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ABSTRACT

Long-term relevance feedback learning is an important learn-
ing mechanism in content-based image retrieval. In this pa-
per, our work has two coniributions: (1) A Multi-layer Se-
mantic Representation (MSR) is proposed, and an algorithm
is implemented to automatically build the MSR for image
database through long-term relevance feedback learning. (2)
The accumulated MSR is incorporated with the short-term
feedback learning to help subsequent users’ retrieval. The
MSR memorizes the multi-correlation among images, and
integrates these memories to build hidden semantic con-
cepts for images, which are distributed in multiple semantic
layers. In experiment, an MSR is built based on the real re-
trieval from 10 different users, which can precisely describe
the hidden concepts underlying images, and help to bridge
the gap between high-level concepts and low-level features,
and thus improve the retrieval performance significantly.

1. INTRODUCTION

Content-based image retrieval (CB/R) has been largely cx-
plored since last decades. In a CBIR system, images the
user wants usually share some semantic cue, which is called
the hidden semantic concept underlying the images. The
gap between high-level hidden concepts and low-level vi-
sual features has been the main obstacle for the develop-
ment of CBIR systems, and the relevance feedback tech-
nique is introduced to bridge this gap [8]. There are two
kinds of relevance feedback mechanisms. The short-term
learning can be viewed as a supervised learning process
[7]. During a query session, the user labels some images
as “relevant” or “irrelevant” to the query concept in each
feedback round, and supervises the system to adjust search
in subsequent retrieval rounds. However the learned infor-
mation is discarded when a new query session begins. The
long-term learning [ 1,3, 4, 5, 6] memorizes the information
gained from user’s feedback during previous query sessions,
and utilizes the accumulated experience to help retrieval in
subsequent query sessions, which usually has better perfor-
mance than only using the short-ierm learning.

There are mainly three long-term learning mechanisms.
First, the Latent Semantic Indexing (LSI) approach {4] mem-
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orizes the “relevant” images for each query to form image
indexcs for query concepts. Second, the bi-correlation ap-
proach [6] records statistical bi-correlation between cach
image pair to calculate the semantic similarity between im-
ages, which is combined with low-level similarity to help
retrieval. Third. the clustering approach clusters the images
into several clusters, with each cluster representing one hid-
den semantic concept: in [ 1, 3] images are initially clustered
by low-level features and the feedback information is used
to adjust the clustering results; in [5] images arc clusiered by
semantic similarities from bi-correlation records. From the
aspect of concept learning, the LST and bi-correlation ap-
proaches explicitly don’t learn semantic concepts [rom the
long-term records, while the clustering approach contains
further learning mechanism to extract semantic clusters and
reveal hidden semantic concepts.

These approaches can exploit the accumulated experi-
ence in some sense o help retrieval. However, the real
world hidden semantics have the following two characteris-
tics: (1) Instead of bi-correlation between images, the query
concept usually can only be reflected by multi-correlation
among a group of images. For example images in Fig.1
come from the semantic category “fruit”. When (a, d, e)
are labeled as “relevant”, and others “irrelevant”, the query
concept is “orange”; when (a, ¢, f) are “relevant”, and oth-
ers “irrelevant”, the query concept is “green color fruit”. (2)
Instead of the one kind of hard partition in onc semantic
layer divided by clustering method, the real world concepts
should have multiple semantic layers, with one layer cor-
responding to one kind of hard partition of hidden seman-
tic space. Some concepts have intrinsic intersections, e.g.,
“green color” and “orange™ describe objects’ different at-
tributes. Image sets belonging to these two concepts can’t
be hard divided, and should be in different semantic layers.

! @
Fig. 1. Example for semantic exposition by group of images.

To address the issue of long-term feedback learning with
real semantics exlraction, our work in this paper has two
contributions. (1) A Multi-layer Semantic Representation
(MSR) for image database is proposed and an algorithm is
implemented to automatically build the MSR through long-
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term relevance feedback learning process. The MSR records
the direct multi-correlation among images, and extracts hid-
den concepts, which are distributed in multiple semantic
layers, from these memories. One semantic layer corre-
sponds to one kind of hard partition of semantic space. Con-
cepts without intersection between each other are put into
one semantic layer, and concepts with intersection are put
into different layers. (2) An integrated algorithm is pro-
posed to seamlessly combine the semantic information pro-
vided by accumulated MSR with the short-term learner to
help retrieval in subsequent query sessions. The experiment
is carried by totally 1000 rounds of real retrieval from 10
different users, which shows that the MSR built can de-
scribe the real world semantic concepts underlying images
precisely. Also, the incorporation of long-term MSR and
short-term learning can help to grasp the query concept, and
improve the retrieval performance significantly.

2. MULTI-LAYER SEMANTIC REPRESENTATION
2.1. MSR formulation

Assume that we have already learned N semantic concepts
€1, --.,cn, which are distributed in M semantic layers [,
... .Ias. C; and C; denote the corresponding “relevant” and
“irrelevant” image sets for ¢;, respectively, where image x €
C; belongs to concept ¢;, and image x € C; is labeled to be
“irrelevant” with ¢;. If ¢; €1y and ¢; €4, C;NC; = ¢. Also,
we want the number of layers to be as small as possible, and
thus each layer 1o be as full as possible.

Suppose in a new query session, images in R are labeled
to be “relevant”, and images in ZR “irrelevant” by user, ¢,
denotes the current query concept. Let Ct; be the relation-
ship between ¢q and existing ¢;, and Lty be the relationship
between ¢4 and existing ;. We have following definitions.
Definition 1 {C;]:

-1, RNC;=¢
0, RNCi#p, andRNC;£por IRNC; 4
1, RNCi#pand RNCi=¢and IRNC;=¢
Where C't; = —1 means that ¢ and c; have no relationship
(Fig.2(a)); Ct; = 0 means that ¢, and ¢; arc incompaiible
{can’t be in the same layer) (Fig.2(b)); Ct; =1 means ¢, is
compatible with ¢; (Fig.2(c)).

Cti=

(c) Ct, =1

(a) Cti=—1
Fig. 2. Examples for relationship between ¢, and existing c;.

(b) Ct; =0

Definition 2 (Lt,]: Setnf=3_ ., [(Ct;=0), ni =3 o,
I(Ct;=1), where I{A)=11f A is true, I{A) =0 else.

Lin— 0, nf>00rnf >1
=1 1, otherwise

Lit,=0 means ¢ &l (Fig.3(a)); cq€ly, if Ly, =1 (Fig.3(b)).

(a) Ltr =0 (by Léy =1
Fig. 3. Examples for refationship between ¢, and existing .
Let 51, and Sg denote the layer id and concept id of the
current query concept, ¢q, respectively. Sp and S deter-
mine the relation between ¢, and the existing semantics, and
can be learned by algorithm in Fig.4. Thus the MSR for the
database can be adaptively built by the algorithm in Fig.5.

Algorithm: Semantic Status Learning
Imput: Iy,..., I3, Ct,--.,Cn, Ci,....Cn, R, IR
Qutput: Layer id S, Concept id S
I n, = Zi”:l I{Lt; = 1); // number of layers which
// are compatible with ¢4
2 If (ng=0) { S =M+1, S = N+1; } // new concept
// in new layer
Else if (n,=1) { Sy =arg, {Ltr=1};
Ifnf=1){ Se=arg, {Cti=1,c;€l,}; }
Else { Sc =N+1;} # new concept in {;

Else { m,=Y_ 1, 4 nf; // the number of compatible
/ concept in compatible layers
If (rre==0) {#/ new concept in the lowest layer
Sp=argming{ Lty =1}; Se=N+1; }
Else if (my=1) { S, =argy {nf =1}
Se=arg{Ct; =1, c;€li}: }
Else { // the semantic status of ¢, is not sure
\ Sp=0;5¢=0;}

Fig. 4. Pseudo-code for semantic status learning.

Algorithm Long-Term MSR Learning:

Input: S, S¢

(S, =M+1) {create {ar1, EN 4L =Cys CN 41 Eljuq.l;}

Else if (1<SL< M) {
If(1<8Sc<N){Cs,=Cs,UR:;Cs,. =Cs,UTR;}
Else { create cy11=c¢q cn+1 €03 } }

Else { don’t record this query; }

Fig. 5. Pseudo-code for long-term MSR learning.

2.2. Post processing

There are two situations where a concept may be wrongly
built: (1) Images belonging to concept C; have a great vari-
ety in low-level features, and are learned into different C; 5
and C; 5. When more query sessions are carried, the true C;
is built, but in another tayer (Fig.6 (a)); (2) Some images
belonging to C; is mislabeled as in Ci, and form C; in an-
other layer (Fig.6 (b)) (the mislabeling problem is common
for all CBIR systems). The post processing is necessary 0
alleviate these mistakes and increase the robustness of our
method. Here we adopt the concept merging method.
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{a) (b}
Fig. 6. Two kinds of wrongly extracted concepls.

For an n size database, viewing images Xp, ..., Xn as at-
wributes for semantic concepts, vector F(C;)=[I {(x1 €C) ,
v I (% €C) and F(Cy) = [I (x1 e@) R § (xnea,')]
can be viewed as the binary feature vectors for set C; and c;.
The similarity between concepts ¢; and ¢; can be measured
by the tamous Feature Contrast Model (FCM) [2] (which is
a successful psychologicat similarity measurement) as:

S{C;,C;y=8im(C;, C;}— Dis(C, C;)— Dis(C;,Ci) (1)

where Sim{C;,C;) and Dis(C;,C;) are given by:
F(C:) - F(C;)

min{{[F(C){[%, [[F(C;)iI7}
F(C1) . F(Ej)_

min{[[F(C)[ [, [IF(C;)Ii*}

Where - is the dot product. When S (C;,.C;)>a, C; and C;
are merged. « is statistically set to be 0.9 in our system.

S-im(Cz-,Cj):

Dis(C,—, CJ):

3. RETRIEVAL BY BOTH LONG-TERM AND
SHORT-TERM LEARNING

For a single query, the high-level semantic information lear-
ned by long-term MSR and the low-level information leamed
by short-term learner are combined to improve the retrieval
performance.

3.1. Shert-term learner

The SVM active learning (SV M 4444 )} algorithm [7] 1s ado-
pted as our short-term learner, whose output is a set of dis-
tance D' = {D}(x)}. D*(x) denotes the distance of each
image x to the decision boundary (x is “relevant” if D{x) >
0, “irrclevant” otherwise). During each feedback round t,
the learner selects the images with smallest |[D?(x)| as £t
for user to label (label ser), and select the images with largest
D'(x) as the retrieval result P! (refurn set) for this round.
Actually D'(x) can be converted to represent the relevant
degree of X to the current hidden concept ¢ as:

= exp {D'(x)} @

where Z is the normalization factor for F, over x.

Ejx€cy) =

3.2. Long-term facilitation

During each feedback round, we first judge the semantic
status S¢ and Sy, by algorithm in Fig.4, then select P* and
Lt as follows.

e Return set selection
Since an image x may belong to different concepts, we de-
fine the probability of x belonging to C; or ; by:
NXEC; NXEE.:
N N
Zj:l NxECj Zj:l Nxe'c",—
where Nyee, (N, z.) is the number of x being labeled 1o
be in C; (C;) previously. And the probability that the current
¢4 equals to an existing ¢; is defined by:
(5(i:SC) , 1S <M, 1<8<N
1 ; = r =
P (Cq=Ci) — W){gﬂp(x(ct), S51=0,8=0

p(xeC) = , p(xeCy) =

0 , otherwise

where 6(-) is Dirac function. Thus the relevant degree that
an image x satisfies cg is:

N
E(x€cy)= —Zl—,cxp{%Z[p(x eCi)p(xeCi)] p(cqi(:i)}
=t
(3)

Where Z’ is the normalization factor for E; over x.
Then the short-term and loag-term information are merged
to represent the relevant degree of cach image x to ¢, as:

Eixee) =logE,(x€cy)+logEi(x€cy) )
Images with largest E¢(x € ¢,) form P*.
o Label set selection

When 5, = 0 and S =0, we select £t from the images
in the compatible concepts in compatible layers with cg.
This helps the system 1o recognize the semantic status of
cq- When the semantic status is determined, £° is selected
with original P by mechanism of SYM 4 40e-

When a query session ends, we do long-term MSR learn-
ing by algorithm in Fig.5. The post processing is carried
when every 100 query sessions have been taken.

4, EXPERIMENTS

The database has 10,000 real world images from Corel CDs,
which come from 50 semantic categories, 200 images for
each category. The low-level features used are color coher-
ence in HSV space, the first three color moments in LUV
space, the directionality texture feature, totaily 145 dimen-
sions. To make the experimental results more representa-
tive, instead of the usually used simulated experiments by
ground truth, we ask 10 different users to launch totally
1000 queries by our system to construct the MSR for the
database. The users have no special training but are only
told to do retrieval to find what they want without changing
the query concept during one query session.

e The built MSR

The final MSR built after 1000 query sessions has 88 con-
cepts in 4 layers, whose structure is shown in Fig.7, where
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the semantic keywords are added after experiments for bet-
ter understanding. We can see that the system learns many
concepts adaptive to the database, which are not contained
in ground truth semantics and have real world meanings.
This also indicates that the built MSR can be used for an-
notation (we can simply annotate the concepts extracted by
MSR to annotate the images in the database}. Furthermore,
when more images are added into the database, the already
learned MSR is scalable to new added data by just adding
the new data into the datdbasc part which is never labeled.
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Fig. 7. MSR extracted after 1000 real retrieval sessions.

e Precision evaluation

With above built MSR. we use the ground truth semantics
to test the performance improvement achieved by our al-
gorithm over the 10,000 images. The top-k precision (Fy)
(the percentage of “relevant” images in & size return set) is
evaluated, and we carry totally 1000 independent queries to
calculate the average result. Fig.8 gives the average Py of
our algorithm with different experience accumulation {after
100 to 1000 query sessions’ learning), and the comparison
with only short-term learning (original SVM a.pi4e.). The
figure shows that the long-term MSR experience can sig-
nificantly improve the reirieval performance, consistently
from the first feedback round. For example the precision
improvement for round 5 after 1000 queries is 28.11%. Also
the advantage is more obvious as more queries are carried.
Fig.9 gives a retrieval example querying for images belong-
ing to “jumping porpoise” concept, which is not contained
in ground truth concepts. The first screen of results after 3
feedback rounds for our method with final MSR accumula-
tion and original SVM zt:e are listed. Where Py for our
method can attain 100%, for SVM 4.4 i only 25%.

5. CONCLUSION

In this paper we have proposed a multi-layer semantic rep-
resentation for database’s hidden semantics and have imple-

(b) TP3 with MSR leammg {c)P? without MSR learning

Fig. 9. Retrieval example querying for “jumping porpoise”, im-
ages with green frames are correct ones.

mented an algorithm {o automatically build the MSR through
long-term feedback process. Also, the MSR is incorporated
with the short-term learner to significantly improve the re-
tricval result. Furthermore, the extracted semantics have
real world meanings, which can be easily extended to fur-
ther applications (such as facilitating semantic annotation).
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