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ABSTRACT
Practical semantic concept detection problems usually have
the following challenging conditions: the amount of unla-
beled test data keeps growing and newly acquired data are
incrementally added to the collection; the domain differ-
ence between newly acquired data and the original labeled
training data is not negligible; and only very limited, or
even no, partial annotations are available over newly ac-
quired data. To accommodate these issues, we propose a
Laplacian Adaptive Context-based SVM (LAC-SVM) algo-
rithm that jointly uses four techniques to enhance classifica-
tion: cross-domain learning that adapts previous classifiers
learned from a source domain to classify new data in the
target domain; semi-supervised learning that leverages infor-
mation from unlabeled data to help training; multi-concept
learning that uses concept relations to enhance individual
concept detection; and active learning that improves the ef-
ficiency of manual annotation by actively querying users.
Specifically, LAC-SVM adaptively applies concept classifiers
and concept affinity relations computed from a source do-
main to classify data in the target domain, and at the same
time, incrementally updates the classifiers and concept re-
lations according to the target data. LAC-SVM can be
conducted without newly labeled target data or with par-
tially labeled target data, and in the second scenario the
two-dimension active learning mechanism of selecting data-
concept pairs is adopted. Experiments over three large-scale
video sets show that LAC-SVM can achieve better detec-
tion accuracy with less computation compared with several
state-of-the-art methods.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.m [Information Storage and
Retrieval]: Miscellaneous

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Rapidly increased amounts of social media data require

automatic detection of a broad range of semantic concepts
chosen to represent media content, such as objects (e.g.,
car), scenes (e.g., sunset), events (e.g., birthday), etc. In
practice, semantic concept detection problems often have the
following challenging conditions. First, the amount of unla-
beled test data usually grows and newly acquired data are
incrementally added to the collection. Second, the domain
difference is not negligible, i.e., newly acquired data have
different data distribution than the original labeled training
data. They come from different users, record different real-
world events, have changing characteristics. Finally, due
to expensive manual labeling, only very limited (sometimes
even no) annotations are available over newly acquired data.
We propose a novel solution to accommodate these challeng-
ing conditions. The underlying rationale is three-fold.

First, the problem raised by the fixed amount of labeled
training data versus the incrementally growing amount of
test data that have changing distribution is known in the
literature as cross-domain learning. The fixed amount of
labeled training data are treated as from a source domain
(also called an auxiliary domain in some previous work), and
the incrementally acquired new data are treated as from a
target domain. By considering the domain difference, several
approaches have been developed to adapt data or models
from the source domain to classify data in the target domain,
such as [5, 6, 8, 9, 18]. However, most previous cross-domain
learning methods rely on newly labeled training data in the
target domain, while in practice we may not have such data.
Therefore, we need a cross-domain learning method that can
adapt models from the source domain when there are few or
no labeled data in the target domain.

Second, with a very limited number of (or even no) la-
beled training data in the target domain, it is usually nec-
essary to solicit help from other types of information, such
as knowledge about the unlabeled target data and concept
relations. Semi-supervised learning methods [1, 4] incorpo-
rate information of the underlying data structure computed
from the unlabeled data, so that a better classifier can be
designed for classifying the test data. In addition, concept
detection tasks are usually multi-label classification prob-
lems, i.e., multiple concepts can be present simultaneously
in a single datum. Multi-concept learning methods [9, 13] ex-
ploit the semantic context, e.g., pairwise concept affinity re-
lations, to enhance classification of individual concepts. We
aim to incorporate the semi-supervised and multi-concept
learning techniques to improve detection.



Third, we have a partial labeling situation in the target
domain. In reality, users generally only annotate a few con-
cepts to a datum, which are present in the datum and are
important to describe the datum. Assume we want to detect
K concepts. Due to the burden of manual labeling, unless
they are required to do so, users normally do not provide full
annotations to the whole set of K concepts. Therefore, each
datum in our target training set is annotated to a part of the
concepts with mostly only positive labels. To cope with this
partial labeling issue and to improve the efficiency of manual
labeling, we need to actively drive users’ annotation. Active
learning methods have been developed to select the most
informative data [16], concepts [7], or data-concept pairs
[14] to query users. In our multi-label classification prob-
lem, we adopt the data-concept pair selection strategy that
can best approximate users’ partial labeling situation. We
actively select the optimal data-concept pairs to query the
user, where each data-concept pair contains a datum and a
concept that is most significant to the datum, and the user
is asked to provide a binary label to the concept for this da-
tum. Therefore, we aim to develop a cross-domain learning
method that can use the partially annotated data-concept
pairs to learn concept detectors.
In summary, we propose an algorithm, called Laplacian

Adaptive Context-based SVM (LAC-SVM), to accommodate
our needs. LAC-SVM jointly uses cross-domain learning,
semi-supervised learning, multi-concept learning, and active
learning to enhance classification in practical semantic con-
cept detection problems with the challenging conditions de-
scribed earlier. LAC-SVM adapts the previous SVM clas-
sifiers and concept relations computed from the source do-
main, while preserving the data affinity relations and con-
cept affinity relations in the target domain. It allows incre-
mental adaptation and can classify new unseen test samples.
Also, LAC-SVM can be conducted with or without the pres-
ence of new annotated data from the target domain, and can
function with partially labeled target training data.
We extensively evaluate LAC-SVM over three video sets:

the TRECVID 2007 development set [15], Kodak’s consumer
benchmark set [11], and the Columbia Consumer Video (CCV)
set [10]. We evaluate situations of adapting classifiers learned
from the TRECVID data to Kodak’s consumer data where
there is significant domain difference, as well as adapting
classifiers within the consumer domain from the CCV data
to Kodak’s data. We compare LAC-SVM with several state-
of-the-art alternatives, such as the cross-domain Adaptive
SVM (A-SVM) [18] and the semi-supervised Laplacian SVM
(LapSVM) [1]. Experiments show that LAC-SVM can achieve
better detection accuracy with less computation cost.

2. PROBLEM DEFINITION AND BRIEF RE-
VIEW OF RELATED WORK

A general cross-domain semantic concept detection prob-
lem can be described as follows. The goal is to classify K
concepts C1, . . . , CK in a target set Xnew that is partitioned
into a labeled subset XL (with size nL ≥ 0, where nL = 0
means there are no labeled target data) and an unlabeled
subset XU (with size nU >0), i.e., Xnew =XL ∪ XU . Each
data point xi∈XL is associated with a set of class labels yik,
k=1, . . . ,K, where yik=1, −1 or 0. yik=1 or −1 indicates
the presence or absence of concept Ck in xi, and yik = 0
indicates that xi is not labeled with respect to Ck. That
is, each xi ∈ XL is only partially labeled to a part of con-

cepts. In addition to Xnew, we have a source set X old, whose
data characteristics or distribution is different from that of
Xnew, i.e., Xnew and X old are from different domains. A
set of classifiers (represented by a set of parameters Θold)
have been learned using X old to detect C1, . . . , CK . Also,
a concept affinity matrix Wold has been computed to cap-
ture concept affinity relations based on X old. Our task is to
adaptively apply previous concept detectors Θold and con-
cept affinity relations Wold to classify concepts C1, . . . , CK

jointly in the target domain, as well as update both concept
detectors (into Θnew) and concept affinity relations (into
Wnew) according to Xnew. The learned Θnew and Wnew

will better classify Xnew and future unseen data from the
target domain, compared to the original Θold and Wold.

Combined SVM – Ignoring the domain difference, classi-
fiers such as SVMs can be learned over all available train-
ing samples X̃ from both the source and target domains,
X̃ =X old ∪ XL. This is the Combined SVM method. How-
ever, the influence of new data in XL is usually overshad-
owed by the large amount of data in X old.

Semi-supervised learning – One most popular branch of
semi-supervised learning is to use graph regularization [4].
A weighted undirected graph Gd=(Vd, Ed,Wd) can be gen-
erated for set Xnew, where Vd is the vertices set and each
node corresponds to a datum, Ed is the edges set, and Wd is
weights set measuring the pairwise similarities among data
points. To detect a concept Ck, under the assumption of
label smoothness over Gd, a discriminant function f is es-
timated to satisfy two conditions: the loss condition – it
should be close to given labels yik for labeled nodes xi∈XL

with yik �=0; and the regularization condition – it should
be smooth on graph Gd. Among graph-based methods, the
LapSVM algorithm [1] is considered one of the states of
the art in terms of both classification accuracy and out-
of-sample extension ability. Semi-supervised learning meth-
ods like LapSVM can be applied directly to cross-domain
learning problems by using X̃ =X old ∪ XL as the combined
training set. However, such approaches ignore the domain
difference, and the classifiers are usually biased by X old.

Cross-domain learning – Cross-domain learning leverages
information from a source domain to enhance classification
in the target domain [5, 6, 8, 9, 18]. The feature repli-
cation method [5] combines samples from X old and Xnew,
and learns generalities between the two domains by replicat-
ing the original features. The cross-domain SVM approach
[8] incorporates support vectors from the old domain and
weighted combines them with new labeled data XL to learn
target models. The Domain Transfer SVM method [6] learns
a kernel function and an SVM classifier in the target domain,
by minimizing the distance of data distribution between the
two domains as well as the classification error over combined
set X̃ =X old ∪XL. The A-SVM method [18] adapts the old
discriminant function trained from X old into a new discrimi-
nant function, by minimizing the deviation between the new
decision boundary and the old one, as well as minimizing the
classification error over newly labeled target data XL.

Most previous cross-domain approaches rely on a reason-
able sized set of newly labeled training data in the target
domain. When applied to our problems where there are
no new target training data or only partially labeled target
training data, the performance is usually still unsatisfactory.
Also, most methods have high computation costs, especially



for large-scale problems, due to the re-training of models
using data from both X old and Xnew.

Multi-concept learning – Recently, the Domain Adaptive
Semantic Diffusion (DASD) algorithm has been proposed
[9], which considers the domain-shift problem when using
concept relations. An undirected graph Gc=(Vc, Ec,Wc,old)
is defined to capture semantic concept affinity relations over
the source domain. Vc is the vertices set and each node cor-
responds to a concept, Ec is the edges set, and Wc,old is the
concept affinity matrix. DASD makes an assumption of lo-
cal smoothness over graph Gc, i.e., if two concepts have high
similarity defined in Gc, they frequently co-occur in data
samples. Based on this assumption, the discriminant func-
tions over Xnew for all concepts can be refined. The major
drawback of DASD is the lack of the out-of-sample extension
ability, i.e., the target discriminant functions are optimized
over the available target data Xnew, and the learned results
can not be easily applied to future unseen test data.

3. THE LAC-SVM ALGORITHM
3.1 No labeled target data

We first develop our algorithm when there is no new la-
beled target data available. The next subsection will de-
scribe the scenario with partially labeled target data.

3.1.1 Discriminative cost function
Similar to previous cross-domain methods such as A-SVM

[18], we want the learned new models Θnew to be similar
to the previous detectors Θold, so that we can maintain the
discriminant ability carried by Θold. Therefore, the first part
of the joint cost function that our LAC-SVM minimizes is:

minΘnew Difference(Θnew,Θold) . (1)

We use kernel-based SVMs as concept detectors due to
their effectiveness in detecting concepts for various data sets
[11, 15]. According to the Representer Theorem [17], the
discriminant function fk(x), which is learned from the source
domain of a datum x for a concept Ck, is given as:

fk(x) =
∑

xi∈Xold
µkiK(xi,x)=K(x;X old)Tuk,

whereK(x1,x2) is the kernel function of x1 and x2,K(x;X old)
is a vector composed by kernel functions of x against all data
in X old, and uk=[µk1, . . . , µknold ]T (nold is the size of X old).
Define Uold = [u1, . . . ,uK ]. The nold×K matrix Uold con-
tains all parameters learned from the source domain to gen-
erate discriminant functions for classifying K concepts. Our
goal is to learn a new nold×K matrix Unew = [ũ1, . . . , ũK ]
that is similar to Uold. That is, we define the following cost
function to compute Eqn. (1):

minUnew ||Unew −Uold||22, (2)

where || · ||2 is the Hilbert-Schmidt norm. The new discrim-
inant function of classifying x for a concept Ck in the target
domain is given by:

f̃k(x) = K(x;X old)T ũk. (3)

3.1.2 Graph regularization on data points
In order to use the large amount of unlabeled data in the

target domain to help classification, we incorporate the as-
sumption of graph smoothness over data points from the
semi-supervised learning. Let Gd=(Vd, Ed,Wd) denote the
undirected graph over Xnew in the new target domain, where
each node in the vertices set Vd corresponds to a data sam-
ple. Each entry W d

ij measures the similarity of xi and xj .
We have the following cost function:

minF̃

1

2

∑
xi,xj∈Xnew

W d
ij ||(f̃di /

√
ddi )− (f̃dj /

√
ddj )||22, (4)

where f̃di =[f̃1(xi), . . . ,f̃K(xi)]
T comprises discriminant func-

tions of xi over all K concepts, and ddi is the degree of graph
Gd over node xi. F̃=[f̃d1 , . . . , f̃

d
nU+nL ]

T contains the discrim-
inant functions of the entire target set Xnew, generated by
the parameter matrix Unew over all the K concepts, and

F̃ = K(Xnew;X old)Unew. (5)

K(Xnew;X old) is the kernel matrix of data set Xnew against
data set X old, and K(Xnew;X old) = K(X old;Xnew)T . By
substituting Eqn. (3) into Eqn. (4), we can get:

minUnew tr{F̃TLdF̃}/2. (6)

Ld=I−Dd−1/2
WdDd−1/2

is the normalized graph Laplacian.
Dd is a diagonal matrix whose entries are row sums of Wd.

3.1.3 Graph regularization on semantic concepts
In order to use the semantic context information, we adopt

the assumption of graph smoothness over semantic concepts
from the DASD multi-concept learning method, i.e., two
concepts having high similarity defined in the concept affin-
ity graph have similar concept detection scores over data
samples. Let Gc,new=(Vc,new, Ec,new,Wc,new) be the undi-
rected graph over concepts in the target domain. Each node
in the vertices set Vc,new corresponds to a concept. Each
entry W c,new

kl gives the edge weight between concepts Ck

and Cl. We have the following cost function:

min
Unew,Wc,new

tr{F̃Lc,newF̃T }/2, (7)

where Lc,new=I− (Dc,new)−1/2Wc,new(Dc,new)−1/2 is the
normalized graph Laplacian. Dc,new is diagonal whose en-
tries are row sums ofWc,new. By introducing a term W̃c,new:

W̃c,new = (Dc,new)−1/2Wc,new(Dc,new)−1/2, (8)

Equation (7) can be re-written to:

min
Unew,W̃c,new

tr{F̃(I− W̃c,new)F̃T}/2. (9)

3.1.4 LAC-SVM
We can combine all three cost functions Eqn. (2), Eqn. (6),

and Eqn. (9) into a joint cost function to minimize by our
LAC-SVM algorithm:

min
Unew,W̃c,new

QLAC−SV M= min
Unew,W̃c,new

[
||Unew−Uold||22

+
λd

2
tr{F̃TLdF̃}+ λc

2
tr{F̃(I− W̃c,new)F̃T }

]
. (10)

By optimizing QLAC−SVM we can obtain a new parameter
matrix Unew that constructs classifiers to classify all K con-
cepts, and the updated normalized concept affinity W̃c,new.
An iterative algorithm can be used to monotonically reduce
the cost by coordinate descent towards a local minimum.

Step 1: Optimization with fixed W̃c,new

When W̃c,new is fixed (i.e., Lc,new is fixed), we can learn
Unew by gradient descent as:

Unew(t) = Unew(t− 1)− αU
∂QLAC−SV M

∂Unew(t− 1)
, (11)

∂QLAC−SVM/∂Unew =

2Unew−2Uold+λdK(X old;Xnew)LdK(Xnew;X old)Unew

+λcK(X old;Xnew)K(Xnew;X old)UnewLc,new. (12)

Step 2: Optimization with fixed Unew

When Unew is fixed, Eqn. (10) reduces to:

min
W̃c,new

Q̃= min
W̃c,new

tr
{
F̃(I−W̃c,new)F̃T

}
, s.t.W̃c,new≥0. (13)



The constraint W̃c,new ≥ 0 gives a positive matrix W̃c,new,
i.e., we consider positive relations among different concepts
here. By introducing a Lagrangian multiplier ζ and taking
the derivative of Eqn. (13) with respect to W̃c,new, we have:

∂Q̃/∂W̃c,new = 0⇒ ζ = −F̃T F̃. (14)

According to the Karush-Kuhn-Tucker condition [2], for

each entry W̃ c,new
kl we have:[

F̃T F̃
]
kl
W̃ c,new

kl = 0. (15)

Define A, A+ and A− as follows:

A= F̃T F̃, A+
kl= |Akl|+(Akl/2), A−

kl= |Akl|−(Akl/2). (16)

We have the following updating formula to get W̃ c,new
kl :

W̃ c,new
kl ← W̃ c,new

kl

√
(A+

kl)/(A
−
kl) . (17)

It can be proved that the the above updating formula con-
verges to the global optimal.

The major part of computation lies in matrix multiplica-
tions in the second term of Eqn. (12), withO(max{nold, nnew}
×nnew×K) complexity if computed straightforwardly (K
is usually much smaller than nold and nnew). Due to the
sparsity of Ld, LAC-SVM can be much faster than other
alternatives that retrain SVMs (with the need to solve QP
problems) using data from both source and target domains.

It is worth mentioning that if λc=0, i.e., if we do not con-
sider the concept relations, Unew has closed form solution:

Unew=

[
I+

λd

2
K(X old;Xnew)LdK(Xnew;X old)

]−1

Uold. (18)

In such a case, the time complexity of obtaining the set of

K new target classifiers is about O(nold3).

3.2 With partially labeled target data
Here we study the scenario where we have partially la-

beled data from the target domain (either passively or ac-
tively annotated as described in Section 4). For each labeled
data xi∈XL, as discussed in Section 2, we have a set of la-
bels yik, k = 1, . . . ,K. yik = 1 (or −1) indicates that xi

is labeled as positive (or negative) to Ck, and yik = 0 in-
dicates that xi is not labeled for Ck. Intuitively, we can
combine XL and X old to retrain classifiers [5, 6, 8], which is
usually computationally intensive. Also, users may provide
annotations incrementally. Therefore, it is desirable to in-
crementally adapt Uold according to users’ new annotations
without retraining classifiers over all of the data.

The LAC-SVM algorithm described in Section 3.1 can be
naturally extended to include new labeled data as follows.
We add the labeled data XL into the set of support vectors
by assigning a set of parameters unew

i = [µnew
1i , . . . , µnew

Ki ]T

to each data sample xi∈XL, where:

µnew
ki =

{
ηmini(µki), yik=−1

yik maxi(µki), others
. (19)

Parameter µki is the parameter in the original Uold. A
weight η ∈ [0, 1] is added to the negative new labeled sam-
ples. Due to the unbalancing between positive and negative
samples in some real applications, i.e., negative samples sig-
nificantly outnumber positive ones for some concepts, we
may need to treat positive and negative samples unequally.
In our experiments, for instance, the negative samples are
often 10 to 100 times more than the positive ones, and we
empirically set η to be 0.05 or 0.1. A better setting of η can
also be obtained through cross-validation.

Let UL=[unew
1 , . . . ,unew

nL ]. We can get the new amended

(nold+nL)×K parameter matrix Ûold=[UoldT ,ULT
]T . To

learn the adapted (nold+nL)×K parameter matrix Unew and

the updated normalized concept affinity matrix W̃c,new, we
replace Uold with Ûold and recompute F̃ in Eqn. (5) as:

F̃ = K(Xnew;X old ∪ XL)Unew,

where K(Xnew;X old ∪XL) is the kernel matrix of set Xnew

against the combined set X old ∪ XL. Then the algorithm
described in Section 3.1 can be conducted directly.

Similar to the case without newly labeled target data, the
major part of computation comes from the matrix multipli-
cation in Eqn. (12), which is aboutO(max{(nold+nL), nnew}×
nnew×K). Since the number of newly labeled target data
nL is usually much smaller than nold, the time complexity of
LAC-SVM remains almost unchanged. In the case of λc=0,
the closed form solution of Unew in Eqn. (18) turns to:

Unew=

[
I+

λd

2
K(X old∪XL;Xnew)LdK(Xnew;X old∪XL)

]−1

Ûold.

The time complexity is aboutO((nold+nL)3), which is almost
the same with the case without newly labeled target data.

4. ACTIVE DATA-CONCEPT SELECTION
We adopt the active selection mechanism to choose a set

of informative data-concept pairs, i.e., data with associated
concepts to label, so that the entire data set from the target
domain can be better classified to various concepts. Pre-
vious two-dimension data-concept selection approaches [14]
do not consider domain change issues. They minimize the
classification risk over the entire data set, and the selection
process is often time consuming, especially for large-scale
problems. In our work, the use of data affinity and concept
affinity relations enables a simple but effective data-concept
pair selection method with small complexity.

The EigenVector Centrality (EVC) [12] over a graph is
widely used to measure the importance of graph nodes. Given
a graph G = [V, E,W], the EVC of vertices V can be de-
scribed as follows: the eigenvector s corresponding to the
largest eigenvalue of the eigenvalue problem, Ws = λs, gives
the importance of vertices. Based on this idea, we can ob-
tain the importance sd of data in X by eigendecomposition
of the data affinity matrix Wd. Also, we can obtain the
importance sc of concepts by eigendecomposition of Wc.

To determine the importance of data-concept pairs, in
addition to sd and sc, we also consider how much a data-
concept pair can benefit from the user’s annotation. Intu-
itively, if an automatic concept detector can give accurate
prediction and also, this detector is confident about its pre-
diction over a particular datum, we can trust its prediction.
From the source domain we can measure the performance
of concept classifiers, e.g., through cross-validation. Let pk
denote the accuracy of the classifier from the source domain
to detect a concept Ck. Let qki denote the confidence of a
classifier to detect Ck from a datum xi. qki can be deter-
mined by the distance δki between this datum to the decision
boundary, i.e., qki = 1/(1 + exp(−δki)). Then we can con-
struct aK×nnew matrix S where each entry Ski=(1−pk)/qki
measures how much a data-concept pair (Ck,xi) needs help
from the user’s annotation (nnew is the size of Xnew in the

target domain). Define matrix S̃ and each entry S̃ki is:
S̃ki = Ski · sdi + σ · sck, (20)

where sdi is the EVC importance of xi in sd, and sck is the
EVC importance of Ck in sc. The first term Ski ·sdi measures
the importance of a data-concept pair (Ck,xi) when we treat

different concepts equally. S̃ki gives the final importance of
the pair (Ck,xi). The value σ is a preset weight parameter



that determines how much we rely on concept relations. For
example, σ is empirically set as 0.05 in our experiments,
where the concept relations obtained from the source domain
is not very strong. We rank entries of matrix S̃ in descending
order and select the top M pairs for the user to label.

5. EXPERIMENTS
We evaluate the LAC-SVM algorithm over three data sets:

the TRECVID 2007 development set [15], Kodak’s consumer
benchmark set [11], and the CCV set [10]. First, we adap-
tively apply classifiers trained using the TRECVID data to
classify Kodak’s consumer benchmark videos, where there is
significant domain difference. Second, we adaptively apply
classifiers trained using the CCV data to classify Kodak’s
consumer videos. Since both sets are from the consumer
domain, we evaluate LAC-SVM when there is moderate do-
main change. The performance measures are Average Pre-
cision (AP, area under the uninterpolated PR curve) and
Mean AP (MAP, average of APs across various concepts).

5.1 TRECVID 2007 to Kodak’s benchmark
The TRECVID 2007 development set contains 50 hours

of videos in Dutch (mainly documentary videos). Kodak’s
consumer benchmark set contains 1358 videos from about
100 actual users. Among the 39 concepts annotated over
the TRECVID data, 5 concepts are similar to the concepts
annotated over Kodak’s benchmark data. They are animal
(animal), boat-ship (boat), crowd (crowd), people-marching
(parade), and sports (sports), where concepts in parentheses
are defined for Kodak’s set. We adaptively apply the 5 con-
cept detectors trained over the TRECVID data to Kodak’s
data. Following experiments in [3], all compared algorithms
use the RBF kernel and the global color and texture features.

We evaluate three scenarios where we do not have newly
labeled target data, have passively labeled target data, or
have actively labeled target data, in Kodak’s consumer set.
Algorithms in these scenarios are marked by“(n)”, “(p)”, and
“(a)”, respectively, e.g., “(n) LAC-SVM”, “(p) LAC-SVM”,
and “(a) LAC-SVM”. Figure 1 shows the performance com-
parison in the first scenario where we compare LAC-SVM
with the semi-supervised LapSVM [1] and the original SVM
(directly applying TRECVID-based SVMs). For LapSVM,
we train classifiers by treating the TRECVID 2007 data as
training data and Kodak’s consumer data as unlabeled data.
This is one intuitive alternative way to learn classifiers us-
ing information from both data sets without new annota-
tions. The results show that LAC-SVM can improve the
performance of original TRECVID-based SVMs by up to
49% (over parade) in terms of AP on a relative basis. The
overall MAP is improved by 8.5%. LapSVM, which treats
both data sets as from the same distribution, does not per-
form well due to the non-negligible domain difference.

Figure 2 shows the MAP comparison in the second sce-
nario with different numbers of passively annotated data
from the target domain. A set of randomly selected data
are fully annotated into all 5 concepts in Kodak’s bench-
mark set. In this case, the number of annotations Na is
counted as Na = Nd ∗ K, where Nd is the number of ran-
domly selected data and K is the total number of concepts
(K=5 in this experiment). Results given in Figure 2 are the
averaged results over 10 random runs. Figure 3 shows the re-
sults in the third scenario with different numbers of actively
annotated data from the target domain, i.e., the system ac-
tively selects the optimal data-concept pairs for the user to
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Figure 1: TRECVID to Kodak’s benchmark: nL = 0.

annotate in Kodak’s benchmark set. In this case, the num-
ber of annotations Na is the number of data-concept pairs
labeled by the user. In both scenarios, we compare LAC-
SVM with two other alternatives: Combined SVMs using
all labeled data from both the TRECVID set and Kodak’s
benchmark set (“re-SVM”), and the cross-domain A-SVM
[18] of adapting TRECVID-based SVMs to Kodak’s data.
From the figures we can see that for both passive and active
annotation, LAC-SVM can effectively improve the classifi-
cation performance by outperforming the Combined SVM.
In comparison, A-SVM can not improve detection because it
updates classifiers only based on the few labeled target data
that are often biased. The results indicate the advantage of
our method by both using information from unlabeled data
and adapting classifiers to accommodate the domain change.
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Figure 2: TRECVID to Kodak’s benchmark data: with

passively annotated new target data.
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Figure 3: TRECVID to Kodak’s benchmark data: with

actively annotated new target data.

To evaluate the incremental learning ability of LAC-SVM,
we randomly separate Kodak’s benchmark set into 3 subsets,
and adapt the TRECVID-based SVMs incrementally over
these 3 subsets. We conduct 5 random runs and report the
average performance. Within each subset, 100 data-concept
pairs are actively selected for the user to annotate (i.e., 300
annotations over Kodak’s entire set). Table 1 gives the final
MAP of the incremental LAC-SVM over Kodak’s entire set
after 3 incremental adaptations. The table also includes the
MAPs of the non-incremental LAC-SVM, Combined SVM
and A-SVM, with 300 passive or active annotations over
Kodak’s entire set. The comparison shows that the incre-
mental LAC-SVM is slightly worse than, yet comparable to,
the non-incremental LAC-SVM. Both incremental and non-
incremental LAC-SVM algorithms outperform A-SVM and



Table 1: The TRECVID set to Kodak’s benchmark data: MAP comparison of various algorithms.
(p) A-SVM (p) re-SVM (p) LAC-SVM (a) A-SVM (a) re-SVM (a) LAC-SVM incremental LAC-SVM

0.0557 0.2058 0.2767 0.0657 0.2306 0.3137 0.3023

Combined SVM. The results demonstrate the effectiveness
of LAC-SVM in accommodating the challenging practical
scenario where the newly acquired data and users’ annota-
tions are accumulated incrementally. With only 300 anno-
tated data-concept pairs (that amount to only 4% annota-
tion rate of Kodak’s data in the target domain), the “(a)
LAC-SVM” can double the MAP performance of directly
applying TRACVID-based SVMs.

5.2 CCV to Kodak’s benchmark
Here we evaluate the performance of LAC-SVM within

the consumer domain. The CCV data set contains 9317
consumer videos downloaded from the YouTube web sharing
site. These videos are annotated to 20 consumer concepts,
among which 5 concepts are the same with the concepts
annotated over Kodak’s benchmark data. They are birth-
day, beach, parade, playground, and skiing. Therefore, we
adaptively apply the 5 detectors trained over the CCV set
to Kodak’s benchmark data. Following experiments in [10],
all compared algorithms use the χ2 kernel with the Bag-of-
Features (BoF) representation. It is worth mentioning that
the actual interconceptual relations over the 5 concepts com-
puted from the CCV set are very weak, i.e., Wc,old≈0. In
such a case, we experiment on the simple version of LAC-
SVM where λc = 0 in Eqn. (10). That is, the adapted
target classifiers have closed-form solution as described in
Eqn. (18). In this situation, the active data-concept selec-
tion criterion reduces to a simple version too, i.e., σ=0 in
Eqn. (20). Figure 4 shows the MAP comparisons with differ-
ent numbers of passively or actively annotated data from the
target domain. From the figure, LAC-SVM can consistently
improve the classification performance by outperforming the
Combined SVM and A-SVM, which is similar to the conclu-
sions we get in Section 5.1.

6. CONCLUSION
We propose an LAC-SVM approach to improve concept

detection by jointly using cross-domain, semi-supervised,
multi-concept, and active learning. LAC-SVM adaptively
applies previous classifiers and concept affinity relations com-
puted from a source domain to detect concepts in the target
domain, while incrementally updating both the classifiers
and concept relations. Through iteratively conducting ac-
tive data-concept annotation and model adaptation, LAC-
SVM gives an effective framework to accommodate the chal-
lenging practical concept detection problem, where there can
be large domain changes, few or no partially labeled target
data, and incrementally acquired new data and annotations.
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