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ABSTRACT

Exploding amounts of multimedia data increasingly require auto-
matic indexing and classification, e.g. training classifiers to produce
high-level features, or semantic concepts, chosen to represent image
content, like car, person, etc. When changing the applied domain
(i.e. from news domain to consumer home videos), the classifiers
trained in one domain often perform poorly in the other domain due
to changes in feature distributions. Additionally, classifiers trained
on the new domain alone may suffer from too few positive train-
ing samples. Appropriately adapting data/models from an old do-
main to help classify data in a new domain is an important issue.
In this work, we develop a new cross-domain SVM (CDSVM) al-
gorithm for adapting previously learned support vectors from one
domain to help classification in another domain. Better precision
is obtained with almost no additional computational cost. Also, we
give a comprehensive summary and comparative study of the state-
of-the-art SVM-based cross-domain learning methods. Evaluation
over the latest large-scale TRECVID benchmark data set shows that
our CDSVM method can improve mean average precision over 36
concepts by 7.5%. For further performance gain, we also propose an
intuitive selection criterion to determine which cross-domain learn-
ing method to use for each concept.

Index Terms— learning systems, feature extraction, adaptive
systems, image processing

1. INTRODUCTION

There is a common issue for machine learning problems: the amount
of available test data is large and growing, but the amount of labeled
data is often fixed and quite small. Video data, labeled for seman-
tic concept classification is no exception. For example, in high-level
concept classification tasks ( TRECVID [9]), new corpora may be
added annually from unseen sources like foreign news channels or
audio-visual archives. Ideally, one desires the same low error rates
when reapplying models derived from previous source domainDs to
a new, unseen target domain Dt, often referred to as domain adapta-
tion or cross-domain learning. In this paper we tackle this challeng-
ing issue and make contributions in two folds. First, a new Cross-
Domain SVM (CDSVM) algorithm is developed for adapting previ-
ously learned support vectors from sourceDs to help detect concepts
in target Dt. Better precision can be obtained with almost no addi-
tional computational cost. Second, a comprehensive summary and
comparative study of the state-of-the-art SVM-based cross-domain
learning algorithms is given, and these algorithms are evaluated over
the latest large-scale TRECVID benchmark data. Finally, a simple
but effective criterion is proposed to determine if and which cross-
domain method should be used.

The rest of this paper is organized as follows. Sec.2 gives an
overview of many state-of-the-art SVM-based cross-domain learn-
ing methods, ordered in decreasing computational cost. Sec.3 intro-
duces our CDSVM algorithm. Sec.4 and Sec.5 give the experimental
results and the conclusion.

2. OVERVIEW

The cross-domain learning problem can be summarized as follows.
Let Dt denote the target data set, which consists of two subsets: the
labeled subset Dt

l and the unlabeled subset Dt
u. Let (xi, yi) denote

a data point where xi is a d dimensional feature vector and yi is the
corresponding class label. In this work we only look at the binary
classification problem, i.e., yi = {+1,−1}. In addition to Dt, we
have a source data set Ds whose distribution is different from but
related to that of Dt. A binary classifier fs(x) has already been
trained over this source data set Ds. Our goal is to learn a classifier
f(x) to classify the unlabeled target subset Dt

u.

Since Dt and Ds have different distributions, fs(x) will not
perform well for classifying Dt

u. Conversely, we can train a new
classifier f t(x) based on Dt

l alone, but when the number of train-
ing samples |Dt

l | is small, f t(x) may not give robust performance.
Since Ds is related to Dt, utilizing information from source Ds to
help classify target Dt

u should yield better performance. This is fun-
damental the motivation of cross-domain learning. In this section,
we briefly summarize and discuss many state-of-the-art SVM-based
cross-domain learning algorithms.

2.1. Standard SVM Applied in New Domain
Without cross-domain learning, the standard Support Vector Ma-
chine (SVM) [5] classifier can be learned based on the labeled subset
Dt

l to classify the unlabeled set Dt
u. Given a data vector x, SVMs

determine the corresponding label by the sign of a linear decision
function f(x) = wT x+ b. For learning non-linear classification
boundaries, a kernel mapping φ is introduced to project data vector
x into a high-dimensional feature space φ(x), and the correspond-
ing class label is now given by the sign of f(x)=wT φ(x)+b. The
primary goal of an SVM is to find an optimal separating hyperplane
that gives a low generalization error while separating the positive and
negative training samples. This hyperplane is determined by giving
the largest margin of separation between different classes, i.e. by
solving the following problem:

min
w

1

2
||w||22 + C

XNt
l

i=1
εi (1)

s.t. yiw
T φ(xi)+b≥1−εi, εi≥0, ∀(xi, yi) ∈ Dt

l

where εi is the penalizing variable added to each data vector xi; C
determines how much error an SVM can tolerate.
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One very simple way to perform cross-domain learning is to
learn new models over all possible samples, called Combined SVM
in this paper. The primary motivation for this method is that when
the size of data in target domain is small, the target model will ben-
efit from a high count of training samples present in Ds and should
therefore be much more stable than a model trained on Dt alone.
However, there is a large time cost for learning with this method due
to the increased number of training samples from |Dt| to |Ds|+|Dt|.
2.2. Transductive Approach
To decrease generalization error in classifying unseen dataDt

u in the
target domain, transductive SVM methods [4, 7] incorporate knowl-
edge about the new test data into the SVM optimization process so
that the learned SVM can accurately classify test data.

2.2.1. Transductive SVM (TSVM)

To find the optimal label estimation ŷj over a test data vector x̂j ,
(x̂j , ŷj)∈Dt

u, Transductive SVM (TSVM) [7] gives the optimal hy-
perplane by solving the following problem:

min
w

1

2
||w||22 + C

XNt
l

i=1
εi + Ĉ

XNt
u

j=1
ε̂j (2)

s.t. yiw
T φ(xi)+b≥1−εi, εi≥0, ∀(xi, yi) ∈ Dt

l

ŷiw
T φ(x̂j)+b≥1−ε̂j , ε̂j≥0, ∀(x̂j , ŷj) ∈ Dt

u

Eqn.(2) is not convex which it is generally hard to optimize. Many
approximation methods have been used [3].

2.2.2. Localized SVM (LSVM)

Contrary to TSVMs that try to learn one general classifier by lever-
aging all the test data, the Localized SVM (LSVM) tries to learn one
classifier for each test sample based on its local neighborhood. Given
a test data vector x̂j , we find its neighborhood in the labeled train-
ing set Dt

l based on similarity σ(x̂j ,xi), xi ∈ Dt
l : σ(x̂j ,xi) =

exp
`−β||x̂j − xi||22

´
. β controls the size of the neighborhood, i.e.

the larger the β, the less influence each distant data point has. An
optimal local hyperplane is learned from test data neighborhoods by
optimizing the following function:

min
w

1

2
||w||22 + C

XNt
l

i=1
σ(x̂j ,xi)εi (3)

s.t. yiw
T φ(xi)+b≥1−εi, εi≥0, ∀(xi, yi) ∈ Dt

l

As the result, the classification of a test sample only depends on the
support vectors in its local neighborhood.

Transductive SVM approaches can be directly used for cross-
domain learning by using Dt

l ∪ Ds to take the place of Dt
l in both

Eqn.(2) and Eqn.(3). Their major drawback is the computational
cost, especially for large-scale data sets. Let Ots denote the time
complexity of training a new classifier over the combined Dt

l ∪ Ds.
LSVM needs to train |Dt

u| classifiers, one for each test sample. Thus
the complexity of LSVM is about |Dt

u|Ots. In [3] the iterative train-
ing process for TSVM needs POts complexity where P is the num-
ber of iterations. Approximation methods can be used to speed up
the learning process by sacrificing accuracy [3, 4], but how to bal-
ance speed and accuracy is also an open issue.

2.3. Cross-domain Adaptation Approaches

In the cross-domain learning problem, the source data setDs and the
target data set Dt are highly related. The following cross-domain
adaptation approaches investigate how to use source data to help
classify target data.

2.3.1. Feature Replication
Feature replication combines all samples from both Ds and Dt, and
tries to learn generalities between the two data sets by replicating
parts of the original feature vector, xi for different domains. This
method has been shown effective for text document classification
over multiple domains [6]. Specifically, we first zero-pad the dimen-
sionality of xi from d to d(N−1) where N is the total number of
adaptation domains, and in our experiments N = 2 (one source and
one target). Next we transform all samples from all domains as:

x̂s
i =

2
4

xi

0
xi

3
5 , xi∈Ds x̂t

i =

2
4

xi

xi

0

3
5 ,xi∈Dt

During learning, a model will be constructed that takes advantage
of all possible training samples. Alike the combined method in sec-
tion 2.1, this is most helpful when Ds can provide missing data for
Dt. However, unlike the combined method, learned SVs from the
same domain as a test unlabeled sample (source-source or target-
target) are given more preference by the the kernelized function of
φ(x̂s, x̂s) or φ(x̂t, x̂t) compared to φ(x̂t, x̂s) because of the zero-
padding operation. Unfortunately, due to the increase in dimension-
ality, there is also a large increase in model complexity and compu-
tation time during learning and evaluation of replication models.

2.3.2. Adaptive SVM

In [10], the Adaptive SVM (A-SVM) approach tries to adapt the a
classifier fs(x), learned from Ds to classify the unseen target data
set Dt

u. In this approach, the final discriminant function is the av-
erage of fs(x) and the new “delta function” �f(x) =wT φ(x)+b
learned from target set Dt

l , i.e.,

f(x) = fs(x) + wT φ(x) + b (4)

where �f(x) aims at complementing fs(x) based on target Dt
l .

The basic idea of A-SVM is to learn a new decision boundary that
is close to the original decision boundary (given by fs(x)) as well
as separating the target data. This new decision boundary can be
obtained by solving problem:

min
w̃

1

2
||w̃||22 + C

XNt
l

i=1
εi, w̃ = [wT , b]T (5)

s.t. yi(f
s(xi)+wT φ(xi)+b)≥1−εi, εi≥0, ∀(xi, yi) ∈ Dt

l

The first term tries to minimize the deviation between the new de-
cision boundary and the old one, and the second term controls the
penalty of the classification error over the training data in the target
domain.

One problem with this approach is the regularization constraint
that the new decision boundary should not be deviated far from the
source classifier, since equation (5) does not pursue large margin in
learning with target data (note that ||w||22 reflects the “delta function”
but not margin in Eqn.(5)). It is a reasonable assumption when Dt

is only incremental data for Ds, i.e. Dt has similar distribution with
Ds. When Dt has a different distribution but comparable size than
Ds, such regularization constraint is problematic.

3. CROSS-DOMAIN SVM

In this work, we propose a new method called Cross-Domain SVM
(CDSVM). Our goal is to learn a new decision boundary based on the
target data setDt

l which can separate the unknown data setDt
u, with

the help of Ds. Let Vs = {(vs
1, y

s
1), . . . , (v

s
M , ys

M )} denote the
support vectors which determine the decision boundary and fs(x)
be the discriminant function already learned from the source domain.
Learned support vectors carry all the information about fs(x); if we
can correctly classify these support vectors, we can correctly classify
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target combined replication CDSVM A-SVM
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Fig. 1. Average precision vs. concept class for best methods; ordered by increasing frequency of positive Dt
l samples. Shaded concepts

indicate the best method has a relative increase of at least 5% over all other methods.

the remaining samples from Ds except for some misclassified train-
ing samples. Thus our goal is simplified and analogous to learning
an optimal decision boundary based on the target data set Dt

l which
can separate the unknown data set Dt

u with the help of Vs.
Similar to the idea of LSVM, the impact of source data Vs can be

constrained by neighborhoods. The rationale behind this constraint
is that if a support vector vs

i falls in the neighborhood of target data
Dt, it tends to have a distribution similar to Dt and can be used to
help classify Dt. Thus the new learned decision boundary needs to
take into consideration the classification of this support vector. Let
σ(vs

j ,Dt
l ) denote the similarity measurement between source sup-

port vector vs
j and the labeled target data set Dt

l , our optimal deci-
sion boundary can be obtained by solving the following optimization
problem:

min
w

1

2
||w||22 + C

X|Dt
l |

i=1
εi + C

XM

j=1
σ(vs

j ,Dt
l )εj (6)

s.t. yi(w
T φ(xi)−b)≥1−εi, εi≥0, ∀(xi, yi)∈Dt

l

ys
j (w

T φ(vs
j )−b)≥1−εj , εj≥0, ∀(vs

j , y
s
j )∈Vs

In CDSVM optimization, the old support vectors learned from
Ds are adapted based on the new training data Dt

l . The adapted
support vectors are combined with the new training data to learn a
new classifier. Specifically, let D̃ = Vs ∪ Dt

l , Eqn.(6) can be re-
written as follows:

min
w

1

2
||w||22 + C

X|D̃|
i=1

σ̃(xi,Dt
l )εi (7)

s.t. yi(w
T φ(xi)−b)≥1−εi, εi≥0, ∀(xi, yi)∈D̃

σ̃(xi,Dt
l )=1, ∀(xi, yi)∈Dt

l , σ̃(xi,Dt
l )=σ(xi,Dt

l ), ∀(xi, yi)∈Vs

The dual problem of Eqn.(7) is as follows:

max
αi

LD =
X|D̃|

i=1
αi− 1

2

X|D̃|
i=1

X|D̃|
j=1

αiαjyiyjK(xi,xj) (8)

s.t. εi≥0, μi≥0, 0≤αi≤Cσ̃(xi,Dt
l ), yi(w

Tφ(xi)+b)≥1−εi

αi

h
yi(w

T φ(xi)+b)−1+εi

i
= 0, μiεi =0, ∀(xi, yi)∈D̃

Eqn.(8) is the same with the standard SVM optimization, with the
only difference that:

0≤αi≤C, ∀(xi, yi)∈Dt
l

0≤αi≤Cσ(xi,Dt
l ), ∀(xi, yi)∈Vs

For support vectors from the source data set Ds, weight σ penalizes
those support vectors that are located far away from the new training
samples in target data set Dt

l .

Similar to A-SVM [10], we also want to preserve the discrimi-
nant property of the new decision boundary over the old source data
Ds, but our technique has a distinctive advantage: we do not enforce
the regularization constraint that the new decision boundary is sim-
ilar to the old one. Instead, based on the idea of localization, the
discriminant property is only addressed over important source data
samples that have similar distributions to the target data. Specifi-
cally, σ takes the form of a Gaussian function:

σ(vs
j ,Dt

l ) =
1

|Dt
l |

X
(xi,yi)∈Dt

l

exp
˘−β||vs

j − xi||22
¯

(9)

β controls the degrading speed of the importance of support vectors
from Vs. The larger the β, the less influence of support vectors in
Vs that are far away from Dt

l . When β is very large, a new decision
boundary will be learned solely based on new training data fromDt

l .
Also, when β is very small, the support vectors from Vs and the tar-
get data set Dt

l are treated equally and the algorithm is equivalent to
training an SVM classifier over Dt

l ∪ Vs together. This is virtually
equivalent to the combined SVM described in Sec.2.1. With such
control, the proposed method is general and flexible, capturing con-
ventional methods as special cases. The control parameter, β, can be
optimized in practice via systematic validation experiments.

CDSVM has small time complexity. Let Ot denote the time
complexity of training a new SVM based on labeled targetDt

l . Since
the number of support vectors from source domain, |Vs|, is gen-
erally much smaller than the number of training samples in target
domain, i.e., |Vs|<< |Dt

l |, CDSVM trains an SVM classifier with
|Vs|+|Dt

l|≈|Dt
l| training samples, and this computational complexity

is very close to Ot.

4. EXPERIMENTS

In this work, we evaluated several algorithms over different parts
of the TRECVID data set [1]. The source data set, Ds, is a 41847
keyframe subset derived from the development set of TRECVID
2005, containing 61901 keyframes extracted from 108 hours of in-
ternational broadcast news. The target data set,Dt, is the TRECVID
2007 data set containing 21532 keyframes extracted from 60 hours of
news magazine, science news, documentaries, and educational pro-
gramming videos. We further partition the target set into training and
evaluation partitions with 17520 and 4012 keyframes respectively.
The TRECVID 2007 data set is quite different from TRECVID
2005 data set in program structure and production value, but they
have similar semantic concepts of interest. All the keyframes are
manually labeled for 36 semantic concepts, originally defined by
LSCOM-lite [8], and in this work we train one-vs.-all classifiers.
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Method Train Ds Train Dt MAP
standard target none all 0.248

CDSVM SVs all 0.263
standard source all none 0.213

LSVM regions all 0.169

standard combined all all 0.257
replication all all 0.238

Table 1. Training data description and mean average precision (over
36 concepts) of each evaluated model ranked by increasing compu-
tation time, assuming |Ds| > |Dt|.

For each keyframe, 3 types of standard low-level visual features
are extracted: grid-color moment (225 dim), Gabor texture (48 dim)
and edge direction histogram (73 dim). These features are con-
catenated to form a 346-dim long feature vector to represent each
keyframe. Such features, though relatively simple, have been shown
effective in detecting scenes and large objects, and considered as part
of standard features in high-level concept detection [1].

To guarantee model uniformity, we computed a single SVM RBF
model for each concept and method with C =1 and γ = 1

d
or 0.0029

for our experiments (d is the feature dimension). We used LIBSVM
[2] for all computations with a modification to include sample inde-
pendent weights, described in Eqn.(8).

4.1. Comparison of methods
Table 1 shows the mean average precision (MAP) of the classifica-
tion task. Average precision is the precision evaluated at every rele-
vant point in a ranked list averaged over all points; it is used here as
a standard means of comparison for the TRECVID data set. Com-
paring MAP alone, the CDSVM method proposed in this work out-
performs all other methods. This is significant not only because of
the higher performance, but also because of lower computation com-
plexity compared to the standard combined, replication, or LSVM
methods. Improvements over the target model and the combined
model are particularly encouraging and confirm our assumption that
a judicious usage of data from the source domain is critical for ro-
bust target domain models. Not all the old samples are needed and
inclusion of only source data support vectors is sufficient because
each vector’s influence is adequately customized.

4.2. Predicting method usage
While CDSVM has better average performance, further analysis
demonstrates that it is not always the best choice for individual
classes. Fig.1 gives the per-concept AP and is ordered such that
frequency of positively labeled samples (as computed from Dt

l )
decreases from left to right. Intuitively, CDSVM will perform well
when we have enough positive training samples in both Ds and Dt.
It is highly probable that support vectors from Ds are complemen-
tary to Dt, which can be combined with Dt to get a good classifier.
However, when training samples from both Ds and Dt are few,
positive samples from both source and target will distribute sparsely
in the feature space and it is more likely that the source support
vectors are far from the target data. Thus, not much information can
be obtained from Ds and we should not use cross-domain learning.
Alternatively, with only a few positive target training samples and
a very reliable source classifier fs(x), the source data may provide
important missing data for the target domain. In such case, CDSVM
will not perform well because target data is unreliable. In this sec-
ond situation, the feature replication method, discussed in Sec.2.3.1
generally works well.

Based on the above analysis and empirical experimental results
in Fig.1, a method predicting criterion is developed in Fig.2. With
this criterion, we can increase our cross-domain learning MAP

if (freq(Dt
+)>T t

1) ∪ (freq(Ds
+)>T s) then

Selected model = CDSVM
else if AP (Ds) > MAP (Ds) then

Selected model = Feature Replication
else if (freq(Dt

+)<T t
2) ∩ (freq(Ds

+)<T s) then
Selected model = SVM over Target Labeled Set Dt

l

else
Selected model = CDSVM

end if
Fig. 2. Method selection criterion. freq(D+) is the frequency of
positive samples in a data domain; AP (Ds) and and MAP (Ds)
are the AP and MAP computed for source models on a validation
set of source domain data; T t

1 , T t
2 and T s are thresholds empirically

determined via experiments.

from 0.263 to 0.271, but one must cautiously interpret these MAP
numbers. Though the overall MAP improvement is relatively small
(about 3%), the improvements over the rare concepts is actually very
significant. If we compute the MAP over only concepts with lower
frequencies, the improvement is as large as 22%.

5. CONCLUSIONS

In this work we tackle the important cross-domain learning issue of
adapting models trained and applied in different domains. We de-
velop a novel and effective method for learning image classification
models that work across domains even when the distributions are
different and has training data is small. We also perform a system-
atic comparison of various cross-domain learning methods over a
diverse and large video data set. To the best of our knowledge, this
is the first work of such comprehensive evaluation. By analyzing the
advantage and disadvantage of different cross-domain learning algo-
rithms, a simple but effective criterion is proposed to determine when
and which cross-domain learning methods should be used. Consis-
tent performance improvement can be achieved in both overall MAP
and individual AP over most concepts.
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