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Abstract 
To really bridge the gap between high-level semantics and 
low-levelfeatures in content-based image retrieval (CBIR), 
a problem that must be solved is: which features are suit- 
able for explaining the current query concept. In thispopec 
we propose a novel feature selection criterion based on a 
psychological similarity measurement - generalized feature 
contrast model, and implement an online feature selection 
algorithm in a boosting manner to select the most repre- 
sentative features and do classijication during each feed- 
back round. The advantage of the proposed method is: it 
doesn’t require Gaussian assumption for “relevant” images 
as other online FS methods; it accounts for the intrinsic 
asymmetry between “relevant” and “irrelevant” image sets 
in CBIR online Ieaming; it is very fast. Extensive expen- 
ment5 have shown our algorithm’s effectiveness. 

1 Introduction 
It is well known that the gap between high-level semantics 
and low-level features limits the development of content- 
based image retrieval (CBIR) systems. Relevancefeedback 
is introduced to bridge this gap, which is generally treated as 
an online supervised learning problem [7, 91. During each 
feedback round, user labels some images to be “relevant” 
or “irrelevant” as training samples to supervise the learning 
process in subsequent rounds. 

To really grasp the query concept horn low-level fea- 
tures, a C B E  learner must tackle a fundamental problem - 
which features are suitable for explaining the current query 
concept. This refers to the issue of feature selection (FS). 
Compared with other machine learning problems, CBIR on- 
line learning has to solve three issues: ( I  ) The curse of Di- 
mensionality, the training samples are only the labeled im- 
ages from user, which are too few compared with the feature 
dimensionality and the database size. (2) Intrinsic asym- 
metry, the images labeled to he “relevant” during a query 
session share some semantic cue, while the “irrelevant” im- 
ages are different from “relevant” ones in different ways. 
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Thus we need to treat the two image sets unequally. (3) Fast 
response requirement. The curse of dimensionality makes 
the system unable to well estimate the sample’s distribution, 
and the distribution based FS methods (e.g. K-LD [2]) are 
not suitable. Tieu [SI tried to boost small sample learning 
by AdaBoost [ 8 ] ,  but it needs a very large highly selective 
feature pool to get good result, which is computational in- 
feasible for CBIR online FS. By now the most feasible ap- 
proach is the Discrimimnt Analysis (DA) methods, such as 
MDA [9] and BiasMap [71. They assume Gaussian distri- 
bution for ‘relevant” images and minimize the covariance 
of “relevant” set over the between class distance based on 
this assumption, which avoids distribution estimation. Also 
they consider the intrinsic asymmetry property, which is ne- 
glected by most other FS methods. However, their basic 
single Gaussian assumption usually doesn’t hold, since the 
few training samples are always scattered in the high dimen- 
sional feature space, and their effectiveness will suffer. 

In this paper, to address the issue of online feature se- 
lection in CBIR context, an feature selection criterion - 
Generalized Feature Contrast Model (GFCM) is proposed. 
GFCM (which is based on the Feature Contrast Model 
[l]) measures the similarity between “relevant” and “irrel- 
evant” sets, which accounts for the asymmetry requirement 
for CBIR online learning and doesn’t require Gaussian as- 
sumption. Moreover, a feature selection algorithm is im- 
plemented in a boosting manner to select the optimal fea- 
tures one by one from original feature pool by re-weighting 
the training samples, and combine the incrementally learned 
classifiers over the selected features. Extensive experiments 
over 5,000 images show that, compared with DA and Ad- 
aBoost FS [SI, our method can get good performance while 
cost less processing time. 

2 Feature Selection by GFCM 
In CBIR context, the object of feature selection is to find the 
most discriminative feature subspace where the “relevant” 
set (R) and “irrelevant” set (ZR) are most separable. Here 
we use GFCM to guide the feature selection in relevance 
feedback for CBIR online leaning. 
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2.1 Generalized Feature Contrast Model 
The Feature Contrast Model (FCM) is firstly proposed as a 
psychological similarity measurement between two objects, 
which is based on set thcory. Let a, b he two stimuli, FCM 
represents each of them by a set of binary features they pos- 
sess, denoted by A, B ,  and defines their similarity as: 

s ( A ,  B )  = f ( ~  8 B )  - a f ( ~  0 B )  - P ~ ( B  e A )  ( I )  

A @  B is the common feature contained by a and b, A G B  
( B e A )  is the distinctivefeature contained by a hut not b ( b  
but not a). f(.) is a salient function, whose value increases 
monotonically when the variable in bracket increase. If 
OL # 8, we emphasize the features in different stimuli un- 
equally. The asymmetry direction is determined by the rel- 
ative "salience" of stimuli: if a is more salient, a 2 8  [6]. 

FCM can be generalized to measure the similarity he- 
tween R and ZR as: 
S (R,ZR)=f(R@ZR) -uf(ReZR) -pf(ZReR) ( 2 )  

Since the features shared by images in R but not con- 
tained by images in ZR are more important than the fea- 
tures shared by images in 1R but not contained by images 
in R to grasp the query concept, R is more salient than ZR. 
We can use a 2 8 to  describe this asymmetry. This is the 
generalized feature contrast model. 

2.2 GFCM similarity measurement 
To discard the Gaussian assumption for R or 172, instead 
of covariance and between class scatter matrix, the pairwise 
relationship between each image in R and each in ZR are 
directly evaluated, based on which S (R, ZR) is calculated. 

Let .? denote an image in the d-dimensional original 
feature space, and we have an m size 'R and n size ZR. 
Rk ={zP', i = 1,. . . , m} and ZRk = {z$*), j = 1, . . . , 
n} represent the projected R and ZR into the k-th fea- 
ture axis respectively. Weights W(a) = {w(?jR)), i = 
1,. . . ,m} and W('") = {tu(??")), j = 1,. . . , n} are 
the sample weights. The more tightly R or ZR clus- 
ters along this feature, the more salient this feature axis 
is for R or ZR. Value p k ( & , f  ) - / Z < k - Z j k /  denotes 

3 -- the "famess" degree between li and x j  along this feature 

axis. {pk(?$"),  e"')} denotes the strongest re- 

lationship between each image ZjR) in R and set ZR, and 
minz1 { p k ( ? Y R ) ,  Z:R))} denotes the strongest relation- 

ship between each .CyR) and set R. Thus the common fea- 
ture part in Eqn(2) is given by: 

As for the distinctive feature parts, if R is salient and 
ZR is not salient along this feature, f (RB e ZRk) 
should be large. Value ma+ 

denotes the scatter degree of 

set ZR respect to image 
f (Rk 0 Z R k )  is given by: 

along this feature axis, and 

With similar analysis, f (ZRk 8 R k )  is given by: 

With Eqn(3-5) and Eqn(Z), we get the similarity mea- 
surement function SI, ( R k , Z R k )  as follows: 

Coefficients OL and p adjust the relative importance of fea- 
tures shared by R and ZR, whose effect will be investigated 
in later experiments. 

2.3 Feature selection in boosting manner 
Given a set of optimal feature axis selected by above GFCM 
FS criterion, boosting mechanism gives an effective way for 
selecting a new added feature axis by re-weighting the train- 
ing samples, and combines the classifiers constructed over 
the incrementally learned features into an ensemble classi- 
fier with B decreased training error. Assume we have se- 
lected k feature axis, and constructed a classifier c, over 
each feature, i = 1,. . . , I C .  The classification result of an 
image ? by Ck is q k ( 2 ) .  The weight for Z is updated as: 

(7) 

where 2 is the normalization factor for W(f) ,  y is the 
label of ? from user (y = 1 if f is "relevant", y = 

- 1  = -,(f)p'-YPk(f) 
k Z 
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-1 otherwise). The update factor pk  is given by /3k = 

K E k ) / ( l  - E k ) l  ( 1 + e . 7 ~ 1  , where ek is the training error of C k .  

c> 1 is a parameter to make weight change enough for new 
feature selection. y E (0 , l )  is a parameter which assures 
large update speed at the beginning of training. This o k  is 
proved to be more effective than original p i n  AdaBoost 121. 
Practically we prefer to use c= 1, */=0.65. 

The Fuzzy K-Nenresr Neighbor (FKNN) classifier [31 is 
adopted as the weak learner for each selected feature. For 
the classifier over the i-th feature, it assigns a membership 
for each image ? in the database to represent its “relevant” 
degree to the current query concept as: 

where ?:),j = 1,. . . , k are the k nearest neighbors of 2 in 
the training set, =uJ(?~.~’) if 2;) ER, . / j ” ’= -~ (2 ( .~ ) )  3 

if ?:I EZR. 2 is predicted to he “relevant” if 4*(?) > 0.5; 
and ‘‘irrelevant’’ otherwise. And for misclassified “rele- 
vant” (“irrelevant”) training samples, the larger (smaller) 
the membership, the smaller the mistake is. Thus we cal- 
culate E; softly with 4;(?) by leave one out method [4] as: 

where Zo is the normalization factor for E < .  The ensemble 
classifier is formed by weighted voting: 

2.4 Entire algorithm 
The entire feature selection algorithm (GFCM boosting) is 
given in Fig. I ,  User selects one query image to start query, 
and the first round retrieval is carried by nearest searching. 
During each subsequent feedback round, assume we have 
m size R and n size ?R. The sample weights are initial- 
ized as = 1/2m, WJ(??~’) = 1/2n. For selecting 
the i-th feature, we calculate Sk (Rk,?Rk) by Eqn(6) for 
each.k = 1,. . . , d, and select the optimal one with smallest 
S k  (Rk ,ZRk) .  Then an FKNN classifier C;  is constructed 
over the selected feature, and the training samples are re- 
weighted by Eqn(7). When ~i is less than a small or 
when we have already selected Dim,,, feature axis, the 
ensemble classifier is calculated by Eqn(l0). Images with 
largest c $ ( ? ) ~ ~  is selected as the retrieval result, and images 
whose q4(?).n is closest to 0.5 is selected to he labeled by 
user in this round. Then new labeled images are added into 
the training set and go to the next round. In practical, we set 
€,in =0.001, Dim,,, =30. 

The computational complexity for GFCM boosting FS 
is: O(mxn)  to calculate GFCM similarity; O(d) to find the 
optimal feature; 0 ((7nf.n)’) to construct F K ”  classi- 
fier; and O(m+n) tore-weight the samples. The total com- 
putational cost for GFCM boosting FS is much less than that 
for eigenvector decomposition process in DA FS (which is 
O(d“)), especially when m and n are usually small. 

Recursion: for each feedback round 
1. Initialize: N,. = 0, for m size R and n size TR, set 

2. Iteration: 
=1/2m, Ur(2?))=1/2n 

Calculate Sk (Rk,ZR,) by Eqn(6) for each k 
Select the optimal feature axis 
Construct an FKNN classifier over this feature, 

N,  = N, + 1. If Ck <emzn or N, > Dimmo., 
and re-weight the samples by Eqn(7) 

break Iteration 
3. Calculate the ensemble classifier by Eqn(l0) 

Figure I :  GFCM Boosting feature selection algorithm. 

3 Experimental Results 
The experiments are carried on 5,000 images from Core1 
CDs, which come from SO semantic categories, with 100 
images for each category. The low-level features used are 
the color coherence in HSV color space, the first three color 
moments in L W  color space, the directionality texture, 
and the coarseness vector texture, which comprise a 155- 
dimensional feature space in total. The statistical average 
top-k precision is adopted as the performance measurement: 
the percentage of “relevant” images in a k size return set. 
We use each of the 5,000 image for querying, and calculate 
the average result. In each query session we have 5 rounds 
of feedback, and user labels I O  images in each round. 

3.1 Comparison with AdaBoost FS 
In this experiment, we set a = 0.4, = 0.2 for GFCM 
boosting algorithm, and compare it with the original Ad- 
aBoost FS method. Fig.2 gives the average PZO of the two 
methods during each of the 5 rounds, which shows that 
GFCM boosting outperforms AdaBoost FS significantly 
from the second feedback round, and the largest perfor- 
mance improvement is 48.43% in round 5. Also, GFCM 
boosting is faster than AdaBoost FS. E.g. the time cost 
for GFCM boosting in round 5 is 0.77 (s), for AdaBoost 
FS is 1.94 (s) (The time is calculated from the system gets 
the training samples until it gives out the retrieval result in  
each round). This is because AdaBoost constructs 155 weak 
classifiers for selecting one feature, while our method only 
constructs one F K ”  classifier. 
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Figure 2: Average PZO for GFCM boosting and AdaBoost 
FS methods. 

3.2 Comparison with DA FS 
To make the comparison more clearly, the DA FS meth- 
ods are compared with GFCM boosting also in boosting 
manner: in each boosting step, one optimal feature is se- 
lected by MDA or BiasMap instead of GFCM FS criterion 
in algorithm shown in Fig.1. Fig.3 gives the average PZo 
of GFCM boosting and DA boosting algorithms, where we 
also set a = 0.4, 0 = 0.2 for GFCM boosting. The fig- 
ure shows that GFCM boosting outperforms MDA and Bi- 
asMap boosting consistently from the second round, and 
the advantage of GFCM boosting is more obvious in the 
first few rounds. The precision improvement in round 2 
arc 24.77% and 28.44% compared with MDA and BiasMap 
boosting respectively. Since user usually has no patience to 
feedback for many rounds, the performance improvement 
in the first few rounds is very appealing. Moreover, GFCM 
boosting is much faster than DA boosting. For example, 
the time costs for MDA boosting and BiasMap boosting in 
round 5 is 45.97 (s) and 42.04 (s) respectively, which are 
about 60 times that for GFCM boosting feature selection. 

M _  - 
-em - r > r  -- -%- -.-aL..UD .-lly 

Figure 3: Average P20 for GFCM boosting and DA boost- 
ing algorithms. 

3.3 Influence of parameters 
Fig. 4 (a, b) show the average Pzo of GFCM boosting with 
p = 0.2, (1 from 0 to I, and a = 0.4, p from 0 to I re- 

~ 
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spectively. Which show that the general result for cy > 0 is 
better than that for cy 5 0 (e.g. the average PZo for a > 0 
is better than that for a 5 p with 1.23% in round 2). This 
approves the analysis that GFCM FS criterion accounts for 
the asymmetly property in CBIR online leaming. When 
oi = 0.4,p = 0.2, the accuracy attains an optimum, but the 
inHuence of a is not significant. 

f .  . . . . . . . .  ,.. 

. . . . . . . . .  . . . . . . . . . .  
*i. --. .-. ._I. 

- , . -. .~_ .  
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Figure 4 Average P ~ o  for GFCM boosting when (a) p = 
0.5, a from 1 to 6 (b) a=0.4,0 from 0 to 1. 

4 Conclusion 
To sum up, in  this paper we have proposed a GFCM FS 
criterion, which doesn’t depend on Gaussian distribution 
assumption for training samples, and accounts for the in- 
trinsic asymmetry requirement of CBIR online learning. A 
GFCM boosting feature selection algorithm is implemented 
in boosting manner, which is experimentally proved to be 
effective for CBIR online feature selection. 
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