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ABSTRACT
The relevance feedback process in content-based image re-
trieval is generally treated as a classification problem, where
the small sample size learning difficulty and the fast re-
sponse requirement make it difficult for most classifiers to
achieve a satisfying performance. In this paper, we incorpo-
rate the stochastic classifier ensemble method as a solution
to alleviate this problem. In particular, the random subspace
method is adopted in relevance feedback process to both
improve the retrieval accuracy and decrease the processing
time. Experimental results on 5,000 images demonstrate the
effectiveness of the proposed method.

1. INTRODUCTION

Content-based image retrieval (CBIR) is becoming more im-
portant with the increasing amount of images that can be
accessed. In CBIR context, an image is represented by a
low-level visual feature vector, which can be viewed as a
point in high-dimensional feature space. However the gap
between high-level semantics and low-level features limits
the effectiveness of CBIR systems. To bridge this gap, rele-
vance feedback is introduced into CBIR systems [13, 14].

Generally the relevant feedback process can be treated
as a learning and classification problem [1, 6, 9], and is
usually viewed as a binary classification case. During the
feedback process, a classifier is constructed using the feed-
back images labeled by users, and classifies all the images in
the database into two class–the required images (“relevant”
class), and the rest images (“irrelevant” class).

There are two special difficulties for CBIR classifiers:
one is the small training set size, the other is the fast re-
sponse requirement. The training samples are the labeled
images from user’s feedback, and are usually too few com-
pared with the feature dimension and the whole database
size. Most classifiers are weak and unstable in such cases
[10]. More over, the CBIR system must give out the online
retrieval result with a tolerable time cost. Thus, too compli-
cated classifier will not be practical.
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The stochastic discrimination (SD) theory [2] gives a
solution to alleviate the above difficulties, which combines
several stochastically created component classifiers with weak
discriminant power to generate a strong classifier with nearly
monotonic accuracy increase [8]. Random Subspace Method
(RSM) is one of the SD methods based on a stochastic fea-
ture space subsampling process [7]. RSM is very suitable
for small sample learning problems, and for practical ap-
plication that needs fast learning [4]. Thus, RSM is very
suitable for enhancing CBIR classifiers.

In this paper we incorporate RSM into the relevance
feedback process to improve the retrieval performance. To
make the underlying SD theory play, the component clas-
sifier should satisfy the projectability, enrichment and uni-
formity conditions. In our system, support vector machine
(SVM) is adopted as the component classifier to satisfy the
projectability and enrichment requirements, because of its
large margin characteristic with good generalization ability,
and its advantage for small sample learning. And based on
the analysis of characteristic of CBIR training set, a sample
re-weighting mechanism is proposed to promote the uni-
formity condition. Experimental results on 5,000 images
show that the proposed method can achieve significant per-
formance improvement with a decreased processing time.

The rest of this paper is organized as follows. Since the
SVMActive feedback mechanism [6] is adopted in our sys-
tem, Section 2 formulates our problem and introduces the
SVMActive classifier. In Section 3 we introduce the SD the-
ory briefly and describe our method in detail. Experimental
results are presented in Section 4. Finally, we give our con-
clusion in Section 5.

2. RELATED WORK

Assume that in CBIR system, the M images in the database
are denoted by X = [x1, . . . ,xM ]. Each image is a d-
dimensional feature vector xi = [xi1, . . . , xid]

T , which is
a point in d-dimensional feature space, xi ∈Fd. The rele-
vance feedback process of SVMActive is as follows. In feed-
back round t, we have a training set St. An SVM classifier
is constructed over St, which then classifies images X in
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the database, and outputs a set of distance Dt ={Dt(i), i=
1, . . . , M}. Dt(i) denotes the distance of image xi to the
decision boundary (Dt(i) > 0 represents “relevant”, and
Dt(i)< 0 represents “irrelevant”). This classifier construc-
tion and classification process is denoted by Dt =C (St,X)
in rest of this paper. The retrieval result is Rt, called return
set, which is formed by images with largest Dt(i) > 0. If
user doesn’t satisfy with Rt, images with smallest |Dt(i)|
forms a label set, Lt+1, for user to label. The label result
is Y = {yi, i=1, . . . ,M}, where yi =1 if xi is “relevant”,
yi =−1 otherwise. Then we update St+1 =St

⋃
Lt+1 and

go to next feedback round. User provides one query im-
age xq to start the query, and L1 is randomly selected from
database. The initial training set is S1 =L1

⋃
{xq}.

3. RELEVANCE FEEDBACK USING RSM

3.1. Stochastic Discrimination

The stochastic discrimination theory constructs an ensem-
ble classifier by many stochastically created weak compo-
nent classifiers, and theoretically predicts that if the com-
ponent classifiers satisfy the three conditions, namely, pro-
jectability, enrichment and uniformity, the accuracy of the
ensemble classifier will increase monotonically as the num-
ber of component classifiers increases. Enrichment requires
that the component classifiers have the error rate of no more
than 0.5, and projectability refers that the classifier has gen-
eralization ability to unseen samples (test set). Uniformity
means that for any two unseen positive (negative) samples,
the number of component classifiers which classify each of
them into the positive (negative) class is identical. Actually
it is quite easy for most classifiers to meet the enrichment
and projectability requirement, but strict uniformity condi-
tion is difficult to obtain. In [5] theoretical analysis and ex-
periments show that satisfactory results can be attained with
approximate uniformity setting. Boosting algorithm [12] is
used as a uniformity forcing method in [3], which iteratively
modifies training set’s distribution to emphasize“hard” sam-
ples (the samples misclassified by earlier classifiers). Al-
though the hypothesis fusion strategy of boosting is not rel-
evant under SD’s paradigm, its sample re-weighting mech-
anism provides an approach toward promoting uniformity.

In our system, RSM is incorporated to enhance the re-
trieval performance. We use SVM as the component classi-
fier, which fits the projectability and enrichment conditions.
The sample re-weighting mechanism of boosting is adopted
as the uniformity promoting method. Now we describe our
enhancing scheme in detail.

3.2. The Combination Scheme

RSM relies on a parallel stochastic process which creates
stochastic training sets by sampling on feature space Fd.

Assume that in each feedback round, totally nen compo-
nent classifiers will be combined. The ensemble mecha-
nism of RSM in the relevance feedback process can be de-
scribed as follows. For the k-th component classifier, the
system randomly selects dr feature axes fromFd, and forms
a dr-dimensional feature subspace Fdr . Then it projects St

into Fdr to be St
k, denoted by St �→ St

k. Also it projects
X �→ Xk. Then an SVM classifier Dt

k = C (St
k,Xk) is

constructed. The decision ensemble method is to combine
the output of each classifier, that is, to combine Dt

k, k =
1 . . . , nen into a set of ensemble distance Dt. The element
of Dt is:

Dt(i) =
1

nen

nen∑

k=1

Dt
k(i) (1)

According to this ensemble Dt, Rt and Lt+1 are selected
following the criterion of SVMActive: Rt is formed by im-
ages with largest Dt > 0, Lt+1 is formed by images with
smallest |Dt|.

RSM is suitable for enhancing small sample size learn-
ing cases. This can be intuitively explained as the random
subspace method actually constructs each classifier in a low-
er dimensional feature space with the training sample size
unchanged, then the ratio of training sample size versus fea-
ture dimensionality increases compared with original train-
ing set, and better performance may be achieved. More
over, RSM can alleviate the curse of dimensionality, and can
take advantage of high dimensionality. Also, it is a parallel
algorithm which can be processed by parallel computation
method, thus is suitable for cases with fast learning require-
ment. All these characteristics make RSM fit for enhancing
CBIR classifiers.

3.3. Uniformity Promoting

The central idea of sample re-weighting in boosting algo-
rithm gives a way for uniformity promoting. Here we real-
ize the sample re-weighting target by sampling method. If
a training sample is important, we generate more samples
around it. This can be viewed as another way to re-weight
the training samples.

Suppose in feedback round t (t>1), the training set for
the previous t−1 round is St−1, and the classification result
of the ensemble classifier in t−1 round is Dt−1 (generated
by Eqn(1)). Lt is the label set selected according to Dt−1.
Define the important set for feedback round t as:

T t =
{
xi : xi ∈ St−1, yiD

t−1(i) < 0
}

⋃ {
xi : xi ∈ Lt, yi = 1

}
(2)

Eqn(2) indicates that, besides the training samples mis-
classified by the previous classifiers, the newly labeled “rel-
evant” samples are also contained in T t. This is because
we have a training set whose size is increasing during the
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feedback rounds, and newly labeled training samples should
also be weighted. Since in the CBIR context, the “relevant”
images usually share some semantic cues which reflect the
query concept, while the “irrelevant” ones come from dif-
ferent semantic categories and have little correlation. The
“relevant” images are important to grasp user’s query con-
cept, and need to be emphasized.

Then the updated training set is given by:

St = St−1
⋃

T t
⋃

Lt (3)

Pseudo-code for the proposed classifier ensemble method
is given in Fig.1.

Initialize: Get the user’s query image xq, randomly select
L1 from the database, and set S1 =L1

⋃
{xq}

Recursion: for each feedback round t

1. if t=1, construct Dt =C (St,X), go to step 5

2. Uniformity promoting

• Calculate T t by Eqn(2)

• St = St−1
⋃
T t

⋃
Lt

3. For k=1, . . . , nen

• Randomly select Fdr

k , St �→ St
k, X �→ Xk

• Get Dt
k =C (St

k,Xk)

4. Get Dt by Eqn(1)

5. Get Rt and Lt+1. If user satisfy with Rt, stop;
otherwise, label Lt+1, go to next round

Fig. 1. Pseudo-code for enhancing scheme.

4. EXPERIMENTS

The proposed method is evaluated on 5,000 real world im-
ages from 50 semantic categories, with 100 images for each
category. All the images are collected from Corel CDs. The
influence of different dr and nen are also investigated. The
low-level features used in the experiment are the color co-
herence in HSV color space, the first three color moments in
LUV color space, the directionality texture, and the coarse-
ness vector texture, which comprise a 155-dimensional fea-
ture space in total. Details about these features can be found
in [11].

Assume that the user is looking for one semantic cate-
gory in each query session, and will perform 5 rounds of
feedback. In each round |Lt|=10. The initialization of our
algorithm is similar to that of SVMActive (Fig.1). The per-
formance measurement used is the average top-k precision:

P|Rt|=k =
the number of “relevant” images in Rt

|Rt|
(4)

Each result listed in the experiments is the average result of
500 independent search processes. The kernel function for
SVM is RBF kernel: K (x,xi) = exp

{
− ||x − xi| |

2/f
}
,

where f is the dimensionality of x.

4.1. Comparison with SVMActive

To show the performance improvement achieved by our en-
hancing method , the proposed method is compared with the
SVMActive algorithm in this experiment. We fix dr = 60,
nen =2 here. Fig.2 (a) gives the average P20 of these two al-
gorithms after 5 rounds of feedback, and Fig.2 (b) lists their
corresponding time cost. The figures indicate that the pre-
cision curve of our method is above the corresponding one
of SVMActive, which means that our method can consis-
tently improve the retrieval performance. The precision im-
provements achieved after the feedback round 3, 4 and 5 are
9.45%, 8.84% and 8.72% respectively. Note that the results
listed are for nen =2. That is, we only construct two SVM
classifiers during each feedback round, and each classifier
is constructed over a feature subspace with a dimensional-
ity less than half of the original space. Thus our method
costs less time than original SVMActive in this parameter
setting. This experiment shows that the proposed enhanc-
ing algorithm can achieve better retrieval results within a
shorter processing time.
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Fig. 2. (a) The average precision of our method and
SVMActive after the 5 feedback rounds. (b) The corre-
sponding processing time. In this experiment, dr = 60,
nen =2 for our method.
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4.2. The Influence of dr and nen

To test the influence of dr and nen on the retrieval perfor-
mance, we first fix nen =2 and let dr change from 50 to 90,
then fix dr =60 and let nen change from 2 to 6. Table 1 and
2 show the average P20 of these two cases respectively, and
the corresponding time cost. The tables indicate that, when
nen is fixed, the retrieval result gets better as dr increases
when dr ≤ 70, and attains a maximum when dr = 70. The
time cost also increases as dr increases. Also, when dr is
fixed, the precision increase when more component classi-
fiers are combined, so is time cost. Thus, there is a trade
off between the processing time and precision achieved. If
we want more accurate result, more component classifiers
should be combined.

Table 1.
The influence of dr with nen =2

Round 2 Round 3 Round 5
dr

P20 Time P20 Time P20 Time

50 49.92 0.261 62.72 0.297 79.96 0.341

60 50.42 0.298 64.10 0.339 80.70 0.386

70 51.02 0.337 64.62 0.363 81.06 0.437

80 50.88 0.377 63.42 0.405 80.66 0.500

90 49.52 0.432 61.26 0.482 79.56 0.565

Table 2.
The influence of nen with dr =60

Round 2 Round 3 Round 5
nen

P20 Time P20 Time P20 Time

2 50.42 0.298 64.10 0.339 80.70 0.386

3 51.20 0.430 64.92 0.465 81.30 0.563

4 51.92 0.574 66.80 0.656 82.60 0.732

5 52.10 0.720 67.42 0.801 83.12 0.992

6 52.72 0.900 67.86 0.996 83.66 1.241

5. CONCLUSION

In this paper, the random subspace method is incorporated
into the relevance feedback rounds to improve the retrieval
result and decrease processing time cost. The SVM classi-
fier is selected to be the component classifier to fit the pro-
jectability and enrichment requirement for SD theory, and
a sample re-weighting method is proposed to promote uni-
formity for our algorithm. The mechanism of SVMActive

is also adopted in our system. Experiments on 5,000 im-
ages show that the proposed method can achieve accuracy
improvement with less processing time.
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