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ABSTRACT 
Long-term relevance feedback learning is an important learn- 
ing mechanism in content-based image retrieval. In  this pa- 
per, our work has two contributions: ( I )  A Mulri-layer Se- 
nmntic Representation (MSR) is proposed. and an algorithm 
is implemcnted to automatically huild the MSR for image 
datahase through long-term relevance feedback learning. ( 2 )  
The accumulated MSR is incorporated with the short-term 
feedback learning to help subsequent users’ retrieval. The 
MSR memorizes the multi-correlation among images, and 
integrates these memories to build hidden semantic con- 
cepts for images, which aredistributed in multiple semantic 
layers. In experiment, an MSK is built based o n  the real re- 
trieval from IO different users. which can precisely describe 
the hidden concepts underlying images, and help to bridge 
the gap between high-level concepts and low-level features, 
and thus improve the retrieval performance significantly. 

1. INTRODUCTION 

Content-based image retrieval (CBIR) has been largely cx- 
plored since last decades. In a CBIR system, images the 
user wants usually share some semantic cue, which is called 
the hidden semnric  concept underlying the images. The 
gap between high-level hidden concepts and low-level vi- 
sual features has been the main obstacle for the develop- 
ment of CBIR systems, and the relevance feedback tech- 
nique is introduced lo bridge this gap [XI. There are two 
kinds of relevmce feedback mechanisms. The short-temi 
learning can be viewed as a supervised learning process 
[71. During a query session, the user labels some images 
as ”relevant” or “irrelevant” to the query concept in  each 
feedhack round, and supervises the system to adjust search 
in subsequent retrieval rounds. However the learned infor- 
mation is discarded when a new query session begins. The 
long-term leaming [ I ,  3,4,5,6] memorizes the information 
gained from user’s feedback during prcviousquery sessions, 
and utilizes the accumulated experience to help retrieval in 
subsequent query sessions, which usually has better perfor- 
mance than only using the short-term learning. 

There are mainly three long-term learning mechanisms. 
First, the Lntent Senwnriclndexing (LSI)  approach 141 mem- 
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orizes the “relevant” images for each query to form image 
indexes for query concepts. Sccond, the hi-correlation ap- 
proach [6] records statistical hi-correlation hetween each 
image pair to calculate the semantic similarity between im- 
ages, which is combined with low-level similarity to help 
retrieval. Third. the clustering approach clusters the images 
into several clusters, with each cluster representing one hid- 
den semantic concept: in [ I ,  31 images arc initially clustered 
by low-level features and the feedback information is used 
to adjust the clustering results; in  [SI images are clustered by 
semantic similarities from hi-correlation records. From the 
aspect o f  concept learning, the LSI and hi-correlation ap- 
proaches explicitly don’t learn semantic concepts from the 
long-term records, while the clustering approach contains 
further learning mechanism to extract semantic clusters and 
reveal hidden semantic concepts. 

These approaches can exploit the accumulated experi- 
ence in some sense to help retrieval. However, the real 
world hidden semantics have the following two characteris- 
tics: ( I )  Instead ofhi-correlation between images, the query 
concept usually can only be reHected by multi-correlation 
among a group of images. For example images in Fig.1 
come from the semantic category “fruit”. When (a, d, e) 
are labeled as “relevant”, and others “irrelevant”, the query 
concept is “orange”; when (a, c, t) are “relevant”, and oth- 
ers “irrelevant”, the query concept is “green color fruit”. (2) 
Instead of the one kind of hard partition in one semantic 
layer divided hy clustering method, the real world concepts 
should have multiplc seninntic layers, with one layer cor- 
responding to one kind of hard partition of hidden seman- 
tic space. Some concepts have intrinsic intersections. e.g.. 
“green color” and “orange” describe objects’ different at- 
tributes. Image sets belonging to these two concepts can’t 
be hard divided, and should he in different semantic layers. 

,dl ,U/ ,E/ /E, /e/ I,, 

Fig. 1. Example for semantic exposition by group of images. 

To address the issue of long-term feedhack learning with 
real semantics extraction. our work in this paper has two 
contributions. ( I )  A Multi-layer Semantic Representation 
(MSR) for image database is proposed and an algorithm is 
implemented to automatically build the MSK through long- 

221 5 

Authorized licensed use limited to: Columbia University. Downloaded on December 29, 2008 at 22:41 from IEEE Xplore.  Restrictions apply.



term relevance feedback learning process. The MSR records 
the direct multi-correlation among images, andextracts hid- 
den concepts, which are distributed in multiple semantic 
layers. from these memories. One semantic layer corre- 
sponds to one kind of hard partition ofsemantic space. Con- 
cepts without intersection between each other are put into 
one semantic layer, and concepts with intersection are put 
into different layers. (2) An integrated algorithm is pro- 
posed to seamlessly combine the semantic information pro- 
vided by accumulated MSR with the short-term learner to 
help retrieval in subsequent query sessions. The experiment 
is carried by totally 1000 rounds of real retrieval from 10 
different users, which shows that the MSR built can de- 
scribe the real world semantic concepts underlying images 
precisely. Also, the incorporation of long-term MSR and 
short-term learning can help to grasp the query concept, and 
improve the retrieval performance significantly. 

2. MULTI-LAYER SEMANTIC REPRESENTATION 

2.1. MSR formulation 

Assume that we have already learned N semantic concepts 
c l , .  . . , CN, which are distributed in Ad semantic layers 11, 

. . . ~ lnr .  Ci and denote the corresponding “relevant” and 
“irrelevant” image sets for ci ,  respectively, where image x t 
Ci belongs to concept ci, and image x t is labeled to be 
“irrelevant” with ci. If ci E l k  and c3 E Is, C, nCj = 4. Also, 
we want the number oflayers to be as small as possible, and 
thus each layer to be as full as possible. 

Suppose in a new query session, images in R are laheled 
to be “relevant”, and images in ZR. “irrelevant” by user, cy 
denotes the current query concept. Let Cti be the relation- 
ship between cq and existing e,. and Ltk be the relationship 
between cy and existing I k .  We have following definitions. 
Definition 1 [Ct,]: 

pd, or  Tn n E,  #+ { 1, R n C, # $  and R n T i  =+ and272 n c,=4 
Where Ct, = -1 means that cq and ci have no relationship 
(Fig.2(a)); Cti = 0 means that cq and ci are incompatible 
(can’t be in the same layer) (Fig.2(b)); Cti = 1 means e,, is 
compatible with ci (Fig.2(c)). 

-1: Rnci=b 
0 ,  R n Ci #+, and R Ct7 = 

(a) Ct,=-l (b) Ct,=O (c) Cti = 1 
Fig. 2. Examples for relationship between cq and existing c,. 

Definition2 [ L t k ] :  Set7LOk=CC,E111(Cti=O), nf =EciElk 
I (Cti  = 1). where I ( A )  = 1 if A is true, I (A)  =0 else. 

{ 1, otherwise 

Ltk=O means e& (Fig.3(a)); c& if L t k  = 1 (Fig.3(b)). 

0, n i > O o r n f  > 1 L t k  = 

(a) Lti. = O  (b)  Lti. = 1 
Fig. 3. Examples fur relationahip hetwecn cy and existing l r  

Let SI, and Sc denote the layer id and concept id of the 
current quety concept, e,,, respectively. S L  and Sc deter- 
mine the relation between cq and the existing semantics, and 
can be learned by algorithm in Fig.4. Thus the MSR for the 
database can be adaptively built by the algorithm in F i g 5  

Algorithm: Semantic Status Learning 
Input: 1 1 ; .  . . , I n [ .  CI,. . . , C N ,  T i , .  . . , T N ,  R, ZR 
Output: Layer id Sri, Concept id Sc 

I nt = I(Ltk = 1); 11 number of layers whick 

2 If (nt =n) { SL =M+l, Sc = iVt1; ] I/ new concep 
11 in new layer 

11 are compatible with cq 

Else if (n.t = 1) { SL =argk{Ltk = 1); 
If (nk = 1) { Sc=argi{Cti = 1, ci elk};  } 
Else { Sc = N +  1;) 11 new concept in I k  

} 
Else { 7nt = CLtFl nt; 11 the number of compatible 

11 concept in compatible layers 
If (nit=O) {/I new concept in the lowest layer 

SL = srg miiin{Lts = 1); Sc = N +  1; } 
Else i f ( m t = 1 )  { S ~ = ~ r g ~ { n ~ = l ] ;  

Else { 11 the semantic status of cy is not sure 
SC =arg,{Cti =1, ci E I ~ } ;  } 

sL=n;sc=n; 1 
1 
Fig. 4. Pseudu-code for semantic status learning. 

Algorithm Long-Term MSR Learning: 
Input: S L ,  SC 
I f ( S L = A f + l )  {createlnr+l, C N + L = C ~ ,  C N + I € ~ M + I ; }  

E l s e i f ( 1 I S L S A d )  { 
If (1 5 Sc 5 N) { Cs,, =Cs,, U R ;  T S ~ :  = ?s<: UZR.;} 
Else { create C N + L  =cy, CN+I E l k ;  } ] 

Else { don’t record this query; } 

Fig. 5. Pseudo-code for long-term MSR learning. 

2.2. Post processing 

There are two situations where a concept may be wrongly 
built: ( I )  Images belonging to concept Ci have a great van- 
ety in low-level features, and are learned into different 
and Cz,6. When more query sessions are carried, the true Ci 
is built, but in another layer (Fig.6 (a)); (2) Some images 
belonging to C, is mislabeled as in ci, and form Ci in an- 
other layer (Fig.6 (b)) (the mislabeling problem is common 
for all CBIR systems). The post processing is  necessary to 
alleviate these mistakes and increase the robustness of our 
method. Here we adopt the concept merging method. 
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(ai (h i  
Fig. 6. Two kinds of wrongly extracted concepts 

For an n size database, viewing images XI ~ . . . , x , ~  as at- 
tributes for semantic concepts. vector F(C,) = ( I  (xl EC,) , 

can be viewed as the binary feature vectors for setCi andEi. 
The similarity between concepts and cj can he measured 
by the famous Feature Corirrnst Model (FCM) [2 ]  (which is 
a successful psychological similarity measurement) as: 

. .  . > I ( X , ~ E C ~ ) ]  a n d F ( z , ) = [ I ( x l t ? ? i )  ,... , I ( X , ~ E ~ ~ ) ]  

s (c,,cj)=sim~(ci, cj)-ws(ci,c,)-~i.s(c,, Ci) ( I )  

where Sim,(Ci,Cj) and Dis(Ci,C,) are given by: 

Where . is the dot product. When S (Ci ,Cj)  >a, Ci and C j  
are merged. n is slatistically set to he 0.9 in our system. 

3. RETRIEVAL BY BOTH LONG-TERM AND 
SHORT-TERM LEARNING 

For a single query, the high-level semantic information lear- 
ned by long-term MSR and the low-level information leamed 
by short-term leamer are combined to improve the retrieval 
performance. 

3.1. Short-term learner 

The SVM active learning (SVMA~,,,,,) algorithm [7] is ado- 
pted as our short-term learner, whose output is a set ofdis- 
tance Dt = {D’(x)}. D‘(x) denotes the distance of each 
image x to the decision boundary (x is “relevant” if Dt  (x) > 
0, “irrelevant” otherwise). During each feedback round t, 
the learner selects the images with smallest IDt(x)l as Ct 
for user to label (labelset). and select the images with largest 
D‘(x) as the retrieval result Pf (rerum set) for this round. 
Actually Dt(x) can be converted to represent the relevant 
degree of x to the current hidden concept c,I as: 

1 
E,(x E e,) = Fexp {Dt(x)} (2) 

where Z is the normalization factor for E, over x. 

3.2. Long-term facilitation 

During each feedback round, we first judge the semantic 
status Sc and Sr, by algorithm in Fig.4, then select P t  and 
Lt as follows. 

Return set selection 

Sincc an image x may belong to different concepts, we de- 
fine the probability ofx belonging to C, or?% by: 

where Nxtc, (NxEF.)  IS thc number ofx being labeled to 
be in Ci (C) previously. And the probability that the current 
cCI equals to an existing e, is defined by: 

h’(i=Sc) ~ 1 5 S ~ < h I ,  1 < S c 5 N  
(cq = CZ) = WXERP (x Ci) > S L  = 0: Sc = 0 {(; , otherwise 

where 6(.) is Dirac function. Thus the relevant degree that 
an image x satislies c, is: 

N 

p(c,=c,) 

Where Z‘ is the normalization factor for El over x. 

to represent the relevant degree of each image x tu e ,  as: 

Ef(x t e,,) = logE,(x E cq) +logEi(x t cq)  

Then the short-term and long-term information are merged 

(4) 

Images with largest E,(x E cp) form P t .  

Label set selection 

When SL = 0 and Sc = 0, we select Ct frum the images 
in the compatible concepts in compatihle layers with cq. 
This helps the system to recognize the semantic status of 
c,. When the scinantic status is determined, Lt is selected 
with original Dt hy mechanism of SVMaCttq,.. 

When B query session ends, we do long-term MSR learn- 
ing by algorithm in FigS. The post processing is carried 
when every 100 query sessions have bccn taken. 

4. EXPERIMENTS 

The database has I0.000 real world images from Core1 CDs, 
which come from SO semantic categories, 200 images for 
each category. The low-level features used are color coher- 
ence in HSV space, the lirst three color moments in LUV 
space, the directionality texture feature, totally 14.5 dimen- 
sions. To make the experimental results more reprcscnta- 
tive, instead of the usually used simulated experiments by 
ground truth, we ask 10 different users to launch totally 
1000 queries by our system to construct the MSR for the 
database. The users have no special training hut are only 
told to do retrieval to find what they want without changing 
the query concept during one query session. 

The built MSR 

The final MSR huilt after 1000 query sessions has X X  con- 
cepts in 4 layers, whose structure is shown in Fig.7, where 
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the semantic kcywords are added after experiments for het- 
ter understanding. We can see that the system learns many 
concepts adaptive to the database, which are not contained 
in ground truth semantics and have real world meanings. 
This also indicates that thc built MSR can he used for an- 
notation (we can simply annotate the concepts extracted by 
MSR to annotate the images in the database). Furthermore, 
when more images arc added into the database, the already 
learned MSR is scalable to new added data by just adding 
the new data into the database part which is never labeled. 

. . . -. . . .- . - . . . -  . . .  
Layer4  ; I Inncl "ElliEIL- 1-1 R'Ick '> fpY"p i"s  1. " . ., , . , , 

0 IO" zoo ,U0 400 5"" 6 0 0  7 0 0  800 -0" 10"O 
LS"..TSI. lrlininn OYSIY s ~ s j . O n s  

Fig. 8. Average retrieval PZu with and without MSR learning. 

Fig. I. MSR extracted after loo0 lea1 retrieval sessions 

Precision evaluation 

With above built MSR, we use the ground truth semantics 
to test the performance improvement achieved by our al- 
gorithm over the 10,000 images. The top-k precision ( P k )  
(the perccntagc of "relevant" images in k size return set) is 
evaluated, and we cany totally 1000 independent queries to 
calculate the average result. Fig.8 gives the average pL0 of 
our algorithm with different experience accumulation (after 
100 to I000 query sessions' learning), and the comparison 
with only short-term learning (original SVMactiu.). The 
figure shows that the long-term MSR experience can sig- 
nificantly improve the retrieval performance, consistently 
from the first feedback round. For example the precision 
improvement for round 5 after 1000 queries is 28. I I %. Also 
the advantage is more obvious as more queries are carried. 
Fig.9 gives a retrieval example querying for images belong- 
ing to "jumping porpoise" concept, which is not contained 
in ground truth concepts. The first screen of results after 3 
feedback rounds for our method with final MSR accumula- 
tion and original SVM,,,t,,,, are listed. Wherc Pan for our 
method can attain 100%. ior SVMactiue is only 25%. 

5. CONCLUSION 

In this papcr we have proposed a multi-layer semantic rep- 
resentation for database's hidden semantics and have imple- 

(h) P3 with MSR learning (c)P3 without MSR learning 

Fig. 9. Retrieval example querying for 'jumping porpoise", im- 
ages with green frames are correct ones. 

mented an algorithm to automatically build the MSR through 
long-term feedback process. Also. the MSR is incorporated 
with the short-term leamer to significantly improve the re- 
trieval result. Furthermore, the extracted semantics have 
real world meanings, which can he easily extended to fur- 
ther applications (such as facilitating semantic annotation). 
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