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ABSTRACT
We study semantic event classification in the consumer do-
main by incorporating cross-domain and within-domain learn-
ing. An event is defined as a set of photos and/or videos
that are taken within a common period of time, and have
similar visual appearance. Events are generated from un-
constrained consumer photo and video collections, by an
automatic content management system, e.g., an automatic
albuming system. Such consumer events have the follow-
ing characteristics: an event can contain both photos and
videos; there usually exist noisy/erroneous images resulting
from imperfect albuming; and event data taken by different
users, although from the same semantic category, can have
highly diverse visual content. To accommodate these charac-
teristics, we develop a general two-step Event-Level Feature
(ELF) learning framework that enables the use of external
data sources by cross-domain learning and the use of region-
level representations, to enhance classification. Specifically,
in the first step an elementary-level feature is used to rep-
resent images and videos. Then in the second step an ELF
is constructed on top of the elementary feature to model
each event as a feature vector. Semantic event classifiers can
be directly built based on the ELF. Various ELFs are gen-
erated from different types of elementary-level features by
using both cross-domain and within-domain learning: cross-
domain approaches use two sets of concept scores at both
image and region level that are learned from two external
data sources; within-domain approaches use low-level visual
features at both image and region level. Different types
of ELFs complement each other for improved classification.
Experiments over a large real consumer data set confirm sig-
nificant improvements, e.g., over 90% MAP gain compared
to the previous semantic event classification method.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.4.m [Information Systems Ap-

plications]: Miscellaneous; H.2.8 [Database Management]:
Database Applications
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1. INTRODUCTION
In this paper we explore the important issue of seman-

tic event classification, i.e., classifying events organized by
an automatic concept management system (e.g., an auto-
matic albuming system) into pre-defined semantic event cat-
egories. An event is defined as a set of photos and/or videos
that are taken within a common period of time, and have
similar visual appearance. Events are generated from uncon-
strained consumer photo and video collections. For example,
an event can be composed by photos and videos taken by
any user at the 2009 commencement of a university.

Event mining has been an active research area for multi-
media data analysis, and [23, 24] give some extensive sur-
veys. To accommodate unconstrained consumer photos and
videos where the lack of structured tags/descriptions usu-
ally exists, one popular approach used by automatic album-
ing systems is to generate events by chronological order and
by visual similarities [3, 15, 18]. That is, media data that
are taken at similar time (generally available as meta in-
formation) and with similar visual appearance are grouped
together as an event. Our work in this paper is built upon
such an automatic albuming system. We want to classify
the organized events into a set of pre-defined semantic cate-
gories that are interesting to consumers, such as “wedding”
and “birthday”. Fig. 1 illustrates the position of our work in
an event-based multimedia processing system.

The semantic event classification task has several charac-
teristics. First, we need to process photos and videos si-
multaneously that often both exist in real consumer collec-
tions. Second, the algorithm needs to accommodate errors
resulting from automatic albuming systems. For example,
in Fig. 2, a photo irrelevant to “parade” is mistakenly or-
ganized into a “parade” event. Finally, events taken by dif-
ferent users, although from the same semantic category, can
have quite diverse visual appearance, e.g., as shown in Fig. 2,
data from two “parade” events can look very different. In
comparison, sometimes we do not have enough event data
for robust learning, e.g., in Kodak’s consumer event collec-
tion we experiment on, there are only 11 “parade” events for
training. The small sample learning difficulty may be en-
countered. This drives us to solicit help from cross-domain
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events, which have quite different visual content. These

events are generated by an automatic albuming system,

and in the event on the right a photo irrelevant to “pa-

rade” is mistakenly organized into this event.

learning [4, 12, 27] where we can borrow information from
outside data sources such as TRECVID videos [21] or inter-
net images to enhance our semantic event classification.

In our previous work [11], we have proposed an event clas-
sification algorithm to address the first two characteristics.
An Event-Level Feature (ELF ) representation is developed
to model each event as a feature vector, based on which clas-
sifiers are directly built for semantic event classification. The
ELF representation is flexible to accommodate both photos
and videos at the same time, and is more robust to difficult
or erroneous images from automatic albuming systems com-
pared to the naive approach that uses image-level features
to get classifiers straightforwardly.

In this paper, we systematically extend our previous work
[11] to address all of the three characteristics. The contri-
butions mainly lie in two folds.

(1) A general two-step ELF learning framework is proposed
based on [11], as described in Fig. 3. In the first step each
image (a photo or a video keyframe) is treated as a set of
data points in an elementary-level feature space (e.g., a con-
cept score space at the image level or a low-level visual space
at the region level). Then in the second step a unified ELF
learning procedure similar to [11] can be used to construct
various ELFs based on different elementary features. Specif-
ically an event-level Bag-of-Features (BoF ) representation is
developed to describe each event as a feature vector, which
is directly used for classification.
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Figure 3: The general ELF learning framework. In the

first step, each image (a photo or a video keyframe) is

treated as a set of data points in an elementary-level

feature space, and then in the second step, an ELF rep-

resentation can be constructed with the learning process

similar to [11].

(2) Using the general ELF learning framework, we conduct
cross-domain and within-domain learning for semantic event
classification, as described in Fig. 4. For cross-domain learn-
ing, we adopt the PRED framework [4]. That is, a set of
models that are built based on the old data source are ap-
plied to the current data to generate predictions. Such pre-
dictions are then used as features to represent the current
data and to learn models in the current domain. In practice
our cross-domain approaches incorporate two sets of concept
detection scores from pretrained models over two different
old data sources, at both image and region level. Each set
of concept scores forms an elementary-level concept space
that is then used to construct a cross-domain ELF. These
old data sources are: the TRECVID 2005 broadcast news
video set [21] with a 374-concept LSCOM ontology [13]; and
the LHI image-parsing ground-truth data set with a 247-
concept regional ontology [25]. Within-domain approaches
use low-level visual features over entire images or image re-
gion segments as elementary-level visual features to learn
within-domain ELFs. The cross-domain and within-domain
ELFs complement and cooperate with each other to achieve
improved classification performance.

Compared with the previous method [11], this new ap-
proach has the following advantages:

(1) Both image-level and region-level features are used to
construct ELF representations, while [11] only uses the
global image-level feature. As have been shown by
many previous works [10, 26], local regional features
can complement global image-level features by captur-
ing the detailed object information, and can greatly
help classification.

(2) Both cross-domain and within-domain learning are in-
corporated at both image and region level to enhance
classification. The general ELF learning framework
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Figure 4: The overall framework of our approach. Com-

pared with the previous method, we use both cross-

domain and within-domain learning at both image and

region level to enhance classification. In total of five

ELFs are constructed which complement and cooperate

with each other to get improved classification.

enables us to incorporate large external data collec-
tions as well as large ontologies to help semantic event
classification. Large ontologies provide rich descrip-
tors to represent the media content, and large external
data collections import previously learned knowledge
to help classification.

We evaluate our algorithm over Kodak’s event data col-
lection from real consumers, which contains event data from
10 semantic categories that are defined by real users as in-
teresting. As will be shown in the experiments, significant
performance gains can be achieved by combining different
ELFs. For example, the overall MAP can be improved by
more than 90% compared to the previous semantic event
classification method.

2. RELATED WORKS
In this section we briefly review some related works about

event mining and cross-domain learning.

2.1 Event Mining
Events can be defined as real-word occurrences that unfold

over space and time. Event mining has been an active re-
search area for multimedia analysis. In [24], a 5W1H frame-
work is used to describe events, i.e., who?, when?, where?,
what?, why?, and how?. Structured descriptive information
and/or abundant metadata are required for such event de-
scription. In this work, we consider the task of classifying
unconstrained consumer photos and videos, where the mul-
timedia data usually do not have structured tags or descrip-
tions, and the only meta information available in many cases
is the taken date and time that comes along with the digi-
tal devices. To accommodate such unconstrained consumer
collections, one popular approach for automatic albuming
systems is to organize the multimedia data by chronological
order and by visual similarities [3, 15, 18]. Our work in this
paper is built upon such automatic albuming systems, i.e.,
to classify the organized events into semantic categories.

There are many previous works exploring event modeling
and classification. One major branch is to detect object ac-
tion from the continuous capture. For example, by extract-

ing and tracking foreground objects (e.g, human body, vehi-
cle, etc.), in [5, 19] action recognition is conducted based on
object motion. By grammar-based modeling of tracked ob-
ject parts, in [9, 16] known events are recognized by model-
based matching. However, object extraction and tracking
in unconstrained consumer videos is known to be extremely
difficult, and we need to deal with both photos and videos
that often exist in event data at the same time. Thus
these object-action-detection methods can not be applied.
Another important branch for event classification is to de-
tect domain-specific events inherent in video sequences, e.g.,
to detect regular patterns in sports videos corresponding
to recurrent semantic events like goal, kick, whistle [7, 8,
28]. However, due to the unconstrained content of consumer
event data, there hardly exists effective domain knowledge
or rule for our semantic event classification task.

2.2 Cross-Domain Learning
Cross-domain learning [4, 12, 27] is recently proposed as

a potent technique to port information from outside data
sources (domains) for helping analyze the current data. Such
borrowed information can be selected data points from an
outside domain or learned models over outside source data.
Assume that we have a set of data Do from an old domain
(e.g., broadcast news videos from TV programs), which has
been well studied, and now we want to examine a new data
set Dc in the current domain (e.g., consumer event data).
The model adaptation method, e.g., Adaptive SVM [27],
tries to learn a new classifier by oscillating the old classifier
built over the outside data source Do, so that the new classi-
fier is close to the original old classifier and can separate the
new current data Dc. The data adaptation approach, e.g.,
Cross-Domain SVM [12], selectively uses the most important
data from the outside domain to help build the new classi-
fier. The importance of a data point from outside source Do

is determined by: the discriminative information it carries
about separating the outside data Do; and the similarity
between this point and the data distribution of the current
domain Dc. However, both the model adaptation and data
adaptation methods have difficulties in applying to our se-
mantic event classification task, due to mainly two reasons.
First, our consumer event collection is very different from
the outside data sources (e.g., TRECVID news videos or
LHI images). The restriction of Adaptive SVM that new
classifiers in the current domain have to be close to the old
classifiers from the outside domain makes it difficult to cap-
ture the dramatic domain difference. Second, sometimes we
only have a small set of event data for training, and if we
incorporate a lot of data from the outside data source that
has very different data distribution with the current event
collection, the learned new classifier by Cross-Domain SVM
can be biased by the outside data.

To avoid the above issues, in this paper we use another
popular cross-domain learning approach, which can be de-
scribed as follows. A set of models are built based on the
old data Do and are applied to the current data Dc to gen-
erate predictions. Such predictions are then used as features
to represent Dc and to learn models in the current domain.
This approach is usually called the“PRED”method [4] since
predictions generated from Do play the role of porting infor-
mation to Dc. This PRED approach is attractive due to its
flexibility where no assumption about the underlying data
distribution is needed.



3. THE ELF LEARNING PROCESS
We begin with the terminologies, following the notations

used in [11]. Assume that we have a large data collection,
including photos and videos from consumers. The entire
data set is partitioned into a set of macro-events, and each
macro-event is further partitioned into a set of events. The
partition is based on the capture time of each photo/video
and the color similarity between photos/videos, by using
previously developed automatic albuming systems like [15].
Let Et denote the t-th event which contains mt

p photos and
mt

v videos, and It
i and V t

j denote the i-th photo and j-th
video in Et, respectively. Our target is to classify Et into a
set of pre-defined semantic categories SE1, . . . , SEL.

3.1 ELF Representation
In the previous work [11], we have proposed a BoF rep-

resentation at the event level to describe each event as a
feature vector, based on which semantic event classifiers can
be directly built. Specifically, a set of 21 SVM concept de-
tection models [1] that are learn based on Kodak’s consumer
benchmark video set (5166 keyframes from 1358 consumer
videos) [14] are applied to the consumer event data, which
generate concept detection scores for 21 consumer concepts.
These 21 concepts are chosen to be important to consumers
based on real user study [14]. The consumer videos for train-
ing the concept detectors and the consumer event data we
study in [11] and in this work are from the same Kodak’s
consumer data pool, or the same domain. The resulting con-
cept detection scores are used to represent the global event
images, based on which an ELF is constructed through the
BoF technique. Specifically, pairwise similarities between
image/video data point sets are calculated using the Earth
Mover’s Distance [20] which can deal with different set sizes
(i.e., different images/videos have different numbers of data
points). Then a codebook is constructed through spectral
clustering [17] over the pairwise similarity matrix, where
each cluster corresponds to one codeword in the codebook.
The codewords span a feature space in which each event
Et can be represented as a codebook-based feature vector.
Using the ELF vector, SVM classifiers can be learned to con-
duct semantic event classification. As demonstrated in [11],
the ELF representation alleviates the influence of difficult
or erroneous images from automatic albuming systems in
measuring event-level similarities. Superior performance can
be obtained compared to the counterparts using straightfor-
ward image-level features. The second step in Fig. 3 illus-
trates the process of generating ELF representations.

3.2 The General ELF Learning Framework
We develop a general two-step ELF learning framework

based on [11] as shown in Fig. 3. In the first step, elementary-
level features are generated to represent each photo It

i or
video V t

j as a set of data points, e.g., It
i can be treated as

a single-point set with an image-level low-level visual fea-
ture f(It

i ), or a multipoint set with region-level low-level
visual features {f(rt

i1), . . . , f(r
t
in)} where each rt

ik is a region
from image It

i described by a feature vector f(rt
ik). Then in

the second step, based on different types of elementary-level
features, the previous ELF learning process can be used to
construct ELF representations.

Compared with the previous method in [11], this new ap-
proach has several advantages. First, both image-level and
region-level features are used to construct ELF representa-

tions, while [11] only uses the global image-level feature.
As have been shown by many previous works [10, 26], lo-
cal regional features can complement global image-level fea-
tures by capturing the detailed object information, and can
greatly help classification. In addition, both cross-domain
and within-domain learning are incorporated at both image
and region level to enhance classification. The general ELF
learning framework enables us to incorporate large external
data collections as well as large ontologies to help semantic
event classification. Large ontologies provide rich descrip-
tors to represent the media content, and large external data
collections import external knowledge to help classification.

4. SEMANTIC EVENT CLASSIFICATION
WITH MULTITYPE ELFS

The above ELF learning framework is very flexible. Dif-
ferent types of elementary-level features can be used to gen-
erate ELFs. In this work, we construct ELFs by both cross-
domain and within-domain learning. We adopt the PRED
cross-domain learning technique where two sets of concept
scores at both image and region level are obtained from two
external data sources. They form two elementary-level con-
cept spaces, based on which two sets of cross-domain ELFs
are generated. For within-domain learning, low-level visual
features at both image and region level are used as elemen-
tary features, on top of which within-domain ELFs are gen-
erated. SVM-based semantic event classifiers are learned
over these ELFs, and through different fusion approaches,
significant performance improvement can be achieved by se-
lectively combining various ELFs. Fig. 4 summarizes the
overall approach.

4.1 Cross-Domain ELFs
We further categorize the cross-domain ELFs as image-

level or region-level, i.e., concept detectors from external
data sets are learned at the image or region level to generate
the image-level or region-level elementary concept spaces.

Image-level concept space – We use the TRECVID 2005
news video set [21] with a 374-concept LSCOM ontology
[13] to provide the old-domain knowledge for generating a
concept-score-based ELF at the image level. The LSCOM
ontology [13] contains 449 multimedia concepts related to
events, objects, locations, people, and programs. The en-
tire TRECVID 2005 development set (61901 subshots) [21]
is labeled to this ontology. By using visual features over
the entire image, i.e., 5 × 5 grid-based color moments, Ga-
bor texture, and edge direction histogram [2], a total of 374
SVM concept detectors are learned based on the labeled
TRECVID subshots. These concepts are those with high-
occurrence frequencies in LSCOM.

We apply the concept detectors learned from the external
TRECVID data to obtain the concept detection probabili-
ties for each image x (a photo or a video keyframe) in the
current event data set. These probabilities represent x in
a concept space with a feature vector formed by concept
scores fc(x) = [p(C1|x), . . . , p(Cm|x)]T , where each Ck is a
concept. Each photo is a single-point set and each video is a
multipoint set in the concept space. Then the ELF learning
process described in the second step of Fig. 3 can be used to
generate the ELF over the LSCOM ontology, which is called
ELF-LSCOM.



Region-level concept space – Region-level features pro-
vide detailed object information to describe the image con-
tent, which is complementary to global image-level features.
In the regional approach, each image x is segmented into a
set of regions r1, . . . , rn, and each region can be represented
by a feature vector in either the concept space (this subsec-
tion) or the low-level visual space (Sec. 4.2). In the elemen-
tary region-level feature space, both photos and videos are
treated as multipoint sets, and the ELF learning procedure
from the second step of Fig. 3 can be conducted to obtain
ELF representations.

To generate region-level concept scores, we need external
region-level concept detectors. In this work, the LHI image-
parsing ground-truth data set (the free version) [25] is used
to build region-level concept detectors. The data set con-
tains images from 6 categories: manmade object, natural ob-
ject, object in scene, transportation, aerial image, and sport
activity. These images are manually segmented and the re-
gions are labeled to 247 concepts. Fig. 5 gives an example
image and its manual region annotation. Low-level visual
features, i.e., color moments, Gabor texture, and edge di-
rection histogram, are extracted from each region. By using
each region as one sample, SVM classifiers are trained to de-
tect the 247 region-level concepts. These detectors generate
concept detection scores for each automatically segmented
region in our event data set. Then an ELF (ELF-RegLHI )
can be learned based on the region-level concept scores.

sky

tree
building

road

carwater

Figure 5: An example image and its corresponding man-

ual annotation from the LHI image set. Every segmented

region in this image is annotated and in the figure we

only show annotations for some large regions.

4.2 Within-Domain ELFs
The use of concept score space has been proved effective

for semantic annotation by several previous works [6, 11].
However, low-level visual features are still indispensable for
semantic event classification, especially when we only have a
limited concept ontology. Since in practice we cannot train
a concept detector for every possible concept in every as-
pect of our life, low-level visual features can capture useful
information not covered by the available concept detectors.
Similar to the case of cross-domain learning, within-domain
visual-feature-based approaches can also be categorized as
using image-level or region-level visual features.

With image-level visual features, each image x (a photo
or a video keyframe) is represented as a low-level visual fea-
ture vector fl(x)=[f1(x), . . . , fd(x)]T . Then each photo is a
single-point set and each video is a multipoint set, based on
which an ELF (ELF-Vis) can be generated. Specifically, we
use the same low-level visual features as the ones for getting
image-level concept detection scores, i.e., grid-based color
moments, Gabor texture, and edge direction histogram.

Using region-level visual features, each region is repre-
sented as a low-level visual feature, and the entire image is

a multipoint set in the regional feature space (so is a video),
based on which we generate an ELF (ELF-RegVis). In prac-
tice, we also use the same low-level visual features as the ones
for getting region-level concept detection scores, i.e., color
moments, Gabor texture, and edge direction histogram.

In addition to the above 4 types of ELFs, we keep the ELF
representation learned from the previous work [11], where
Kodak’s consumer benchmark video set with the 21-concept
consumer ontology [14] is used to train concept detectors
and to generate concept detection scores as elementary-level
features for constructing the ELF. We call this ELF rep-
resentation ELF-KODAK. This can also be treated as a
within-domain learning approach.

4.3 Classification with ELFs
By now we have five ELFs learned from different types

of elementary-level features: ELF-KODAK, ELF-LSCOM,
ELF-RegLHI, ELF-Vis, and ELF-RegVis. Individual clas-
sifiers can be built over each type of feature for semantic
event classification, and improved performance can be ex-
pected if we appropriately fuse these ELFs. In early fusion,
we concatenate these ELFs into a long feature vector based
on which classifiers can be trained. In late fusion, we com-
bine the classifiers individually trained over each ELF. Also,
we can use selective fusion, i.e., forward feature selection
in the manner of both early and late fusion. In selective
early fusion, we gradually concatenate one more ELF at one
time based on the cross-validation error rate to choose the
optimal combination of features. Similarly, in selective late
fusion, we gradually combine one more classifier trained over
individual ELFs. In practice, the SVM classifier [22] with
the RBF kernel is used as semantic event classifiers based
on ELFs, since SVM has been proved effective by many pre-
vious literatures for image/video classification [1, 21].

5. EXPERIMENTS
We evaluate our algorithm over 1972 consumer events in

a consumer event collection from Kodak. These events are
generated from the automatic albuming system described
in [15], and are labeled to 10 different semantic event cat-
egories. Table 1 gives the detailed definitions of these se-
mantic event categories. Fig. 6 shows the example events
for these semantic categories. More details about this event
data set can be found in [11]. A total of 1261 events are ran-
domly selected for training, and the rest are used for testing.
The training/testing data are partitioned at the macro-event
level, i.e., events from the same macro-event stay together
for training/testing. This avoids the situation where similar
events from the same macro-event are separated, which will
simplify the classification problem.

The average precision (AP) and mean average precision
(MAP) are used as performance measures, which are official
metrics for video concept classification [21]. To calculate
AP for a semantic event category, we first rank the test
data according to the classification posteriors of this seman-
tic category. Then from top to bottom, the precision after
each positive sample is calculated. These precisions are av-
eraged over the total number of positive samples for this
semantic category. AP favors highly ranked positive sam-
ples and combines precision and recall values in a balanced
way. MAP is calculated by averaging APs across all seman-
tic event categories. Parameters in SVM are tuned by cross
validation within the training set, where for the RBF kernel



Table 1: Definition of semantic event categories in Kodak’s consumer event data set.
semantic event category definition

wedding bride, groom, decorated car, wedding cake or reception, bridal party, or events about the wedding day
birthday birthday cake, birthday balloon, wrapped birthday presents, birthday caps

Christmas Christmas tree and usual Christmas decoration, not necessarily taken on Christmas day
parade processing of people or vehicles moving through a public place
picnic outdoor, with or without a picnic table, with or without shelter, food and people in view

team sport basket ball, football, baseball, hockey, and other team sports
individual sport tennis, swimming, bowling, and other individual sports

animal pets (e.g., dogs, cats, horses, fish, birds, hamsters), wild animals, zoos, and animal shows
school activity school graduation, school days (first or last day of school), and other events related to school

show show and concert, recitals, plays, and other show events
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Figure 6: Examples of consumer event data for different

semantic event categories.

K(x,y)=exp{−γ||x−y||22}, γ =(1/d)2
t

, d is the dimension
of data point x, and t is chosen from t={−3,−2,−1, 0, 1};
and the error control parameter C in SVM [22] is chosen
from C = 2s and s = {0, 1, 2, 3, 4}. Table 2 gives some de-
tailed information of different ELFs.

Table 2: Information of different ELFs.
dimension type

ELF-KODAK 97 Image level, within-domain
ELF-LSCOM 93 Image level, cross-domain

ELF-Vis 80 Image level, within-domain
ELF-RegVis 83 Region level, within-domain
ELF-RegLHI 80 Region level, cross-domain

Fig. 7 gives the AP performance for each semantic event
category and the overall MAP using different individual ELFs.
From the result, different types of ELFs have different ad-
vantages in classifying different semantic event categories.
In general, image-level concept scores (ELF-KODAK and
ELF-LSCOM) perform well over complex semantic event
categories like ”birthday”, “Christmas”, “parade”, “picnic”,

“school activity”, and “wedding”, which are composed by
many constructive concepts, e.g., wedding consists of wed-
ding gowns, suits, park, flowers, etc. The concept scores
capture the semantic information about occurrences of these
constructive concepts, and are expected to be superior to
low-level features in classifying such semantic events. On
the other hand, ELF-Vis performs extremely well over se-
mantic event categories that are determined by only one
or a few concepts, such as “animal”, where the detection
scores for other constructive concepts are not so helpful.
Similarly ELF-RegLHI performs well over complex seman-
tic event categories in general, and it works very well over
those semantic events having strong regional cues, e.g., “in-
dividual sport”or “show”, where detection of sport fields and
swimming pools, or stages and people in costume help a lot.
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Figure 7: Performances of individual ELFs.

In terms of image-level concept scores, the large ontology
(ELF-LSCOM) outperforms the small one (ELF-KODAK),
although concept detectors for the later are trained with con-
sumer videos that are more similar to our consumer event
data than the TRECVID data. This confirms that a large
ontology can provide rich descriptors to represent the me-
dia content and a large external data source (even with very
different data distribution to our event collection) can be
quite helpful. Specifically, ELF-LSCOM gets very good re-
sults over “parade”, “team sport”, and “wedding”. This is
because the TRECVID news videos and the LSCOM ontol-
ogy provide good detectors for many constructive concepts
related to parade (e.g., protest, demonstration, etc), sports
(e.g., basketball, football, etc.), and well-suited people (e.g.,
corporate leader, government leader, and so on). Fig. 8 gives
some example keyframes from the TRECVID news videos
for some related constructive concepts. We can see that
detection of such constructive concepts is very helpful.



Government Leader

Sports

Parade

Figure 8: Example keyframes from TRECVID news

videos for some constructed concepts useful to help our

semantic event classification. For example, the Govern-

ment Leader concept detector captures well-suited peo-

ple, which helps classify “wedding” events; the Parade

concept detector trained over the large TRECVID set

can provide useful information to help classify consumer

“parade” events where only a few event data is available

for training; the Sports concept detector captures differ-

ent types of team sports like basketball and football, and

can greatly help classify consumer “team sport” events.

Fig. 9 shows performances of different fusion methods, and
the best individual ELF result is also given for comparison.
From the result, consistent performance improvements can
be achieved over every semantic event when we combine dif-
ferent ELFs by either early fusion or late fusion, i.e., about
35% gain in MAP compared to the best performing indi-
vidual ELF. In addition, by selectively combining different
types of ELFs, further performance gain can be obtained.
Compared to the best individual ELF, the selective fusion
approach can get more than 70% MAP improvement. Also,
compared to the ELF-KODAK method (which is used in the
previous work [11]), MAP is improved by more than 90%.
Fig. 10 gives the top 10 events with highest classification
scores for “birthday” and “show”, using the previous ELF-
KODAK [11] and the selective late fusion. Each event is
marked by a rectangle, green as correct and red as incor-
rect. The results show clear performance improvements by
using information from multiple types of ELFs.
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Figure 9: Performances of different fusion methods.

Significant improvements can be achieved by selectively

combining different ELFs.

Fig. 11 gives the details of which types of ELFs are actu-
ally used by the selective early fusion approach for classifying
different semantic events. This figure clearly shows the con-
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Figure 11: Detailed usage of different ELFs by semantic

event classifiers with selective early fusion. ELF-RegLHI

is the most popular feature. ELF-RegVis is the least fa-

vorite feature. ELF-LSCOM is used for semantic events

with high support from TRECVID news videos where

good detectors can be obtained from the TRECVID data

to detect useful constructive concepts.

tributions of various ELFs. From the figure, ELF-RegLHI is
always chosen by all semantic event classifiers. This is con-
sistent with the previous results (Fig. 7) that ELF-RegLHI
is the best performing individual feature. ELF-RegVis is
the least favorite feature and is only used by the “animal”
classifier and the “team sport” classifier. This is reasonable
since ELF-RegVis has bad classification performance over
most semantic events, but can help classify simple ones like
“animal” that are composed by one or a few objects. ELF-
LSCOM helps with 4 semantic events that have high support
from TRECVID news videos, i.e., good detectors can be ob-
tained from TRECVID data to detect useful constructive
concepts. This is also consistent with our previous analysis.

6. CONCLUSIONS
We develop a general two-step ELF learning framework

for semantic event classification, which is flexible to incor-
porate various elementary-level features in the first step for
learning different ELFs in the second step through a uni-
fied procedure. We adopt both cross-domain and within-
domain learning to generate ELFs at both image and region
level, based on both concept-score spaces and low-level vi-
sual spaces. Experiments over a real consumer event collec-
tion demonstrate significant performance improvements by
combining different ELFs. Future work includes incorporat-
ing more types of elementary-level features and more exter-
nal data sources/ontologies to generate ELFs, and further
performance gain can be expected. In addition, the tem-
poral information from the event boundaries can be used,
and the relationship between the visual codebooks can be
modeled for better event description.
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