recurrent neural networks with
time-varying delay is considered. A novel control method is given by using the Lyapunov
functional method and linear matrix inequality (LMI) approach. Several delay-independent
and delay-dependent sufficient conditions are then further derived to ensure the global asymp-
totical stability in mean square for the uncertain stochastic recurrent neural networks, and
the estimation gains can also be obtained. Numerical examples are constructed to verify the
theoretical analysis in this paper.

Keywords Time-varying delays · Lyapunov functional · Robust control · LMI approach ·
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1 Introduction

Recently, a lot of attention has been devoted to the study of artificial neural networks due to
the fact that neural networks can be applied in signal processing, image processing, pattern
recognition and optimization problems. Some of these applications require the knowledge of
dynamical behaviors of neural networks, such as the uniqueness and asymptotical stability
of equilibrium point of a designed neural work. Therefore, the problem of stability analysis
of neural networks has been an important topic for researchers.

The desired stability properties of neural networks are customarily based on imposing
constraint conditions on the network parameters of the neural system. However, the toler-

W. Yu · J. Cao (B)
Department of Mathematics, Southeast University,
Nanjing 210096,
China
e-mail: jdcao@seu.edu.cn

W. Yu
Department of Electrical Engineering, Columbia University,
New York, NY 10027, USA
e-mails: wy2137@columbia.edu; wenwuyu@gmail.com

123
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ances of electronic components in hardware implementation employed in the design. In such
cases, it is desired that the stability properties of neural network should be affected by the
small deviations in the values of the parameters. In other words, the neural network must be
globally robust stable. Also, there are some research works [1–20] about robust stability of
the dynamical system.

In recent years, stability of stochastic delayed system [21–26] has been a focal subject
for research due to the uncertainties exist in the real system. Stochastic modelling has come
to play an important role in many branches of science and industry. A real system is usu-
ally affected by external perturbations which in many cases are of great uncertainty and
hence may be treated as random, as fluctuations from the release of neurotransmitters, and
other probabilistic causes. Therefore, it is significant and of prime importance to consider
stochastic effects to the stability property of the delayed networks.

An area of particular interest has been the automatic control [1–3,27–29] of delayed sto-
chastic systems. To the best of our knowledge, however, the control of uncertain delayed
stochastic neural network has been hardly considered yet. Also, few works have discussed
delay-dependent stability of stochastic systems with time-varying delays. Actually, control
theory for stability of uncertain delayed stochastic neural network has attracted interesting
attention.

In the literature, stability analysis for delayed systems can be classified into two catalogs
according to their dependence on the information about the size of delays, namely delay-
independent stability criterion and delay-dependent stability criterion. The delay-independent
stability is independent of the size of the delays and delay-dependent stability analysis is con-
cerned with the size of delays. In general, for small delays, delay-independent criterion is
likely to be conservative.

Up to now, most works on delayed neural networks have focused on the stability analy-
sis problem for neural networks with constant or time-varying delays. Sufficient conditions,
either delay-dependent or delay-independent, have been proposed to guarantee the asymptot-
ical or exponential stability for neural networks. However, analysis on the uncertain delayed
stochastic delayed neural networks are less investigated. Thus in this paper we consider
delay-independent and delay-dependent criteria for the uncertain delayed stochastic delayed
neural networks. Moreover, the derivative of the time varying delay can take any value. It is
a complex task while significant in the design and implementation of the neural networks.

The left parts of this paper is organized as follows: In Sect. 2, a uncertain stochastic delayed
neural network model is proposed and preliminaries for our main results is briefly outlined.
Some delay-independent (Theorem 1) and delay-dependent (Theorem 2) conditions are pre-
sented to ensure the global asymptotical stability of uncertain stochastic neural network with
time-varying delay in Sect. 3. In Sect. 4, numerical examples are constructed to show the
effectiveness of the proposed stability criteria. The conclusions are finally drawn in Sect. 5.

2 Model Formulation and Preliminaries

In this section, we will give preliminary knowledge for our main results. Recently, some
works have been focused on the stability of delayed stochastic neural networks. However,
uncertainties may exist in the real neural network, thus we consider the robust stability of
delayed stochastic neural network. In this paper, a controller is added to the uncertain delayed
stochastic neural network to ensure the global asymptotical stability of the neural network.
Some delay-independent and delay-dependent conditions are derived.
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Robust Control of Uncertain Stochastic Recurrent Neural Networks 103

In this paper, we consider the following uncertain stochastic neural network:

dx(t) = [−(C + �C)x(t) + (A + �A) f (x(t)) + (B + �B) f (x(t − τ(t)))

+u(t)]dt + σ(t, x(t), x(t − τ(t)))dω(t), (1)

namely,

dxi (t) = [−(ci + �ci )xi (t) +
n∑

j=1

(ai j + �ai j ) f j (x j (t))

+
n∑

j=1

(bi j + �bi j ) f j (x j (t − τ(t)))

+ui (t)]dt +
n∑

j=1

σi j (t, x(t), x(t − τ(t)))dω j (t), i = 1, 2, . . . , n, (2)

where n denotes the number of neurons in the network, x(t) = (x1(t), x2(t), . . . , xn(t))T ∈
R

n is the state vector associated with the neurons, f (x(t)) = ( f1(x1(t)), f2(x2(t)), . . . ,
fn(xn(t)))T ∈ R

n corresponds to the activation functions of neurons, τ(t) is the time-
varying delay, and the initial conditions are given by xi (t) = φi (t) ∈ C([−r, 0], R) with
r = maxt≥0{τ(t)} and C([−r, 0], R) denoting the set of all continuous functions from [−r, 0]
to R. Moreover, A = (ai j )n×n and B = (bi j )n×n are the known connection weight matrix and
the delayed connection weight matrix, respectively. The matrices �A,�B and �C represent
the uncertainties in the system parameters, respectively, which are possibly time-varying or
random. Moreover, u is a feedback controller.

ω(t) = (ω1(t), ω2,(t), . . . , ωn(t))T is a n dimensional Brownian motion defined on a
complete probability space (�, F, P) with a natural filtration {Ft }t≥0 generated by {ω(s) :
0 ≤ s ≤ t}, where we associate � with the canonical space generated by ω(t), and denote
F the associated σ -algebra generated by {ω(t)} with the probability measure P. Here the
white noise dωi (t) is independent of dω j (t) for mutually different i and j , and σ : R+ ×
R

n × R
n −→ R

n×n is called the noise intensity function matrix. This type of stochastic
perturbation can be regarded as a result from the occurrence of random uncertainties from
the neural network. It is assumed that the right-hand side of system (1) is continuous so as
to ensure the existence and uniqueness of the solution for every well-posed initial condition.
Our objective is to design a controller u to ensure system (1) to be globally asymptotically
stable about its equilibrium point.

To establish our main results, it is necessary to make the following assumptions:
A1: Each function fi : R → R is nondecreasing and globally Lipschitz with a constant

Fi > 0, i.e.

| fi (u) − fi (v)| ≤ Fi |u − v|∀u, v ∈ R, i = 1, 2, . . . , n, (3)

also, fi (0) = 0, i = 1, 2, . . . , n.
A2: σ : R+ × R

n × R
n −→ R

n×n is locally Lipschitz continuous and satisfies the linear
growth condition [30]. Moreover, σ satisfies

trace[σ T (t, x(t), x(t − τ(t))σ (t, x(t), x(t − τ(t))] ≤ ‖Mx(t)‖2 + ‖M1x(t − τ)‖2, (4)

where M and M1 are matrices with appropriate dimensions.
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A3:τ(t) is a bounded differential function of time t , and the following condition is satisfied:

r = max
t∈R

{τ(t)}, 0 ≤ τ̇ (t) ≤ h < 1, t ∈ R, (5)

where r and h are positive constants.
A4: The unknown matrices �C,�A and �B are norm bounded:

‖�C‖ ≤ √
ρC , ‖�A‖ ≤ √

ρA, ‖�B‖ ≤ √
ρB , (6)

where ρC , ρA and ρB are positive constants.
A5 : τ(t) is a bounded function of time t , and the following condition is satisfied:

r = max
t∈R

{τ(t)},
where r is a positive constant.

Clearly, the origin is the equilibrium point of neural network (1) without the controller. In
this paper, we try to design a controller u to control the state to converge to the origin.

Let ‖ · ‖ denote the Euclidean norm ‖ · ‖2 in the Euclidean space R
n . A symmetric matrix

A>0 means that A is a positive definite matrix, and A>B means that A − B is a positive def-
inite matrix. F = diag(F1, F2, . . . , Fn) ∈ R

n×n is a positive diagonal matrix. In addition,
I denotes the identity matrix.

In many real applications, we are interested in designing a memoryless state-feed-back
controller

u(t) = K x(t), (7)

where K ∈ R
n×n is a constant gain matrix.

For a special case where the information on the size of time-varying delay τ(t) is available,
consider a delayed feedback controller of the following form:

u(t) = K x(t) + K1x(t − τ(t)). (8)

Although a memoryless controller (7) has an advantage of easy implementation, its per-
formance can not be better than a delayed feedback controller which utilizes the available
information of the size of time-varying delay. A more general form of a delayed feedback
controller is:

u(t) = K x(t) +
∫ t

t−τ(t)
K2x(s)ds. (9)

However, the task of storing all the previous state x(·) is difficult. In this respect, the control-
ler (8) could be considered as a compromise between the performance improvement and the
implementation simplicity. In this paper, we will consider the feed back controller (7) because
of the complexity of the uncertain delayed stochastic neural network. The same results can
be extended when using the delayed feedback controller (8).

Assume that φ(t) is the initial function of (1), where φ(t) ∈ L2
F0

([−r, 0]; R
n), here

L2
F0

([−r, 0]; R
n) denotes the family of R

n-valued stochastic processes ξ(s),−r ≤ s ≤ 0

such that ξ(s) is F0-measurable and
∫ 0
−r E‖ξ(s)‖2ds < ∞. It is well known that system (1)

has a unique solution [30,31].
Also, the following definition is needed:

Definition 1 System (1) is said to be globally asymptotically stable in mean square if there
exists a controller u and for any given condition such that

lim
t−→∞ E‖x(t)‖2 −→ 0, (10)
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Robust Control of Uncertain Stochastic Recurrent Neural Networks 105

where E{·} is the mathematical expectation.
Before starting the main results, some lemmas are given in the following:

Lemma 1 [32] For any vectors x, y ∈ R
n and positive definite matrix G ∈ R

n×n, the
following matrix inequality holds:

2xT y ≤ xT Gx + yT G−1 y.

Lemma 2 (Schur complement [33]) The following linear matrix inequality (LMI)
(

Q(x) S(x)

S(x)T R(x)

)
> 0,

where Q(x) = Q(x)T , R(x) = R(x)T , is equivalent to one of the following conditions:

(i) Q(x) > 0, R(x) − S(x)T Q(x)−1S(x) > 0,
(ii) R(x) > 0, Q(x) − S(x)R(x)−1S(x)T > 0.

Lemma 3 (Jensen inequality [34]) For any constant matrix W ∈ R
m×m, W = W T , scalar

r > 0, vector function ω : [0, r ] ∈ R
m×m such that the integrations concerned are well

defined, then

r
∫ r

0
ω(s)Wω(s)ds ≥

(∫ r

0
ω(s)ds

)T

W

(∫ r

0
ω(s)ds

)
.

Lemma 4 [32] If V, W ∈ R
n×n are two matrices with property that |V | = (|vi j |n×n) ≤

W = (wi j )n×n, i.e., |vi j | ≤ wi j , then ‖V ‖2 ≤ ‖W‖2.

3 Criteria of Global Asymptotical Stability

In this section, new criteria are presented for the global asymptotical stability of the equi-
librium point of the neural network defined by (1), and thus the designed controllers are
sufficient to ensure the global asymptotical stability of the uncertain delayed stochastic neu-
ral network in the mean square. Its proof is based on a new Lyapunov functional method and
LMI approach.

In this paper, we add the memoryless state-feed-back controller (7) u = K x(t) to the
uncertain stochastic delayed neural network (1). To ensure the global asymptotical stability
in mean square, the following lemma is established.

Lemma 5 Under the assumptions A1 − A4, the equilibrium point of model (1) is globally
asymptotically stable in mean square if there are positive definite diagonal matrix D =
diag(d1, d2, . . . , dn) > 0, positive definite matrices Q = (hi j )n×n, P = (pi j )n×n, R =
(ri j )n×n, and positive constants εA, εB , εC , ρ, such that

N =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝


11 0 P A + F D P B P P P
0 
22 0 0 0 0 0

AT P + DF 0 ρAεA I + R − 2D 0 0 0 0
BT P 0 0 ρBεB I − (1 − h)R 0 0 0

P 0 0 0 −εC I 0 0
P 0 0 0 0 −εA I 0
P 0 0 0 0 0 −εB I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

(11)
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P ≤ ρ I, (12)

where


11 = −2PC + P K + K T P + ρCεC I + Q + ρMT M,
22 = ρMT
1 M1 − (1 − h)Q,

and I is the identity matrix.

Proof Consider the Lyapunov candidate

V (t) =
i=3∑

i=1

Vi (t), (13)

where

V1(t) = xT (t)Px(t), V2(t) =
∫ t

t−τ(t)
xT (s)Qx(s)ds, V3(t) =

∫ t

t−τ(t)
f T (x(s))R f (s)ds,

P = (pi j )n×n, Q = (qi j )n×n and R = (ri j )n×n are positive definite matrices.

The weak infinitesimal operator L of the stochastic process {xt = x(t + s), t ≥ 0,−r ≤
s ≤ 0} is given by [21,22]

LV1(t) = 2xT (t)P[(−C − �C + K )x(t) + (A + �A) f (x(t))

+(B + �B) f (x(t − τ(t)))]
+trace[σ T (t, x(t), x(t − τ(t))Pσ(t, x(t), x(t − τ(t))]. (14)

By Assumption A2 and (12),

trace[σ T (t, x(t), x(t − τ(t))Pσ(t, x(t), x(t − τ(t))]
≤ ρtrace[σ T (t, x(t), x(t − τ(t))σ (t, x(t), x(t − τ(t))]
= ρ[xT (t)MT Mx(t) + xT (t − τ(t))MT

1 M1x(t − τ(t))]. (15)

LV2(t) = xT (t)Qx(t) − (1 − τ̇ (t))xT (t − τ(t))Qx(t − τ(t)). (16)

LV3(t) = f T (x(t))R f (x(t)) − (1 − τ̇ (t)) f T (x(t − τ(t)))R f (x(t − τ(t))). (17)

From Assumption A1, it is obvious that

f T (x(t))DFx(t) =
n∑

i=1

fi (xi (t))di Fi xi (t) ≥
n∑

i=1

di f 2
i (xi (t))

= f T (x(t))D f (x(t)), (18)

where D = diag(d1, d2, . . . , dn) and F = diag( f1, f2, . . . , fn) are positive definite diag-
onal matrices.
From Lemma 1 and Assumption A4, we obtain

2xT (t)P�Cx(t) ≤ ε−1
C xT (t)P2x(t) + εC xT (t)�CT �Cx(t)

≤ ε−1
C xT (t)P2x(t) + ρCεC xT (t)x(t), (19)

2xT (t)P�A f (x(t)) ≤ ε−1
A xT (t)P2x(t) + εA f T (x(t))�AT �A f (x(t))

≤ ε−1
A xT (t)P2x(t) + ρAεA f T (x(t)) f (x(t)), (20)
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and

2xT (t)P�B f (x(t − τ)) ≤ ε−1
B xT (t)P2x(t) + εB f T (x(t − τ))�BT �B f (x(t − τ))

≤ ε−1
B xT (t)P2x(t) + ρBεB f T (x(t − τ)) f (x(t − τ)). (21)

Therefore, combining (14)–(21) we have

LV (t) ≤ xT (t)[−2PC+2P K+ρCεC I+Q+ρMT M]x(t)+2xT (t)(P A+F D) f (x(t))
+2xT (t)P B f (x(t − τ(t))) + xT (t − τ(t))[ρMT

1 M1 − (1 − h)Q]x(t − τ(t))
+ f T (x(t))[ρAεA I + R − 2D] f (x(t))
+ f T (x(t − τ(t)))[ρBεB I − (1 − h)R] f (x(t − τ(t)))
+(ε−1

C + ε−1
A + ε−1

B )xT (t)P2x(t)

= (
xT (t) xT (t − τ(t)) f T (x(t)) f T (x(t − τ(t)))

)
N1

⎛

⎜⎜⎝

x(t)
x(t − τ(t))

f (x(t))
f (x(t − τ(t)))

⎞

⎟⎟⎠ ,

(22)

where

N1 =

⎛

⎜⎜⎝


11 + (ε−1
C + ε−1

A + ε−1
B )P2 0 P A + F D P B

0 ρMT
1 M1 − (1 − h)Q 0 0

AT P + DF 0 ρAεA I + R − 2D 0
BT P 0 0 ρBεB I − (1 − h)R

⎞

⎟⎟⎠ .

From Lemma 2, it is easy to see that N < 0 is equivalent to N1 < 0. From It̂o formula, it
is obvious to see that

EV (t) − EV (t0) = E
∫ t

t0
LV (s)ds. (23)

From the definition of V (t) in (13), there exists positive constant λ1 such that

λ1E‖x(t)‖2 ≤ EV (t) ≤ EV (t0) + E
∫ t

t0
LV (s)ds

≤ EV (t0) + λmax E
∫ t

t0
‖x(s)‖2ds, (24)

where λmax is the maximal eigenvalue of N and it is negative.
Therefore, from (24) and the discussion in [31], we know that the equilibrium of (1) is

globally asymptotically stable in mean square. This completes the proof.
Note that if the gain matrix K is unknown, then (11) is not LMI. Next, we give a theorem

to solve this problem. It is easy to see that if K is unknown, sufficient conditions to ensure
the global asymptotical stability of uncertain delayed stochastic neural network can still be
obtained. Therefore, the gain matrix K can be attained.

Theorem 1 Under the assumptions A1−A4, the equilibrium point of model (1) is globally
asymptotically stable in mean square if there are positive definite diagonal matrix D =
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diag(d1, d2, . . . , dn) > 0, positive definite matrices Q = (hi j )n×n, P = (pi j )n×n, R =
(ri j )n×n, matrix K ′ ∈ R

n×n and positive constants εA, εB , εC , ρ, such that
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝


11 0 P A + F D P B P P P
0 
22 0 0 0 0 0

AT P + DF 0 ρAεA I + R − 2D 0 0 0 0
BT P 0 0 ρBεB I − (1 − h)R 0 0 0

P 0 0 0 −εC I 0 0
P 0 0 0 0 −εA I 0
P 0 0 0 0 0 −εB I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

(25)

P ≤ ρ I, (26)

where


11 = −2PC + K ′ + K ′T + ρCεC I + Q + ρMT M,
22 = ρMT
1 M1 − (1 − h)Q,

and I is the identity matrix. Moreover, the estimation gain K = P−1 K ′.

Proof Let K = P−1 K ′ in Lemma 5, it is obvious to see.

Corollary 1 Under the assumptions A1−A4, the equilibrium point of model (1) is globally
asymptotically stable in mean square if there are positive definite matrices Q = (hi j )n×n,

P = (pi j )n×n, R = (ri j )n×n, and positive constants εA, εB , εC , ε1, ε2, ρ, such that
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝


11 0 P A P B P P P
0 
22 0 0 0 0 0

AT P 0 ρAεA I + R − ε1 I 0 0 0 0
BT P 0 0 ρBεB I − (1 − h)R − ε2 I 0 0 0

P 0 0 0 −εC I 0 0
P 0 0 0 0 −εA I 0
P 0 0 0 0 0 −εB I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

(27)

P ≤ ρ I, (28)

where

�11 = −2PC + P K + K T P + ρCεC I + Q + ρMT M + ε1 F2, �22

= ρMT
1 M1 − (1 − h)Q + ε2 F2,

and I is the identity matrix.

Proof Instead of using (18), we use the following equalities:

0 ≤ ε1[xT (t)F2x(t) − f T (x(t)) f (x(t))], (29)

and

0 ≤ ε2[xT (t − τ(t))F2x(t − τ(t)) − f T (x(t − τ(t))) f (x(t − τ(t)))]. (30)

It is easy to obtain the condition (27) and (28), this completes the proof.
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Corollary 2 Under the assumptions A1−A4, the equilibrium point of model (1) is globally
asymptotically stable in mean square if there are positive definite matrices Q = (hi j )n×n,

P = (pi j )n×n, R = (ri j )n×n, matrix K ′ ∈ Rn×n and positive constants εA, εB , εC , ε1, ε2, ρ,
such that
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝


11 0 P A P B P P P
0 
22 0 0 0 0 0

AT P 0 ρAεA I + R − ε1 I 0 0 0 0
BT P 0 0 ρBεB I − (1 − h)R − ε2 I 0 0 0

P 0 0 0 −εC I 0 0
P 0 0 0 0 −εA I 0
P 0 0 0 0 0 −εB I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

(31)

P ≤ ρ I, (32)

where

�11 = −2PC + K ′ + K ′T + ρCεC I + Q + ρMT M + ε1 F2, �22

= ρMT
1 M1 − (1 − h)Q + ε2 F2,

and I is the identity matrix. Moreover, the estimation gain K = P−1 K ′.
Next, we give some delay-dependent criteria to ensure the global asymptotical stability

of the uncertain delayed stochastic neural network (1).

Lemma 6 Under the assumptions A1−A2 and A4−A5, the equilibrium point of model (1)
is globally asymptotically stable in mean square if there are positive definite matrices Q =
(hi j )n×n, P = (pi j )n×n, R = (ri j )n×n, H = (hi j )n×n, Ti ∈ R

n×n(i = 1, 2, 3), and positive
constants εA, εB , εC , εi (i = 1, 2, 3, 4, 5), ρ, ρ′, such that (33)–(35) are satisfied:
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11 P P A P B 0 0 0 0 P P P 0 0 0
P �22 0 0 �25 −P A −P B −P 0 0 0 P P P

AT P 0 �33 0 0 0 0 0 0 0 0 0 0 0
BT P 0 0 �44 0 0 0 0 0 0 0 0 0 0

0 �T
25 0 0 �55 0 0 0 0 0 0 0 0 0

0 −AT P 0 0 0 �66 0 0 0 0 0 0 0 0
0 −BT P 0 0 0 0 �77 0 0 0 0 0 0 0
0 −PT 0 0 0 0 0 − H

r 0 0 0 0 0 0
P 0 0 0 0 0 0 0 −εC I 0 0 0 0 0
P 0 0 0 0 0 0 0 0 −εA I 0 0 0 0
P 0 0 0 0 0 0 0 0 0 −εB I 0 0 0
0 P 0 0 0 0 0 0 0 0 0 −ε3 I 0 0
0 P 0 0 0 0 0 0 0 0 0 0 −ε4 I 0
0 P 0 0 0 0 0 0 0 0 0 0 0 −ε5 I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (33)

P ≤ ρ I, (34)

H ≤ ρ′ I, (35)
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where

�11 = −2PC + P K + K T P + ρCεC I + Q + (ρ + rρ′)MT M + rT1 + ε1 F2,

�25 = −P K + PC,

�22 = (ρ + rρ′)MT
1 M1 − (1 − h)Q + ε2 F2 − 2P,

�33 = ρAεA I + R + rT2 + rT3 − ε1 I,

�44 = ρBεB I − (1 − h)R − ε2 I, �55 = ε3ρC I − T1

r
, �66 = ε4ρA I − T2

r
,

�77 = ε5ρB I − T3

r
,

and I is the identity matrix.

Proof Consider the Lyapunov functional

V (t) =
i=7∑

i=1

Vi (t), (36)

where

V1(t) = xT (t)Px(t), V2(t) =
∫ t

t−τ(t)
xT (s)Qx(s)ds, V3(t) =

∫ t

t−τ(t)
f T (x(s))R f (s)ds,

V4(t) =
∫ 0

−r
dθ

∫ t

t+θ

xT (s)T1x(s)ds, V5(t) =
∫ 0

−r
dθ

∫ t

t+θ

f T (x(s))T2 f (x(s))ds,

V6(t) =
∫ 0

−r
dθ

∫ t

t+θ−τ(θ)

f T (x(s))T3 f (x(s))ds,

V7(t) =
∫ 0

−r
dθ

∫ t

t+θ

trace[σ T (s, x(s), x(s − τ(s))Hσ(s, x(s), x(s − τ(s))]dω(s),

where P = (pi j )n×n, Q = (qi j )n×n, R = (ri j )n×n, H = (hi j )n×n and Ti ∈ R
n×n(i =

1, 2, 3) are positive definite matrices.
Using the same inequalities as (14)–(17) and (19)–(21) together with Lemma 3, we obtain

LV4(t) = r xT (t)T1x(t) −
∫ t

t−r
xT (θ)T1x(θ)dθ

≤ r xT (t)T1x(t) −
∫ t

t−τ(t)
xT (θ)T1x(θ)dθ

≤ r xT (t)T1x(t) − 1

r

(∫ t

t−τ(t)
x(θ)dθ

)T

T1

(∫ t

t−τ(t)
x(θ)dθ

)
. (37)
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LV5(t) = r f T (x(t))T2 f (x(t)) −
∫ t

t−r
f T (x(θ))T2 f (x(θ))dθ

≤ r f T (x(t))T2 f (x(t)) −
∫ t

t−τ(t)
f T (x(θ))T2 f (x(θ))dθ

≤ r f T (x(t))T2 f (x(t))−1

r

(∫ t

t−τ(t)
f (x(θ))dθ

)T

T2

(∫ t

t−τ(t)
f (x(θ))dθ

)
. (38)

LV6(t) = r f T (x(t))T3 f (x(t)) −
∫ t

t−r
f T (x(θ − τ(θ)))T3 f (x(θ − τ(θ)))dθ

≤ r f T (x(t))T3 f (x(t)) −
∫ t

t−τ(t)
f T (x(θ − τ(θ)))T3 f (x(θ − τ(θ)))dθ

≤ r f T (x(t))T3 f (x(t)) − 1

r

(∫ t

t−τ(t)
f (x(θ − τ(θ)))dθ

)T

T3

(∫ t

t−τ(t)
f (x(θ − τ(θ)))dθ

)
. (39)

LV7(t) = rtrace[σ T (t, x(t), x(t − τ(t))Hσ(t, x(t), x(t − τ(t))]
−

∫ t

t−r
trace[σ T (s, x(s), x(s − τ(s))Hσ(s, x(s), x(s − τ(s))]dω(s)

≤ rtrace[σ T (t, x(t), x(t − τ(t))Hσ(t, x(t), x(t − τ(t))]
−

∫ t

t−τ(t)
trace[σ T (s, x(s), x(s − τ(s))Hσ(s, x(s), x(s − τ(s))]dω(s)

≤ rtrace[σ T (t, x(t), x(t − τ(t))Hσ(t, x(t), x(t − τ(t))]
−1

r

(∫ t

t−τ(t)
traceσ(s, x(s), x(s − τ(s))dω(s)

)T

H

(∫ t

t−τ(t)
traceσ(s, x(s), x(s − τ(s))dω(s)

)
. (40)

It follows from (1) that

x(t) = x(t − τ(t)) +
∫ t

t−τ(t)
ẋ(s)ds

= x(t − τ(t)) +
∫ t

t−τ(t)
[−(C + �C)x(s) + (A + �A) f (x(s))

+(B + �B) f (x(s − τ(s)))

+K x(s)]ds +
∫ t

t−τ(t)
σ (s, x(s), x(s − τ(s)))dω(s). (41)

For matrix P ∈ Rn×n , we have

2xT (t − τ(t))P[x(t) − x(t − τ(t) −
∫ t

t−τ(t)
[−(C + �C)x(s) + (A + �A) f (x(s))

+(B + �B) f (x(s − τ(s))) + K x(s)]ds

+
∫ t

t−τ(t)
σ (s, x(s), x(s − τ(s)))dω(s)] = 0. (42)
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Also, it is obvious to see that

2xT (t − τ(t))P�C
∫ t

t−τ(t)
x(s)ds

≤ ε−1
3 xT (t − τ(t))P2x(t − τ(t)) + ε3

(∫ t

t−τ(t)
x(s)ds

)T

�CT �C

(∫ t

t−τ(t)
x(s)ds

)

≤ ε−1
3 xT (t − τ(t))P2x(t − τ(t)) + ρCε3

(∫ t

t−τ(t)
x(s)ds

)T (∫ t

t−τ(t)
x(s)ds

)
, (43)

2xT (t − τ(t))P�A
∫ t

t−τ(t)
f (x(s))ds

≤ ε−1
4 xT (t − τ(t))P2x(t − τ(t)) + ε4

(∫ t

t−τ(t)
f (x(s))ds

)T

�AT �A

(∫ t

t−τ(t)
f (x(s))ds

)

≤ ε−1
4 xT (t − τ(t))P2x(t − τ(t)) + ρAε4

(∫ t

t−τ(t)
f (x(s))ds

)T

(∫ t

t−τ(t)
f (x(s))ds

)
, (44)

2xT (t − τ(t))P�B
∫ t

t−τ(t)
f (x(s − τ(s)))ds

≤ ε−1
5 xT (t − τ(t))P2x(t − τ(t)) + ε5

(∫ t

t−τ(t)
f (x(s − τ(s)))ds

)T

×�BT �B

(∫ t

t−τ(t)
f (x(s − τ(s)))ds

)

≤ ε−1
5 xT (t − τ(t))P2x(t − τ(t))

+ρBε5

(∫ t

t−τ(t)
f (x(s − τ(s)))ds

)T (∫ t

t−τ(t)
f (x(s − τ(s)))ds

)
, (45)

and

trace[σ T (t, x(t), x(t−τ(t))Hσ(t, x(t), x(t−τ(t))]
≤ ρ′trace[σ T (t, x(t), x(t−τ(t))σ (t, x(t), x(t−τ(t))]
= ρ′[xT (t)MT Mx(t)+xT (t−τ(t))MT

1 M1x(t−τ(t))]. (46)
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Therefore, combining (37)–(46) together with (14)–(17), (19)–(21) and (29)–(30)we have

LV (t) ≤ xT (t)[−2PC + P K + K T P + ρCεC I + Q + (ρ + rρ′)MT M + rT1 + ε1 F2

+
(
ε−1

C + ε−1
A + ε−1

B

)
P2]x(t) + 2xT (t)Px(t − τ(t)) + 2xT (t)P A f (x(t))

+2xT (t)P B f (x(t−τ(t))) + xT (t−τ(t))[(ρ + rρ′)MT
1 M1−(1−h)Q + ε2 F2

+
(
ε−1

3 + ε−1
4 + ε−1

5

)
P2−2P]x(t−τ(t))

+ f T (x(t))[ρAεA I + R + rT2 + rT3 − ε1 I ] f (x(t))

+ f T (x(t − τ(t)))[ρBεB I − (1 − h)R − ε2 I ] f (x(t − τ(t)))

+2xT (t − τ(t))P(C − K )

×
∫ t

t−τ(t)
x(s)ds − 2xT (t − τ(t))P A

∫ t

t−τ(t)
f (x(s))ds

−2xT (t − τ(t))P B
∫ t

t−τ(t)
f (x(s − τ(s)))ds

−2xT (t − τ(t))P
∫ t

t−τ(t)
σ (s, x(s), x(s − τ(s))dω(s)

+
(∫ t

t−τ(t)
x(s)ds

)T (
ε3ρC − T1

r

) (∫ t

t−τ(t)
x(s)ds

)

+
(∫ t

t−τ(t)
f (x(s))ds

)T (
ε4ρA − T2

r

)(∫ t

t−τ(t)
f (x(s))ds

)

+
(∫ t

t−τ(t)
f (x(s − τ(s)))ds

)T

×
(

ε5ρB − T3

r

) (∫ t

t−τ(t)
f (x(s − τ(s)))ds

)

−1

r

(∫ t

t−τ(t)
traceσ(s, x(s), x(s − τ(s))dω(s)

)T

H

×
(∫ t

t−τ(t)
traceσ(s, x(s), x(s − τ(s))dω(s)

)

=
⎛

⎜⎝ xT (t) xT (t − τ(t)) f T (x(t)) f T (x(t − τ(t)))
∫ t

t−τ(t) xT (s)ds
∫ t

t−τ(t) f T (x(s))ds

∫ t
t−τ(t) f T (x(s − τ(s)))ds

∫ t
t−τ(t) traceσ T (s, x(s), x(s − τ(s))dω(s)

)
J1

×
(

xT (t) xT (t − τ(t)) f T (x(t)) f T (x(t − τ(t)))
∫ t

t−τ(t) xT (s)ds
∫ t

t−τ(t) f T (x(s))ds

∫ t
t−τ(t) f T (x(s − τ(s)))ds

∫ t
t−τ(t) traceσ T (s, x(s), x(s − τ(s))dω(s)

)T
, (47)
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where

J1=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11 + �11 P P A P B 0 0 0 0
P �22 + �22 0 0 −P K + PC −P A −P B −P

AT P 0 �33 0 0 0 0 0
BT P 0 0 �44 0 0 0 0

0 −K T P + CT P 0 0 ε3ρC I − T1
r 0 0 0

0 −AT P 0 0 0 ε4ρA I − T2
r 0 0

0 −BT P 0 0 0 0 ε5ρB I − T3
r 0

0 −P 0 0 0 0 0 − H
r

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(48)

�11 = −2PC + P K + K T P + ρCεC I + Q + (ρ + rρ′)MT M + rT1 + ε1 F2,

�11 = (ε−1
C + ε−1

A + ε−1
B )P2, �22 = (ε−1

3 + ε−1
4 + ε−1

5 )P2,�22

= (ρ + rρ′)MT
1 M1 − (1 − h)Q + ε2 F2 − 2P,

�33 = ρAεA I + R + rT2 + rT3 − ε1 I,�44 = ρBεB I − (1 − h)R − ε2 I.

From Lemma 2, it is easy to see that the condition (33) is equivalent to J1 < 0. From (48)
and It̂o formula, the proof is completed the same as Theorem 1.

Note that if the gain matrix K is still not solved. Next, a theorem is deduced to solve the
feedback gain matrix K .

Theorem 2 Under the assumptions A1−A2 and A4−A5, the equilibrium point of model
(1) is globally asymptotically stable in mean square if there are positive definite matrices
Q = (hi j )n×n, P = (pi j )n×n, R = (ri j )n×n, H = (hi j )n×n, Ti ∈ R

n×n(i = 1, 2, 3), matrix
K ′ =∈ R

n×n, and positive constants εA, εB , εC , εi (i = 1, 2, 3, 4, 5), ρ, ρ′, such that
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11 P P A P B 0 0 0 0 P P P 0 0 0
P �22 0 0 �25 −P A −P B −P 0 0 0 P P P

AT P 0 �33 0 0 0 0 0 0 0 0 0 0 0
BT P 0 0 �44 0 0 0 0 0 0 0 0 0 0

0 �T
25 0 0 �55 0 0 0 0 0 0 0 0 0

0 −AT P 0 0 0 �66 0 0 0 0 0 0 0 0
0 −BT P 0 0 0 0 �77 0 0 0 0 0 0 0
0 −PT 0 0 0 0 0 − H

r 0 0 0 0 0 0
P 0 0 0 0 0 0 0 −εC I 0 0 0 0 0
P 0 0 0 0 0 0 0 0 −εA I 0 0 0 0
P 0 0 0 0 0 0 0 0 0 −εB I 0 0 0
0 P 0 0 0 0 0 0 0 0 0 −ε3 I 0 0
0 P 0 0 0 0 0 0 0 0 0 0 −ε4 I 0
0 P 0 0 0 0 0 0 0 0 0 0 0 −ε5 I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (49)

P ≤ ρ I, (50)

H ≤ ρ′ I, (51)

where

�11 = −2PC + K ′ + K ′T + ρCεC I + Q + (ρ + rρ′)MT M + rT1

+ ε1 F2,�25 = −K ′ + PC,

123



Robust Control of Uncertain Stochastic Recurrent Neural Networks 115

�22 = (ρ + rρ′)MT
1 M1 − (1−h)Q + ε2 F2−2P, �33 = ρAεA I + R + rT2 + rT3 − ε1 I,

�44 = ρBεB I − (1−h)R − ε2 I, �55 = ε3ρC I − T1

r
, �66

= ε4ρA I − T2

r
,�77 = ε5ρB I− T3

r
,

and I is the identity matrix. Moreover, the estimation gain K = P−1 K ′.
Note that if Assumption A3 is not satisfied, that is τ̇ (t) ≥ 1 for some t. But Assumption

A5 is satisfied, and Theorem 2 can still work. Assumption A3 is satisfied in many research
papers, however, we improved this assumption in this paper.

Remark 1 Note that if σ(t, x(t), x(t − τ(t))) = 0 and �A = �B = �C , then the stability
analysis is ordinary global asymptotical stability that has been intensively discussed. Also,
there are many research works [1–17,27–29] about robust stability of delayed system. Some
delay-dependent sufficient conditions are derived to ensure the robust stability of delayed
system. However, due to the random uncertainties in the system, we consider the robust
stability of delayed stochastic system.

Remark 2 Recently, the discussion about the delayed stochastic system [21–26] becomes a
hot topic, which are mainly about the stability analysis of linear system. However, in many
cases we want to stabilize the nonlinear system. Thus, in this paper, we study the robust con-
trol of delayed stochastic neural network. In particular, the gain matrix K is solved. Some
sufficient delay-independent (Theorem 1) and delay-dependent (Theorem 2) conditions are
derived.

Remark 3 Studies about the delayed stochastic system is mainly linear system with constant
time delay, however, we consider the nonlinear system with time-varying delay. Also, we
extend the Assumption A3 to A5, and we do not need τ̇ (t) < 1. Thus in this paper we gener-
alize the derivative of the time varying delay to any given value although most of the former
results are based on Assumption A3.

4 Numerical Example

In this section, an example is constructed to justify the Theorem 2 obtained above.
Example Consider the system (1) of a typical delayed Hopfield neural network as

follows:

dx(t) = [−(C + �C)x(t) + (A + �A) f (x(t)) + (B + �B) f (x(t − τ(t))) + u(t)]dt

+σ(t, x(t), x(t − τ(t)))dω(t),

where

C =
(

1 0
0 1

)
, A =

(
2.0 −0.1

−5.0 2.8

)
, B =

(−1.6 −0.1
−0.3 −2.5

)
, τ (t) = 1 + 0.5 sin(30t)

10
,

f (x) =
(

tanh x1

tanh x2

)
, σ (t, x(t), x(t − τ(t))) =

(
0.1‖x(t)‖ 0

0 0.1‖x(t − τ(t))‖
)

.
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Fig. 1 Trajectories of state variables x1(t) and x2(t) without controller

It is easy to see that the assumptions A1−A2 and A4−A5 are satisfied. Suppose each element
of uncertainty matrices �C,�A and �B are random in [−0.02, 0.02] every time, since the
parameters of the system (1) are perturbed by many factors every time. From Lemma 4, we
know that

‖�C‖ ≤
∥∥∥∥

(
0.02 0.02
0.02 0.02

)∥∥∥∥ = 0.04, ‖�A‖ ≤ 0.04, ‖�B‖ ≤ 0.04.

It is easy to see that ρC = ρA = ρB = 0.04.
It is obvious that F = I, h = 1.5, r = 0.15, M = M1 = 0.1I , where I is the identity

matrix. Because τ̇ (t) > 1 for some t , so we solve this problem by Theorem 2. From Theorem
2 and using LMI toolbox in Matlab, we can obtain

P =
(

7.5850 0.1315
0.1315 5.5585

)
, Q =

(
1.6664 0.1569
0.1569 0.1472

)
,

R =
(

0.6607 −0.0252
−0.0252 0.1550

)
, H =

(
65.2540 −1.5344
−1.5344 78.9859

)
,

T1 =
(

317.5086 −41.4986
−41.4986 980.8271

)
, T2 =

(
162.2870 −41.8527
−41.8527 102.3825

)
,

T3 =
(

50.8932 33.9789
33.9789 144.6886

)
,
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Fig. 2 Trajectories of state variables x1(t) and x2(t) with controller

ε1 = 74.0653, ε2 = 2.9476, ε3 = 440.6692, ε4 = 443.7623, ε5 = 446.3644,

εC = 129.2733, εA = 132.7056, εB = 8.8944, ρ = 18.0541, ρ1 = 136.9841,

K ′ =
(−116.0874 0.9174

0.9174 −181.3261

)
, K = P−1 K ′ =

(−15.3140 0.6868
0.5274 −32.6374

)
.

The trajectories of system without controller and with controller are shown in Figs. 1, 2,
respectively. It is easy to see that without controller, it is chaotic in system, but it is stable
by adding a controller. The designed controller is effective and can stabilize the delayed
stochastic system.

5 Conclusions

In this paper, we have considered robust control of uncertain stochastic recurrent neural net-
works with time-varying delay. Lyapunov functional method and LMI technique are used
to solve this problem. Several sufficient conditions have been derived to ensure the global
asymptotical stability for the delayed stochastic neural network, and the design of the feed-
back controller which is used to stabilize the system can be achieved. The obtained results
are novel since there are few works about the robust control of uncertain delayed stochastic
neural network. It is easy to apply these sufficient conditions to the real networks. Finally, a
numerical simulation is constructed to verify the theoretical results.
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