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ABSTRACT
We investigate general concept classification in unconstrained
videos by joint audio-visual analysis. A novel representation,
the Audio-Visual Grouplet (AVG), is extracted by studying
the statistical temporal audio-visual interactions. An AVG
is defined as a set of audio and visual codewords that are
grouped together according to their strong temporal corre-
lations in videos. The AVGs carry unique audio-visual cues
to represent the video content, based on which an audio-
visual dictionary can be constructed for concept classifica-
tion. By using the entire AVGs as building elements, the
audio-visual dictionary is much more robust than traditional
vocabularies that use discrete audio or visual codewords.
Specifically, we conduct coarse-level foreground/background
separation in both audio and visual channels, and discover
four types of AVGs by exploring mixed-and-matched tem-
poral audio-visual correlations among the following factors:
visual foreground, visual background, audio foreground, and
audio background. All of these types of AVGs provide dis-
criminative audio-visual patterns for classifying various se-
mantic concepts. We extensively evaluate our method over
the large-scale Columbia Consumer Video set. Experiments
demonstrate that the AVG-based dictionaries can achieve
consistent and significant performance improvements com-
pared with other state-of-the-art approaches.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.4.m [Information Systems Ap-
plications]: Miscellaneous; H.3.m [Information Storage
and Retrieval]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
Audio-visual grouplet, video concept classification, temporal
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1. INTRODUCTION
This paper investigates the problem of automatic classifi-

cation of semantic concepts in generic, unconstrained videos,
by joint analysis of audio and visual content. These concepts
include general categories, such as scene (e.g., beach), event
(e.g., birthday, graduation), location (e.g., playground) and
object (e.g., dog, bird). Generic videos are captured in an
unrestricted manner, like those videos taken by consumers
on YouTube. This is a difficult problem due to the diverse
video content as well as the challenging conditions such as
uneven lighting, clutter, occlusions, and complicated mo-
tions of both objects and camera.

Large efforts have been devoted to classify general con-
cepts in generic videos, such as TRECVID high-level feature
extraction [32] and Columbia Consumer Video (CCV) con-
cept classification [18]. Most previous works classify videos
in the same way they classify images, using mainly visual
information. Specifically, visual features are extracted from
either 2D keyframes or 3D local volumes, and these features
are treated as individual static descriptors to train concept
classifiers. Among these methods, the ones using the Bag-of-
Words (BoW) representation over 2D or 3D local descriptors
(e.g., SIFT [23] or HOG [8]) are considered state-of-the-art,
due to the effectiveness of BoW features in classifying ob-
jects [13], events [32], and human actions [21].

The importance of incorporating audio information to fa-
cilitate semantic concept classification has been discovered
by several previous works [5, 18, 37]. They generally use a
multi-modal fusion strategy, i.e., early fusion [5, 18, 37] to
train classifiers with concatenated audio and visual features,
or late fusion [5, 37] to combine judgments from classifiers
built over individual modalities. Different from such fusion
approaches that avoid studying temporal audio-visual syn-
chrony, the work in [16] pursues a coarse-level audio-visual
synchronization through learning a joint audio-visual code-
book based on atomic representations in both audio and
visual channels. However, the temporal audio-visual inter-
action is not explored in previous video concept classifica-
tion methods. The temporal audio-visual dependencies can
reveal unique audio-visual patterns to assist concept classifi-
cation. For example, as illustrated in Figure 1, by studying
the correlations between temporal patterns of visual and au-
dio codewords, we can discover discriminative audio-visual
cues, such as the unique encapsulation of visual basketball
patches and audio basketball bouncing sounds for classify-
ing the “basketball” concept, and the encapsulation of vi-
sual stadium patches and audio music sounds for classifying
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discrete codewords in visual and audio vocabularies, respectively. By analyzing the correlations between the temporal

histograms of audio and visual codewords, we can discover salient audio-visual cues to represent videos from different

concepts. For example, the highly correlated visual basketball patches and audio basketball bouncing sounds provide

a unique pattern to classify “basketball” videos. The highly correlated visual stadium patches and audio background

music are helpful to classify “non-music performance” videos. In comparison, discrete audio and visual codewords are

less discriminative than such audio-visual cues.

the “non-music performance” concept 1. To the best of our
knowledge, such audio-visual cues have not been studied be-
fore in previous literatures.
From another perspective, beyond the traditional BoW

representation, structured visual features have been recently
found to be effective in many computer vision tasks. In
addition to the local feature appearance, spatial relations
among the local patches are incorporated to increase the ro-
bustness of the visual representation. The rationale behind
this is that individual local visual patterns tend to be sen-
sitive to variations such as changes of illumination, views,
scales, and occlusions. In comparison, a set of co-occurrent
local patterns can be less ambiguous. Along this direction,
pairwise spatial constraints among local interest points have
been used to enhance image registration [12]; various types
of spatial contextual information have been used for object
detection [10] and action classification [24]; and a grouplet
representation has been developed to capture discriminative
visual features and their spatial configurations for detecting
the human-object-interaction scenes in images [39].
Motivated by the importance of incorporating audio in-

formation to help video concept classification, as well as the
success of using structured visual features for image classifi-
cation, in this paper, we propose an Audio-Visual Grouplet
(AVG) representation. Each AVG contains a set of audio
and visual codewords that have strong temporal correlations
in videos. An audio-visual dictionary can be constructed to
classify concepts using AVGs as building blocks. The AVGs
capture not only the individual audio and visual features
carried by the discrete audio and visual codewords, but also
the temporal relations between audio and visual channels.
By using the entire AVGs as building elements to represent
videos, various concepts can be more robustly classified than
using discrete audio and visual codewords. For example, as
illustrated in Figure 2, The AVG that captures the visual
bride and audio speech gives a strong audio-visual cue to
classify the “wedding ceremony” concept, and the AVG that
captures the visual bride and audio dancing music is quite
discriminative to classify the “wedding dance” concept.

2. OVERVIEW OF OUR APPROACH
Figure 3 summarizes the framework of our system. We

discover four types of AVGs by exploring four types of tem-

1Detailed definition of “non-music performance” can be
found in [18].
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poral audio-visual correlations: correlations between visual
foreground and audio foreground; correlations between vi-
sual background and audio background; correlations between
visual foreground and audio background; and correlations
between visual background and audio foreground. All of
these types of AVGs are useful for video concept classifica-
tion. For example, as illustrated in Figure 3, to effectively
classify the “birthday” concept, all of the following factors
are important: the visual foreground people (e.g., baby and
child), the visual background setting (e.g., cake and table),
the audio foreground sound (e.g., cheering, birthday song,
and hand clapping), and the audio background sound (e.g.,
music). By studying the temporal audio-visual correlations
among these factors, we can identify unique audio-visual
patterns that are discriminative for “birthday”classification.

To enable the exploration of the foreground and back-
ground audio-visual correlations, coarse-level separation of
the foreground and background is needed in both visual and
audio channels. It is worth mentioning that due to the di-
verse video content and the challenging conditions (e.g., un-
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Figure 3: The overall framework of the proposed joint audio-visual analysis system. The example shows a “birthday”

video, where four types of audio-visual patterns are useful for classifying the “birthday” concept: (1) the visual

foreground baby with the audio foreground events such as singing the birthday song or people cheering, since a major

portion of birthday videos have babies or children involved; (2) the visual foreground baby with the audio background

music; (3) the visual background setting such as the cake, with the audio foreground singing/cheering; and (4) the

visual background cake with the audio background music.

even lighting, clutter, occlusions, complicated objects and
camera motions, and the unstructured audio sounds with
overlapping acoustic sources), precise visual or audio fore-
ground/background separation is infeasible in generic videos.
In addition, exact audio-visual synchronization can be un-
reliable most of the time. Multiple moving objects usually
make sounds together, and often the object making sounds
does not synchronically appear in video. To accommodate
these issues, different from most previous audio-visual anal-
ysis methods [3, 7, 15, 31] that rely on precisely separated
visual foreground objects and/or audio foreground sounds,
our proposed approach has the following characteristics.

• We explore statistical temporal audio-visual correla-
tions over a set of videos instead of exact audio-visual
synchronization in individual videos. By representing
the temporal sequences of visual and audio codewords
as multivariate point processes, the statistical pairwise
nonparametric Granger causality [14] between audio
and visual codewords is analyzed. Based on the audio-
visual causal matrix, salient AVGs are identified, which
encapsulate strongly correlated visual and audio code-
words as building blocks to classify videos.

• We do not pursue precise visual foreground/background
separation. We aim to build foreground-oriented and
background-oriented visual vocabularies. Specifically,
consistent local points are tracked throughout each
video. Based on both local motion vectors and spa-
tiotemporal analysis of whole images, the point tracks
are separated into foreground tracks and background
tracks. Due to the challenging conditions of generic
videos, such a separation is not precise. The target
is to maintain a majority of foreground (background)
tracks so that the constructed visual foreground (back-
ground) vocabulary can capture mainly visual fore-
ground (background) information.

• Similar to the visual aspect, we aim to build foreground-
oriented and background-oriented audio vocabularies,
instead of pursuing precisely separated audio foreground
or background acoustic sources. In generic videos, the
foreground sound events are usually distributed un-
evenly and sparsely. Therefore, the local representa-
tion that focuses on short-term transient sound events
[6] can be used to capture the foreground audio infor-
mation. Also, the Mel-Frequency Cepstral Coefficients

(MFCCs) extracted from uniformly spaced audio win-
dows roughly capture the overall information of the
environmental sound. Based on the local representa-
tion and MFCCs, audio foreground and background
vocabularies can be constructed, respectively.

We extensively evaluate our approach over the large-scale
CCV set [18], containing 9317 consumer videos from YouTube.
The consumer videos are captured by ordinary users under
uncontrolled challenging conditions, without post-editing.
The original audio soundtracks are preserved, which allows
us to study legitimate audio-visual interactions. Experi-
ments show that compared with the state-of-the-art multi-
modal fusion methods using BoW representations, our AVG-
based dictionaries can capture useful audio-visual cues and
significantly improve the classification performance.

3. BRIEF REVIEW OF RELATED WORK

3.1 Audio-Visual Concept Classification
Audio-visual analysis has been largely studied for speech

recognition [15], speaker identification [31], and object lo-
calization [4]. For example, with multiple cameras and au-
dio sensors, by using audio spatialization and multi-camera
tracking, moving sound sources (e.g., people) can be located.
In videos captured by a single sensor, objects are usually lo-
cated by studying the audio-visual synchronization along the
temporal dimension. A common approach, for instance, is
to project each of the audio and visual modalities into a 1D
subspace and then correlate the 1D representations [3, 7].
These methods have shown interesting results in analyzing
videos in a controlled or simple environment, where good
sound source separation and visual foreground/background
separation can be obtained. However, they cannot be eas-
ily applied to generic videos due to the difficulties in both
acoustic source separation and visual object detection.

Most existing approaches for general video concept clas-
sification exploit the multi-modal fusion strategy instead of
using direct correlation or synchronization across audio and
visual modalities. For example, early fusion is used [5, 37]
to concatenate features from different modalities into long
vectors. This approach usually suffers from the “curse of di-
mensionality,” as the concatenated multi-modal feature can
be very long. Also, it remains an open issue how to con-
struct suitable joint feature vectors comprising features from



different modalities with different time scales and different
distance metrics. In late fusion, individual classifiers are
built for each modality separately, and their judgments are
combined to make the final decision. Several combination
strategies have been used, such as majority voting, linear
combination, super-kernel nonlinear fusion [37], or SVM-
based meta-classification combination [22]. However, classi-
fier combination remains a basic machine learning problem.
The best strategies depend on particular tasks.
Recently, an Audio-Visual Atom (AVA) representation has

been developed in [16]. Visual regions are tracked within
short-term video slices to generate visual atoms, and audio
energy onsets are located to generate audio atoms. Regional
visual features extracted from visual atoms and spectrogram
features extracted from audio atoms are concatenated to
form the AVA representation. An audio-visual codebook is
constructed based on the AVAs for concept classification.
The audio-visual synchrony is found through learning the
audio-visual codebook. However, the temporal audio-visual
interaction remains unstudied. As illustrated in Figure 1,
the temporal audio-visual dependencies can reveal unique
audio-visual patterns to assist concept classification.

3.2 Visual Foreground/Background Separation
One of the most commonly used techniques for separat-

ing foreground moving objects and the static background
is background subtraction, where foreground objects are de-
tected as the difference between the current frame and a ref-
erence image of the static background [11]. Various thresh-
old adaptation methods [1] and adaptive background models
[33] have been developed. However, these approaches require
a relatively static camera, small illumination change, simple
and stable background scene, and relatively slow object mo-
tion. When applied to generic videos for general concept
classification, the performance is not satisfactory.
Motion-based segmentation methods have also been used

to separate moving foreground and static background in
videos [20]. The dense optical flow is usually computed to
capture pixel-level motions. Due to the sensitivity to large
camera/object motion and the computation intensity, such
methods cannot be easily applied to generic videos either.

3.3 Audio Source Separation
Real-world audio signals are combinations of a number

of independent sound sources, such as various instrumen-
tal sounds, human voices, natural sounds, etc. Ideally, one
would like to recover each source signal. However, this task
is very challenging in generic videos, because only a single
audio channel is available, and realistic soundtracks have
unrestricted content from an unknown number of unstruc-
tured, overlapping acoustic sources.
Early Blind Audio Source Separation (BASS) methods

separate audio sources that are recorded with multiple mi-
crophones [28]. Later on, several approaches have been de-
veloped to separate single-channel audio, such as the fac-
torial HMM methods [30] and the spectral decomposition
methods [35]. Recently, the visual information has been in-
corporated to assist BASS [36], where the audio-video syn-
chrony is used as side information. However, soundtracks
studied by these methods are mostly mixtures of human
voices or instrumental sounds with very limited background
noise. When applied to generic videos, existing BASS meth-
ods cannot perform satisfactorily.

4. VISUAL PROCESS
We conduct SIFT point tracking within each video, based

on which foreground-oriented and background-oriented tem-
poral visual patterns are generated. The following details
the processing stages.

4.1 Excluding Bad Video Segments
Video shot boundary detection and bad video segment

elimination are general preprocessing steps for video analy-
sis. Each raw video is segmented into several parts according
to the detected shot boundaries with a single shot in each
part. Next, segments with very large camera motion are ex-
cluded from analysis. It is worth mentioning that in our case,
these steps can actually be skipped, because we process con-
sumer videos that have a single long shot per video, and the
SIFT point tracking can automatically exclude bad segments
by generating few tracks over such segments. However, we
still recommend these preprocessing steps to accommodate
a large variety of generic videos.

4.2 SIFT-based Point Tracking
We use Lowe’s 128-dim SIFT descriptor with the DoG in-

terest point detector [23]. SIFT features are first extracted
from a set of uniformly sampled image frames with a sam-
pling rate of 6 fps (frames per second) 2. Then for adjacent
image frames, pairs of matching SIFT features are found
based on the Euclidean distance of their feature vectors,
by also using Lowe’s method to discard ambiguous matches
[23]. After that, along the temporal dimension, the match-
ing pairs are connected into a set of SIFT point tracks, where
different point tracks can start from different image frames
and last variable lengths. This 6 fps sampling rate is empir-
ically determined by considering both the computation cost
and the ability of SIFT matching. In general, increasing
the sampling rate will decrease the chance of missing point
tracks, with the price of increased computation.

Each SIFT point track is represented by a 136-dim feature
vector. This feature vector is composed by a 128-dim SIFT
vector concatenated with an 8-dim motion vector. The SIFT
vector is the averaged SIFT features of all SIFT points in
the track. The motion vector is the averaged Histogram of
Oriented Motion (HOM) along the track. That is, for each
adjacent matching pair in the track, we compute the speed
and direction of the local motion vector. By quantizing the
2D motion space into 8 bins (corresponding to 8 directions),
an 8-dim HOM feature is computed where the value over
each bin is the averaged speed of the motion vectors from
the track moving along this direction.

4.3 Foreground/Background Separation
Once the set of SIFT point tracks are obtained, we sep-

arate them as foreground or background with the following
two steps, as illustrated in Figure 4. First, for two adjacent
frames Ii and Ii+1, we roughly separate their matching SIFT
pairs into candidate foreground and background pairs based
on the motion vectors. Specifically, we group these matching
pairs by hierarchical clustering, where the grouping criterion
is that pairs within a cluster have roughly the same moving
direction and speed. Those SIFT pairs in the biggest clus-
ter are treated as candidate background pairs, and all other

2In our experiment, the typical frame rate of videos is 30
fps. Typically we sample 1 frame from every 5 frames.
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Figure 4: Example of foreground/background separa-

tion of SIFT point tracks. A rough separation is obtained

by analyzing local motion vectors. The result is further

refined by spatiotemporal analysis over entire images.

pairs are treated as candidate foreground pairs. The ratio-
nale is that foreground moving objects usually occupy less
than half of the entire screen, and points on the foreground
objects do not have a very consistent moving pattern. In
comparison, points on the static background generally have
consistent motion and this motion is caused by camera mo-
tion. This first step can distinguish background tracks fairly
well for videos with moderate planar camera motions that
occur most commonly in generic videos.
In the second step, we further refine the candidate fore-

ground and background SIFT tracks by using the spatiotem-
poral representation of videos. A spatiotemporal X-ray im-
age representation has been proposed by Akutsu and Tono-
mura for camera work identification [2], where the average
of each line and each column in successive images are com-
puted. The distribution of the angles of edges in the X-ray
images can be matched to camera work models, from which
camera motion classification and temporal video segmenta-
tion can be obtained directly [19]. When used alone, such
methods cannot generate satisfactory segmentation results
in many generic videos where large motions from multiple
objects cannot be easily discriminated from the noisy back-
ground motion. The performance drops even more for small
resolutions, e.g., 320×240 for most videos in our experi-
ments. Therefore, instead of pursuing precise spatiotem-
poral object segmentation, we use such a spatiotemporal
analysis to refine the candidate foreground and background
SIFT tracks. The spatiotemporal image representation is
able to capture camera zoom and tilt, which can be used
to rectify those candidate tracks that are mistakenly labeled
as foreground due to camera zoom and tilt. Figure 4 shows
an example of visual foreground/background separation by
using the above two steps.

4.4 Vocabularies and Feature Representations
Based on the foreground and background SIFT point tracks,

we build a visual foreground vocabulary and a visual back-
ground vocabulary, respectively. The BoW features can be
computed using the vocabularies, which can be used directly
for concept classification. Also, the temporal patterns of
codeword occurrences can be computed to study the corre-
lations between audio and visual signals in Section 6.
From Section 4.2, each SIFT point track is represented

by a 136-dim feature vector. All foreground tracks from

the training videos are collected together, based on which
the hierarchical K-means technique [27] is used to construct
a D-word foreground visual vocabulary Vf−v. Similarly, a
D-word background visual vocabulary Vb−v is constructed
with all of the training background tracks. In our experi-
ments, we use relatively large vocabularies, D=4000, based
on findings from previous literatures [38] that when the vo-
cabulary size exceeds 2000, the classification performance
tends to saturate. That is, we can alleviate the influence of
the vocabulary size on the final classification performance.

For each video Vj , all of its foreground SIFT point tracks
are matched to the foreground codewords. A soft weighting
scheme is used to alleviate the quantization effects [17], and

a D-dim foreground BoW feature Ff−v
j is generated. Simi-

larly, all of the background SIFT point tracks are matched
to the background codewords to generate a D-dim back-
ground BoW feature Fb−v

j . In general, both Ff−v
j and Fb−v

j

have their impacts in classifying concepts, e.g., both the
foreground people with caps and gowns and the background
stadium setting are useful to classify “graduation” videos.

To study the temporal audio-visual interactions, the fol-
lowing histogram feature is computed over time for each of
the foreground and background visual vocabularies. Given
a video Vj , we have a set of foreground SIFT point tracks.
Each track is labeled to one codeword in vocabulary Vf−v

that is closest to the track in the visual feature space. Next,
for each frame Iji in the video, we count the occurring fre-
quency of each foreground codeword labeled to the fore-
ground SIFT point tracks that have a SIFT point falling
in this frame, and a D-dim histogram Hf−v

ji can be gener-

ated. Similarly, we can generate a D-dim histogram Hb−v
ji

for each image frame Iji based on vocabulary Vb−v. After
this computation, for the foreground Vf−v (or background

Vb−v), we have a temporal sequence {Hf−v
j1 , Hf−v

j2 , . . .} (or

{Hb−v
j1 , Hb−v

j2 , . . .}) over each video Vj .

5. AUDIO PROCESS
Instead of pursuing precisely separated audio sound sources,

we extract background-oriented and foreground-oriented au-
dio features. The temporal interactions of these features
with their visual counterparts can be studied to generate
useful audio-visual patterns for concept classification.

5.1 Audio Background
Various descriptors have been developed to represent au-

dio signals in both temporal and spectral domains. Among
these features, the MFCCs feature is one of the most popu-
lar choices for many different audio recognition systems [5,
31]. MFCCs represent the shape of the overall spectrum
with a few coefficients, and have been shown to work well
for both structured sounds (e.g., speech) and unstructured
environmental sounds. In soundtracks of generic videos, the
foreground sound events (e.g., an occasional dog barking
or hand clapping) are distributed unevenly and sparsely. In
such a case, the MFCCs extracted from uniformly spaced au-
dio windows capture the overall characteristics of the back-
ground environmental sound, since the statistical impact of
the sparse foreground sound events is quite small. Therefore,
we use the MFCCs as the background audio feature.

For each given video Vj , we extract the 13-dim MFCCs
from the corresponding soundtrack using 25 ms windows
with a hop size of 10 ms. Next, we put all of the MFCCs



from all training videos together, on top of which the hierar-
chical K-means technique [27] is used to construct a D-word
background audio vocabulary Vb−a. Similar to visual-based
processing, we compute two different histogram-like features
based on Vb−a. First, we generate a BoW feature Fb−a

j for
each video Vj by matching the MFCCs in the video to code-
words in the vocabulary and conducting soft weighting. This
BoW feature can be used directly for classifying concepts.
Second, to study the audio-visual correlation, a temporal
audio histogram sequence {Hb−a

j1 , Hb−a
j2 , . . .} is generated for

each video Vj as follows. Each MFCC vector is labeled to
one codeword in the audio background vocabulary Vb−a that
is closest to the MFCC vector. Next, for each sampled image
frame Iji in the video, we take a 200 ms window centered
on this frame. Then we count the occurring frequency of
the codewords labeled to the MFCCs that fall into this win-
dow, and a D-dim histogram Hb−a

ji can be generated. This

Hb−a
ji can be considered as temporally synchronized with the

visual-based histograms Hf−v
ji or Hb−v

ji .

5.2 Audio Foreground
As mentioned above, the soundtrack of a generic video

usually has unevenly and sparsely distributed foreground
sound events. To capture such foreground information, local
representations that focus on short-term local sound events
should be used. In [6], Cotton et al. have developed a local
event-based representation, where a set of salient points in
the soundtrack are located based on time-frequency energy
analysis and multi-scale spectrum analysis. These salient
points contain distinct event onsets, i.e., transient events.
By modeling the local temporal structure around each tran-
sient event, an audio feature reflecting the foreground of the
soundtrack can be computed. In this work, we follow the
recipe of [6] to generate the foreground audio feature.
Specifically, the Automatic Gain Control (AGC) is first

applied to equalize the audio energy in both time and fre-
quency domains. Next, the spectrogram of the AGC-equalized
signal is taken for a number of different time-frequency trade-
offs, corresponding to window length between 2 to 80 ms.
Multiple scales enable the localization of events of different
durations. High-magnitude bins in any spectrogram indi-
cate a candidate transient event at the corresponding time.
A limit is empirically set on the minimum distance between
successive events to produce 4 events per second on average.
A 250 ms window of the audio signal is extracted centered

on each transient event time, which captures the temporal
structure of the transient event. Within each 250 ms win-
dow, a 40-dim spectrogram-based feature is computed for
short-term signals over 25 ms windows with 10 ms hops,
which results in 23 successive features for each event. These
features are concatenated together to form a 920-dim rep-
resentation for each transient event. After that, PCA is
performed over all transient events from all training videos,
and the top 20 bases are used to project the original 920-dim
event representation to 20 dimensions.
By putting all the projected transient features from all

training videos together, the hierarchical K-means technique
[27] is used again to construct a D-word foreground audio
vocabulary Vf−a. We also compute two different histogram-
like features based on Vf−a. First, we generate a BoW fea-
ture Ff−a

j for each video Vj by matching the transient fea-
tures in the video to codewords in the vocabulary and con-
ducting soft weighting. Second, a temporal audio histogram

sequence {Hf−a
j1 , Hf−a

j2 , . . .} is generated for each video Vj

as follows. Each transient event is labeled to one codeword
in the audio foreground vocabulary Vf−a that is closest to
the transient event feature. Next, for each sampled image
frame Iji in the video, we take a 200 ms window centered
on this frame. Then we count the occurring frequency of
the codewords labeled to the transient events whose cen-
ters fall into this window, and a D-dim histogram Hf−a

ji can

be generated. Similar to Hb−a
ji , Hf−a

ji can be considered as

synchronized with Hf−v
ji or Hb−v

ji .

6. AVGS FROM TEMPORAL CAUSALITY
Recently, Prabhakar et al. have shown in [29] that the

sequence of visual codewords produced by a space-time vo-
cabulary representation of a video sequence can be inter-
preted as a multivariate point process. The pairwise tempo-
ral causal relations between visual codewords are computed
within a video sequence, and visual codewords are grouped
into causal sets. Evaluations over social game videos show
promising results that the manually selected causal sets can
capture the dyadic interactions. However, the work in [29]
relies on nicely separated foreground objects, and causal sets
are manually selected for each individual video. The method
cannot be used for general concept classification.

We propose to investigate the temporal causal relations
between audio and visual codewords. Our target is to cap-
ture the co-occurrences of audio and visual patterns over
time. The rough foreground/background separation of both
temporal SIFT point tracks and audio sounds enables a
meaningful study of such temporal relations. For the pur-
pose of classifying general concepts in generic videos, all of
the following factors have their contributions: foreground vi-
sual objects, foreground audio transient events, background
visual scenes, and background environmental sounds. There-
fore, we explore their mixed-and-matched temporal relations
to find salient AVGs that can assist the final classification.

6.1 Point-process Representation of Codewords
From the previous sections, for each video Vj , we have 4

temporal sequences: {Hf−v
j1 , Hf−v

j2 , . . .}, {Hf−a
j1 , Hf−a

j2 , . . .},
{Hb−v

j1 , Hb−v
j2 , . . .}, and {Hb−a

j1 , Hb−a
j2 , . . .}, with vocabular-

ies Vf−v, Vf−a, Vb−v, and Vb−a, respectively. For each vo-
cabulary, e.g., the foreground visual vocabulary Vf−v, each
codeword wk in the vocabulary can be treated as a point pro-
cess, Nf−v

k (t), which counts the number of occurrences of wk

in the interval (0, t]. The number of occurrences of wk in a

small interval dt is dNf−v
k (t)=Nf−v

k (t+dt)−Nf−v
k (t), and

E{dNf−v
k (t)/dt}=λf−v

k is the mean intensity. For theoreti-
cal and practical convenience, the zero-mean process is con-
sidered, and Nf−v

k (t) is assumed as wide-sense stationary,
mixing, and orderly3 [25]. Point processes generated by all
D codewords of vocabulary Vf−v form a D-dim multivariate
point process Nf−v(t) = (Nf−v

1 (t), . . . , Nf−v
D (t))T . Each

video Vj gives one realization (trial) of Nf−v(t) with count-

ing vector (hf−v
j1 (t), hf−v

j2 (t), . . . , hf−v
jD (t))T , where hf−v

jk (t)

is the value over the k-th bin of the histogram Hf−v
jt . Simi-

larly, D-dim multivariate point processes Nf−a(t), Nb−v(t),

3The statistical properties of the process are time-invariant;
the numbers of codewords in intervals separated widely in
time are independent; given a sufficiently small interval, the
number of codewords in the interval is at most one.



and Nb−a(t) can be generated for vocabularies Vf−a, Vb−v,
and Vb−a, respectively.

6.2 Temporal Causality among Codewords
Granger causality [14] is a statistical measure based on

the concept of time series forecasting, where a time series
Y1 is considered to causally influence a time series Y2 if pre-
dictions of future values of Y2 based on the joint history of
Y1 and Y2 are more accurate than predictions based on Y2

alone. The estimation of Granger causality usually relies on
autoregressive models, and for continuous-valued data like
electroencephalogram, such model fitting is straightforward.
In [25], a nonparametric method that bypasses the au-

toregressive model fitting has been developed to estimate
Granger causality for point processes. The theoretical ba-
sis lies in the spectral representation of point processes, the
factorization of spectral matrices, and the formulation of
Granger causality in the spectral domain. In the following,
we describe the details of using the method of [25] to com-
pute the temporal causality between audio and visual code-
words. For simplicity, we temporarily omit indexes f − v,
b− v, f − a, and b− a, w.l.o.g., since Granger causality can
be computed for any two codewords from any vocabularies.

6.2.1 Spectral representation of point processes
The pairwise statistical relation between two point pro-

cessesNk(t) andNl(t) can be captured by the cross-covariance
density function Rkl(u) at lag u:

Rkl(u) =
E{dNk(t+ u)dNl(t)}

dudt
− I [Nk(t)=Nl(t)]λkδ(u),

where δ(u) is the classical Kronecker delta function, and
I[·] is the indicator function. By taking the Fourier trans-
form of Rkl(u), we obtain the cross-spectrum Skl(f). Specif-
ically, the multitaper method [34] can be used to compute
the spectrum, where M data tapers {qm}Mm=1 are applied
successively to point process Nk(t) (with length T ):

Skl(f) =
1

2πMT

∑M

m=1
Ñk(f,m)Ñl(f,m)∗, (1)

Ñk(f,m) =
∑T

tp=1
qm(tp)Nk(tp)exp(−2πiftp).

The symbol ∗ is the complex conjugate transpose. Equa-
tion (1) gives an estimation of the cross-spectrum using one
realization, and such estimations of multiple realizations are
averaged to give the final estimation of the cross-spectrum.

6.2.2 Granger causality in spectral domain
For multivariate continuous-valued time series Y1 and Y2

with joint autoregressive representations:

Y1(t) =
∑∞

p=1
apY1(t− p) +

∑∞
p=1

bpY2(t− p) + ε(t),

Y2(t) =
∑∞

p=1
cpY2(t− p) +

∑∞
p=1

dpY1(t− p) + η(t),

their noise terms are uncorrelated over time and their con-
temporaneous covariance matrix is:

Σ=

[
Σ2Υ2

Υ2Γ2

]
,Σ2=var(ε(t)),Γ2=var(η(t)),Υ2=cov(ε(t), η(t)).

We can compute the spectral matrix as [9]:

S(f) =

[
S11(f) S12(f)
S21(f) S22(f)

]
= H(f)ΣH(f)∗, (2)

where H(f)=

[
H11(f)H12(f)
H21(f)H22(f)

]
is the transfer function de-

pending on coefficients of the autoregressive model. The

spectral matrix S(f) of two point processes Nk(t) and Nl(t)
can be estimated using Eqn. (1). By spectral matrix factor-
ization we can decompose S(f) into a unique corresponding

transfer function H̃(f) and noise processes Σ̃2 and Γ̃2. Next,
the Granger causality at frequency f can be estimated ac-
cording to the algorithm developed in [9]:

GNl→Nk (f) = ln

(
Skk(f)

H̃kk(f)Σ̃2H̃kk(f)∗

)
, (3)

GNk→Nl(f) = ln

(
Sll(f)

H̃ll(f)Γ̃2H̃ll(f)∗

)
. (4)

The Granger causality scores over all frequencies are then
summed together to obtain a single time-domain causal in-
fluence, i.e., CNk→Nl =

∑
f GNk→Nl(f), and CNl→Nk =∑

f GNl→Nk (f). In general, CNk→Nl �=CNl→Nk , due to the
directionality of the causal relations.

6.3 AVGs from the Causal Matrix
Our target of studying temporal causality between au-

dio and visual codewords is to identify strongly correlated
AVGs, where the direction of the relations is usually not im-
portant. For example, a dog can start barking at any time
during the video, and we would like to find the AVG that
contains correlated codewords describing the foreground dog
barking sound and the visual dog point tracks. The direction
of whether the barking sound is captured before or after the
visual tracks is irrelevant. Therefore, for a pair of codewords
represented by point processes N

sk
k (t) and N

sl
l (t) (where sk

or sl is one of the following f − v, f − a, b − v, and b − a,
indicating the vocabularies the codeword comes from), the
nonparametric Granger causality scores from both directions
CN

sk
k

→N
sl
l

and CN
sl
l

→N
sk
k

are summed together to generate

the final similarity between these two codewords:

C(N
sk
k , N

sl
l ) = CN

sk
k

→N
sl
l

+ CN
sl
l

→N
sk
k

. (5)

Then, for a pair of audio and visual vocabularies, e.g., Vf−v

and Vf−a, we have a 2D×2D symmetric causal matrix:[
Cf−v,f−v Cf−v,f−a

Cf−a,f−v Cf−a,f−a

]
, (6)

where Cf−v,f−v, Cf−a,f−a, and Cf−v,f−a are D×D ma-
trices with entries C(Nf−v

k , Nf−v
l ), C(Nf−a

k , Nf−a
l ), and

C(Nf−v
k , Nf−a

l ), respectively.
Spectral clustering can be applied directly based on this

causal matrix to identify groups of codewords that have high
correlations. Here we use the algorithm developed in [26]
where the number of clusters can be determined automati-
cally by analyzing the eigenvalues of the causal matrix. Each
cluster is called an AVG, and codewords in an AVG can come
from both audio and visual vocabularies. The AVGs capture
temporally correlated audio and visual codewords that sta-
tistically interact over time. Each AVG can be treated as
an audio-visual pattern, and all AVGs form an audio-visual
dictionary. For a given video Vj , the original SIFT point
tracks and audio features can be mapped to AVGs and gen-
erate an audio-visual dictionary-based feature. The simplest
way to compute this dictionary-based feature is to aggregate
the original BoW features over individual visual and audio
vocabularies. For instance, for an AVG containing code-
words wf−a

1 , . . . , wf−a
n from Vf−a, and wf−v

1 , . . . , wf−v
m from

Vf−v, the value over the corresponding bin in the dictionary-
based feature of video Vj is:

∑n
p=1F

f−a
jp +

∑m
p=1F

f−v
jp . F f−a

jp

(F f−v
jp ) is the value over the p-th bin in the BoW feature



Ff−a
j (Ff−v

j ) over Vf−a (Vf−v). Classifiers such as SVMs
can be trained using this feature for concept classification.

A total of four audio-visual dictionaries are generated in
this work, by studying the temporal causal relations between
different types of audio and visual codewords. They are: dic-
tionary Df−v,f−a by correlating Vf−v and Vf−a, Db−v,b−a

by correlating Vb−v and Vb−a, Df−v,b−a by correlating Vf−v

and Vb−a, and Db−v,f−a by correlating Vb−v and Vf−a. As
illustrated in Figure 3, all of these correlations reveal useful
audio-visual patterns for classifying concepts.

7. EXPERIMENTS
We evaluate our algorithm over the large-scale CCV set

[18], containing 9317 consumer videos from YouTube. These
videos are captured by ordinary users under unrestricted
challenging conditions, without post-editing. The original
audio soundtracks are preserved, in contrast to other large-
scale news or movie video sets [21, 32]. This allows us to
study legitimate audio-visual interactions. Each video is
manually labeled to 20 semantic concepts by using Ama-
zon Mechanical Turk. More details about the data set and
category definitions can be found in [18]. Our experiments
take similar settings as [18], i.e., we use the same training
(4659 videos) and test (4658 videos) sets, and one-versus-all
χ2-kernel SVM classifiers. The performance is measured by
Average Precision (AP, the area under uninterpolated PR
curve) and Mean AP (MAP, averaged AP across concepts).

7.1 Performance of Concept Classification
To demonstrate the effectiveness of our method, we first

evaluate the performance of the state-of-the-art BoW rep-
resentations using different types of individual audio and
visual features exploited in this paper, as well as the perfor-
mance of their various early-fusion combinations. The AP
and MAP results are shown in Figure 5. These BoW rep-
resentations are generated using the same method as [18].
The results show that the individual visual SIFT, audio
MFCCs, and audio transient event feature perform compa-
rably overall, each having different advantages over different
concepts. The combinations of audio and visual BoW repre-
sentations through multi-modal fusion can consistently and
significantly improve classification. For example, by combin-
ing the three individual features (“SIFT+MFCCs+Trans”),
compared with individual features, all concepts get AP im-
provements, and the MAP is improved by over 33% on a
relative basis. Readers may notice that our“SIFT”performs
differently than that in [18]. This is because we have only a
single type of SIFT feature (i.e., SIFT over DoG keypoints)
and generate the BoW representation using only the 1×1
spatial layout, while several types of keypoints and spatial
layouts are used in [18]. Actually, our “MFCCs” performs
similarly to that in [18], due to the similar settings for fea-
ture extraction and vocabulary construction.

Next, we compare the classification performance of using
individual foreground and background audio and visual vo-
cabularies (i.e., Vf−v, Vf−a, Vb−v, and Vb−a), as well as us-
ing various types of audio-visual dictionaries (i.e., Df−v,f−a,
Df−v,b−a, Db−v,f−a, and Db−v,b−a). Each audio-visual dic-
tionary contains about 300 AVGs on average. The results
are shown in Figure 6. Also, the four types of audio-visual-
dictionary-based features are concatenated together to train
concept classifiers so that the advantages of all dictionaries
in classifying different concepts can be exploited. This is the
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Figure 5: Comparison of various BoW representations

as well as their early-fusion combinations.

“All A-V Dictionaries” approach shown in Figure 6. From
the figure, we can see that for individual vocabularies, vi-
sual foreground performs better than visual background in
general, while audio background performs better than au-
dio foreground. Such results are within our expectation,
because of the importance of the visual foreground in classi-
fying objects and activities, as well as the effectiveness of au-
dio background environmental sounds in classifying general
concepts as shown by previous work [5, 18]. Compared with
the visual foreground, visual background wins over“wedding
ceremony” and “non-music performance,” because of the im-
portance of the background settings for these concepts, e.g.,
the arch, flower boutique, and seated crowd for “wedding
ceremony,” and the stadium or stage setting for “non-music
performance.” In the audio aspect, audio foreground outper-
forms audio background over three concepts, “dog,”“birth-
day,” and “music performance,” because of the usefulness of
capturing consistent foreground sounds in these concepts.

Through exploring the temporal audio-visual interaction,
the audio-visual dictionaries generally outperform the cor-
responding individual audio or visual vocabularies. For ex-
ample, the MAP of Df−v,f−a outperforms those of Vf−v

and Vf−a by more than 10%, the MAP of Db−v,b−a outper-
forms those of Vb−v and Vb−a by more than 20%, etc. By
combining all types of dictionaries together, compared with
individual audio or visual vocabularies, all concepts get con-
sistent, significant AP improvements, and the overall MAP
is improved by more than 50%. In addition, compared with
direct multi-modal fusion without temporal audio-visual in-
teraction (i.e., “SIFT+MFCCs+Trans”), our “All A-V Dic-
tionaries” approach has consistent AP gains over all con-
cepts, with a 12% MAP gain overall. For 12 concepts (e.g.,
“baseball,”“ice skating,”etc.) the APs are improved by more
than 10%. The results demonstrate the effectiveness of ex-
tracting useful AVGs to classify general video concepts.

7.2 Visualization of AVGs
In Figure 7, we show some examples of the AVGs that

are identified as carrying unique audio-visual patterns to
classify different concepts. Such visualization helps us to
subjectively and intuitively evaluate the effectiveness of our
approach. Each example shows some visual and audio code-
words grouped together in an AVG. Each visual codeword
is shown as some local points in a video that are very simi-
lar to the codeword. For each audio codeword, we show the
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Figure 6: Comparison of individual foreground/background audio/visual vocabularies and audio-visual dictionaries.

spectrogram of the soundtrack over a 200 ms window, where
the audio feature in this short window is very similar to the
codeword. For the clarity of visualization, for each AVG, we
show only a few codewords that co-occur in the same video.
An actual AVG typically has about 20∼30 codewords.

From the visualization we can see that by studying the
temporal interactions of foreground and background audio
and visual codewords, we can group inter-related audio and
visual codewords into meaningful AVGs. Such AVGs provide
discriminative audio-visual cues for classifying various con-
cepts. The examples also confirm our assumption that all of
the four types of audio-visual foreground/background inter-
actions are important. For example, the visual foreground
basketball player with audio foreground whistling and cheer-
ing sounds give a unique cue to classify “basketball” videos;
the visual foreground bride and audio background music
form a useful pattern to classify “wedding dance”videos; the
visual background playground equipments and audio fore-
ground children’s cheering and laughing sounds are useful
to classify “playground” videos; and the visual background
sand and water together with audio background wind blow-
ing sound are discriminative to classify “beach” videos.

8. CONCLUSION
We proposed an AVG representation by studying the sta-

tistical temporal causality between audio and visual code-
words. Each AVG encapsulates inter-related audio and vi-
sual codewords as a whole package, which carries unique
audio-visual patterns to represent the video content. By
conducting coarse-level foreground/background separation
in both visual and audio channels, four types of AVGs were
extracted from four types of temporal audio-visual corre-
lations, correlations between visual foreground and audio
foreground codewords, between visual foreground and audio
background codewords, between visual background and au-
dio foreground codewords, and between visual background
and audio background codewords. Experiments over large-
scale consumer videos demonstrate that all four types of
AVGs provide discriminative audio-visual cues to classify
various concepts, and significant performance improvements
can be obtained compared with state-of-the-art multi-modal
fusion methods using BoW representations. It is worth men-
tioning that our method has some limitations. For videos
that we cannot get meaningful SIFT tracks or extract mean-
ingful audio transient events, our method will not work well.
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