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ABSTRACT
Region-based image retrieval and relevance feedback are

two important methods to bridge the gap between the low-

level visual features and the high-level semantic concepts

in content-based image retrieval. In this paper, we address

the issue of introducing the relevance feedback mechanism

into the region-based image retrieval with online feature se-

lection during each feedback round. Our contribution has

two folds. (1) A novel region-based image representation

is proposed. Based on a generative model, a fuzzy code-

book is extracted from the original region-based features,

which represents the images in a uniform real-value feature

space. (2) A feature selection criterion is developed and

an effective relevance feedback algorithm is implemented

in a boosting manner to simultaneously select the optimal

features from the fuzzy codebook, and generate a strong en-

semble classifier over the selected features. Experimental

results show that the proposed scheme can substantially im-

prove the retrieval performance of the region-based image

retrieval system.

1. INTRODUCTION

With the effort for about one decade, great improvements

have been achieved in Content-based image retrieval (CBIR).

At the same time, researchers have realized that the gap be-

tween the low-level visual features and the high-level se-

mantic concepts remains an unsolved difficulty which lim-

its further development of CBIR systems [9]. Region-based
image retrieval (RBIR) [1, 2, 5] and Relevance Feeback (RF)

[7] are proposed to bridge the gap. The RBIR approaches

segment images into several regions and retrieves images

with low-level features based on the regions. Since region-

based features represent images in the object level, and bet-

ter fit the human perception than the global features ex-

tracted from the entire image, the RBIR methods usually

have better performance. The RF mechanism is generally

treated as an online supervised learning process, where the

user labels some images to be “relevant” or “irrelevant” to

the query concept, and helps the system to successively im-

prove retrieval results.

Although it can be expected that introducing the RF

learning into the RBIR will improve the retrieval perfor-

mance, by far few work has been done to address this is-

sue. This is because in RBIR, different images have differ-

ent number of regions, and it is hard to represent the im-

ages in a uniform feature space. Thus most of the RBIR

approaches directly calculate the region-to-region similar-

ity [1] or image-to-image similarity [2] to compare and re-

trieve images. The latest work in [5] gives a good example

to combine the RF mechanism with the RBIR scheme. In

[5] vector quantization is used to represent the images with

binary index features, and the SVM classifier is adopted as

the RF learner where Gaussian kernel is calculated by the

region-based Earth Mover’s Distance instead of the global-

based Euclidean Distance.

To really grasp the query concept from the low-level fea-

tures of the labeled training samples, it is important for an

RF learner to tell which features are more suitable for ex-

plaining the current query concept. This refers to the prob-

lem of online feature selection. In CBIR systems based on

global features, many methods are used for feature selec-

tion, such as the boosting online learning approach [11].

Again in the RBIR context, since it is difficult to represent

images with a uniform feature space, few work has been

done to tackle this problem as far as we know.

In this paper, addressing the issue of incorporating RF

learning with RBIR, an effective RF algorithm with online

feature selection is proposed as follows. (1) Based on the as-

sumption that images in the database are generatively formed

by the mixture model, a fuzzy codebook is extracted from

the region-based features by grouping method to index the

images. Compared with the region-based binary indexing

in [5], our fuzzy codebook represents the images with real

value fuzzy features, thus more information can be provided

to retrieve images. (2) With the fuzzy codebook represen-

tation, an effective feature selection criterion is proposed

based on calculating the similarity between the positive and
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negative training sets. Then a boosting RF algorithm is im-

plemented to select the optimal features one by one from the

fuzzy codebook and construct an ensemble classifier over

the selected features. The Fuzzy Feature Contrast Model
(FFCM) [8] is adopted to calculate the similarity between

images, which is introduced into the Unified Feature Match-
ing (UFM) [2] measurement to compute the similarity be-

tween the “relevant” and “irrelevant” image sets. Experi-

mental results show that our proposal can substantially im-

prove the retrieval performance of RBIR system.

2. REGION-BASED IMAGE REPRESENTATION

In this section, we describe the method to extract region fea-

tures, followed by the detail of learning fuzzy codebook and

representing images in a uniform fuzzy feature space.

2.1. Feature extraction and image segmentation

To be segmented, an image is firstly partitioned into small

blocks without overlap. Then the feature vectors are ex-

tracted based on each block. In our system each block has

16×16 pixels, which is a tradeoff between the computa-

tional complexity and the effectiveness of the extracted fea-

ture. The color features used are the 9-dimensional color

moments in Luv color space (first 3 moments), and the 64-

dimensional color histogram in Hsv space; the texture fea-

tures used are the 10 dimensional coarseness vector, and

the 8-dimensional directionality. With the 91-dimensional

feature representation, the JSEG algorithm [3] is adopted

to segment the image, which can adaptively determine the

number of regions. The segmentation performance is fairly

good in most situations. After segmentation, an image xi is

divided into a set of regionsR(xi)={r1(xi), . . . , rmi
(xi)},

and each region is represented by the mean feature vector of

the member blocks in it.

2.2. Image representation by fuzzy codebook

Let X = {x1, . . . ,xN} denote the whole database with N

images. Let � =
⋃N

i=1 R(xi) be the combination of all

the segmented regions from all the images in X . Since the

low-level feature space here has a large dimensionality and

has great redundancy in representing images, the Principle

Component Analysis (PCA) is exploited to simplify the fea-

ture representation. After PCA, the original � are projected

into a new feature space F̃ with a much lower dimensional-

ity d, and we denote it by �̃. Rename the element in �̃ as

�̃ = {r1, . . . , rm}, and assume that the region rj is gener-

atively formed by n codewords C1, . . . , Cn in forms of the

Gaussian Mixture Model as

p(rj)=
∑n

k=1
p(Ck)p(rj |Ck) (1)

where p(rj |Ck) follows the Gaussian distribution. Then

the mixture-based clustering method with model selection
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Fig. 1. Generating fuzzy codebook from region-based features.

proposed in [6] is adopted to adaptively determine the fol-

lowing parameters with the Expectation Maximization al-

gorithm and minimum message length model selection cri-

terion: the number of the codewords n, the codeword pri-

ors p(Ck), the mean µk and co-variance matrix Σk of the

codewords (k = 1, . . . , n). Fig.1 illustrates the process to

generate the fuzzy codebook.

Given an image xi ∈ X , it can be represented by the

codewords in C=
⋃n

i Ci as a set of fuzzy features F(xi)=
[f(xi, C1), . . . , f(xi, Cn)]T , where fuzzy feature f(xi, Ck)
denotes the saliency membership of the codeword Ck in rep-

resenting image xi, which is given by:

f(xi, Ck) =
∑

r∈xi

v(r)G(r, Ck) (2)

where r is a region in xi, v(r) is its region saliency (which

describes how well the region represents image xi), and

G(r, Ck) = p(Ck) · p(r|Ck) (3)

The region saliency v(r) is proportional to the size of r,

and is inversely proportional to the average distance of each

pixel in r to the image center.

3. RELEVANCE FEEDBACK LEARNING WITH
BOOSTING FEATURE SELECTION

Assume that during the retrieval process, in the t-th round

of relevance feedback, images in Rt and IRt are labeled to

be “relevant” and “irrelevant” respectively by the user. Rep-

resenting images with the fuzzy codebook, boosting method

can be adopted to select features one by one from the fuzzy

codebook. The original AdaBoost algorithm [4] trains weak

classifiers along each feature axis and selects features based

on the training error. It usually needs a lot of training sam-

ples and candidate features to give good performance. Since

in the RBIR problem, the number of the training samples

and the fuzzy features are both small, AdaBoost is often

overfed. In this paper we propose an effective feature selec-

tion criterion. Since the goal of feature selection is to find

the optimal feature subspace where Rt and IRt can be best

separated, the similarity between Rt and IRt along each

feature axis is used as the feature selection criterion in the

boosting algorithm. The FFCM measurement is used to cal-

culate the similarity between images, and the UFM method

is adopted to calculate the similarity between Rt and IRt.

The detail is given in the following subsections.
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3.1. Criterion for feature selection
– Similarity between two images

The FCM measurement is firstly proposed as a psycholog-

ical similarity measurement between two objects [10], and

in [8] it is generalized to the FFCM measurement and is

applied to the computer vision field to represent the simi-

larity between human faces. Let a, b denote two stimuli,

which are represented by two fuzzy feature vectors Ã =
[A1, . . . , Ad], B̃ = [B1, . . . , Bd] respectively. FFCM de-

fines the similarity between a, b as:

S(Ã, B̃) =
∑d

i=1
(min{Ai, Bi} − α max{Ai−Bi, 0}

−β max{Bi−Ai, 0}) (4)

If α �=β, we emphasize the features in different stimuli un-

equally. The asymmetry direction is determined by the rel-

ative “salience” of the stimuli: if a is more salient, α ≥ β.

Represented by the fuzzy codebook as Eqn.(2), the similar-

ity between two images can be calculated with Eqn.(4).

– Similarity between image sets

Given two fuzzy set A={Ã1, . . . , Ãp}, B={B̃1, . . . , B̃q},

the UFM method [2] defines the similarity between them as:

S(A,B)= �W (A,B)T �L(A,B) (5)

where �W (A,B)=[w(Ã1), . . . , w(Ãp), w(B̃1), . . . , w(B̃q)]
T ,

w(Ãi) and w(B̃j) are the saliency membership of the mem-

ber Ãi and B̃j in feature set A and B respectively. �L(A,B)
is given by the following formula:

�L(A,B) =

[l(Ã1,B), . . . , l(Ãp,B), l(B̃1,A), . . . , l(B̃q,A)]T (6)

l(Ãi,B) = max
j=1,...,q

S(Ãi, B̃j)

l(B̃j,A) = max
i=1,...,p

S(B̃j , Ãi)

By Eqn.(5) the similarity between Rt = {x+
1 , . . . ,x+

p } and

IRt = {x−
1 , . . . ,x−

q } along the feature axis Ck can be cal-

culate, where S(x+
i ,x−

j ) is given by the FFCM measure-

ment by Eqn.(4). Since in image retrieval, the “relevant”

images often share some common features, while the “ir-

relevant” images are different from the “relevant” ones in

different ways. The common features in Rt is usually more

important than those in IRt. We set α > β to meet this

asymmetry requirement. In practical α=0.5, β =0.3.

3.2. Boosting feature selection
Given a set of optimal feature axis selected by the UFM

similarity, the Real AdaBoost method [4] is adopted to se-

lect a new added feature axis by re-weighting the training

samples, and combine the classifiers constructed over the

incrementally learned features into an ensemble classifier

with decreased training error.

Assume that during round t, k features C∗
1 , . . . , C∗

k ∈ C
are already selected during the previous k iterations in the

boosting method, and k optimal weak classifiers Hg(i), i=
1, . . . , k are constructed, one for each selected feature in

each iteration. For a training sample x, the current weight

is wt(x). Assume that ŷ is the class label of x predicted

by the system, and y is true label. The class probability esti-

mated by Hg(i) is qg(i)(x)=p(ŷ=1|Hg(i)). To select a new

feature which is optimal in discriminating sets Rt and IRt,

we project the training samples to each feature axis Ci, and

calculate the similarity Si(R
t, IRt) with the current sam-

ple weights along Ci by Eqn.(5). Then Cg(k+1) is selected

as the optimal feature, along which the two image sets have

the smallest similarity. C∗
k+1 = Cg(k+1). A weak classifier

Hg(k+1) is constructed along the optimal C∗
k+1 and a set of

class probabilities qi(x) are given. Then set

hg(i)(x) = 0.5 log qg(i)(x)/(1 − qg(i)(x)) (7)

and the class probability are combined as:

hk+1
en (x) =

∑k+1

j=1
hg(j)(x) (8)

The weight for sample x is then updated as:

wk+1(x)=
1

Z
wk(x)exp{−yhg(k+1)(x)} (9)

where Z is a normalization factor to make
∑

x
wk+1(x)=1.

The Fuzzy K-Nearest Neighbor (FKNN) classifier is used

as the weak learner, whose class probability is given by

q(x) =

∑k

j=1 w′(x∗
j )

(
1/||x− x

∗
j ||

2
)

∑k

j=1

(
1/||x− x

∗
j ||

2
) (10)

where x
∗
j , j = 1, . . . , k are k nearest neighbors of x in the

training set, w′(x∗
j )=w(x∗

j ) or −w(x∗
j ) if x

∗
j ∈R or IR.

The entire framework of the RBIR system is summarized

in Fig.2. In practical, we set K =100.

• The User selects a query image xq to start query, and

in the first round of retrieval the rank of an image x is

determined by the UFM similarity S(x,xq)

• For subsequent round t>1

1 Initialize w0(x)= 1
2|Rt| or 1

2|IRt| for x∈R or IR

2 Begin iteration: for k=1,. . . ,K

– Get Si(R
t, IRt) by Eqn.(5) along each Ci;

– Select C∗
k =Cg(k) with smallest Sg(k)(R

t, IRt);

– Construct an FKNN classifier along C∗
k ;

– Update weight by Eqn.(9);

– Get ensemble class probability hk
en(x) by Eqn.(8);

3 Rank images by hk
en(x) in descending order;

Fig. 2. The framework of the RBIR system.
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4. EXPERIMENTAL RESULTS

The image database has 10,000 real world images from Corel

CDs, which come from 100 semantic categories, 100 im-

ages for each category. In all the following experiments,

the performance measurement used is the top-k precision

Pk (the percentage of the “relevant” images in the returned

k images), and the average Pk is calculated by the retrieval

results of 1000 retrieval sessions. The 1000 query images

are randomly selected from the database. During each re-

trieval round, 10 images are labeled by user to feedback.

Considering both the computational complexity and the

effectiveness to represent the images, the size of the fuzzy

codebook is selected through experiment. The average P30,

P50 and P100 for the 5-th feedback round are calculated with

different codebook sizes in Fig.3 (a), and the corresponding

average retrieval time cost is given in Fig.3 (b). The figures

show that for all P20, P50 and P100, the larger the codebook

size, the better the retrieval performance, and the longer

the retrieval time. When the number of codewords exceeds

1000, the improvement of the precision becomes not very

significant, but the time cost increases greatly. Thus in prac-

tical, the system use 1000 codewords as a tradeoff.

(a) Average precision

(b) Average time cost
Fig. 3. The precision and time cost for different codebook sizes.

To evaluate the effectiveness of our proposal in improving

the retrieval performance, we compare our algorithm with

the UFM method [2]. For fair comparison, all the methods

use the same query images. Fig.4 gives the average P20 of

our method and UFM. The figure shows that our method

consistently outperforms the UFM. For example the perfor-

mance improvement in round 5 is 31%. The experimen-

tal result indicates that the proposed image representation

method and the relevance feedback learning method with

boosting can improve the retrieval accuracy significantly.

5. CONCLUSIONS

In this paper we have proposed an effective relevance feed-

back method with online feature selection in the RBIR con-

Fig. 4. Comparison between our proposal and the UFM method.

text. Based on the generative model, a fuzzy codebook is

extracted to represent the images in a uniform fuzzy feature

space. And based on the feature selection criterion to mea-

sure the similarity between the positive and negative train-

ing sets, an RF algorithm is implemented in a boosting man-

ner to select the optimal features and generate an ensemble

classifier during each feedback round. Experimental results

show the effectiveness of our proposal.
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