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Abstract. The scarcity of labeled training data relative to the high-
dimensionality multi-modal features is one of the major obstacles for
semantic concept classification of images and videos. Semi-supervised
learning leverages the large amount of unlabeled data in developing effec-
tive classifiers. Feature subspace learning finds optimal feature subspaces
for representing data and helping classification. In this paper, we present
a novel algorithm, Locality Preserving Semi-supervised Support Vector
Machines (LPSSVM), to jointly learn an optimal feature subspace as well
as a large margin SVM classifier. Over both labeled and unlabeled data,
an optimal feature subspace is learned that can maintain the smoothness
of local neighborhoods as well as being discriminative for classification.
Simultaneously, an SVM classifier is optimized in the learned feature sub-
space to have large margin. The resulting classifier can be readily used to
handle unseen test data. Additionally, we show that the LPSSVM algo-
rithm can be used in a Reproducing Kernel Hilbert Space for nonlinear
classification. We extensively evaluate the proposed algorithm over four
types of data sets: a toy problem, two UCI data sets, the Caltech 101 data
set for image classification, and the challenging Kodak’s consumer video
data set for semantic concept detection. Promising results are obtained
which clearly confirm the effectiveness of the proposed method.

1 Introduction

Consider one of the central issues in semantic concept classification of images
and videos: the amount of available unlabeled test data is large and growing, but
the amount of labeled training data remains relatively small. Furthermore, the
dimensionality of the low-level feature space is generally very high, the desired
classifiers are complex and, thus, small sample learning problems emerge.

There are two primary techniques for tackling above issues. Semi-supervised
learning is a method to incorporate knowledge about unlabeled test data into
the training process so that a better classifier can be designed for classifying
test data [1], [2], [3], [4], [5]. Feature subspace learning, on the other hand, tries
to learn a suitable feature subspace for capturing the underlying data manifold
over which distinct classes become more separable [6], [7], [8], [9].
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One emerging branch of semi-supervised learning methods is graph-based
techniques [2], [4]. Within a graph, the nodes are labeled and unlabeled sam-
ples, and weighted edges reflect the feature similarity of sample pairs. Under the
assumption of label smoothness on the graph, a discriminative function f is of-
ten estimated to satisfy two conditions: the loss condition – it should be close to
given labels yL on the labeled nodes; and the regularization condition – it should
be smooth on the whole graph, i.e., close points in the feature space should have
similar discriminative functions. Among these graph-based methods, Laplacian
Support Vector Machines (LapSVM ) and Laplacian Regularized Least Squares
(LapRLS ) are considered state-of-the-art for many tasks [10]. They enjoy both
high classification accuracy and extensibility to unseen out-of-sample data.

Feature subspace learning has been shown effective for reducing data noise
and improving classification accuracy [6], [7], [8], [9]. Finding a good feature
subspace can also improve semi-supervised learning performance. As in classifi-
cation, feature subspaces can be found by supervised methods (e.g., LDA [8]),
unsupervised methods (e.g., graph-based manifold embedding algorithms [6],
[9]), or semi-supervised methods (e.g., generalizations of graph-based embedd-
ing by using the ground-truth labels to help the graph construction process [7]).

In this paper, we address both issues of feature subspace learning and semi-
supervised classification. We pursue a new way of feature subspace and classifier
learning in the semi-supervised setting. A novel algorithm, Locality Preserving
Semi-supervised SVM (LPSSVM ), is proposed to jointly learn an optimal feature
subspace as well as a large margin SVM classifier in a semi-supervised manner.
A joint cost function is optimized to find a smooth and discriminative feature
subspace as well as an SVM classifier in the learned feature subspace. Thus,
the local neighborhoods relationships of both labeled and unlabeled data can be
maintained while the discriminative property of labeled data is exploited. The
following highlight some aspects of the proposed algorithm:

1. The target of LPSSVM is both feature subspace learning and semi-supervised
classification. A feature subspace is jointly optimized with an SVM classifier so
that in the learned feature subspace the labeled data can be better classified
with the optimal margin, and the locality property revealed by both labeled and
unlabeled data can be preserved.
2. LPSSVM can be readily extended to classify novel unseen test examples.
Similar to LapSVM and LapRLS and other out-of-sample extension methods
[5], [10], this extends the algorithm’s flexibility in real applications, in contrast
with many traditional graph-based semi-supervised approaches [4].
3. LPSSVM can be learned in the original feature space or in a Reproducing
Kernel Hilbert Space (RKHS). In other words, a kernel-based LPSSVM is for-
mulated which permits the method to handle real applications where nonlinear
classification is often needed.

To evaluate the proposed LPSSVM algorithm, extensive experiments are car-
ried out over four different types of data sets: a toy data set, two UCI data sets
[11], the Caltech 101 image data set for image classification [12], and the large
scale Kodak’s consumer video data set [13] from real users for video concept
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detection. We compare our algorithm with several state of the arts, including
the standard SVM [3], semi-supervised LapSVM and LapRLS [10], and the naive
approach of first learning a feature subspace (unsupervised) and then solving an
SVM (supervised) in the learned feature subspace. Experimental results demon-
strate the effectiveness of our LPSSVM algorithm.

2 Related Work

Assume we have a set of data points X =[x1, . . .,xn], where xi is represented
by a d-dimensional feature vector, i.e., xi ∈ R

d. X is partitioned into labeled
subset XL (with nL data points) and unlabeled subset XU (with nU data points),
X=[XL, XU ]. yi is the class label of xi, e.g., yi∈{−1, +1} for binary classification.

2.1 Supervised SVM Classifier

The SVM classifier [3] has been a popular approach to learn a classifier based on
the labeled subset XL for classifying the unlabeled set XU and new unseen test
samples. The primary goal of an SVM is to find an optimal separating hyperplane
that gives a low generalization error while separating the positive and negative
training samples. Given a data vector x, SVMs determine the corresponding
label by the sign of a linear decision function f(x)=wT x+b. For learning non-
linear classification boundaries, a kernel mapping φ is introduced to project data
vector x into a high dimensional feature space as φ(x), and the corresponding
class label is given by the sign of f(x) = wT φ(x)+ b. In SVMs, this optimal
hyperplane is determined by giving the largest margin of separation between
different classes, i.e. by solving the following problem:

min
w,b,ε

Qd = min
w,b,ε

{
1
2
||w||22+C

nL∑
i=1

εi

}
, s.t. yi(wTφ(xi)+b)≥1−εi, εi≥0, ∀ xi∈XL . (1)

where ε=ε1, . . . , εnL are the slack variables assigned to training samples, and C
controls the scale of the empirical error loss the classifier can tolerate.

2.2 Graph Regularization

To exploit the unlabeled data, the idea of graph Laplacian [6] has been shown
promising for both subspace learning and classification. We briefly review the
ideas and formulations in the next two subsections. Given the set of data points
X , a weighted undirected graph G= (V, E, W ) can be used to characterize the
pairwise similarities among data points, where V is the vertices set and each
node vi corresponds to a data point xi; E is the set of edges; W is the set of
weights measuring the strength of the pairwise similarity.

Regularization for feature subspace learning. In feature subspace learning,
the objective of graph Laplacian [6] is to embed original data graph into an m-
dimensional Euclidean subspace which preserves the locality property of original
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data. After embedding, connected points in original G should stay close. Let X̂
be the m×n dimensional embedding, X̂=[x̂1, . . . , x̂n], the cost function is:

min
X̂

⎧⎨
⎩

n∑
i,j=1

||x̂i−x̂j ||22Wij

⎫⎬
⎭, s.t.X̂DX̂T=I ⇒ min

X̂

{
tr(X̂LX̂T)

}
, s.t.X̂DX̂T=I.(2)

where L is the Laplacian matrix and L=D−W , D is the diagonal weight matrix
whose entries are defined as Dii =

∑
jWij . The condition X̂DX̂T= I removes

an arbitrary scaling factor in the embedding [6]. The optimal embedding can be
obtained as the matrix of eigenvectors corresponding to the lowest eigenvalues
of the generalized eigenvalue problem: Lx̂=λDx̂. One major issue of this graph
embedding approach is that when a novel unseen sample is added, it is hard
to locate the new sample in the embedding graph. To solve this problem, the
Locality Preserving Projection (LPP) is proposed [9] which tries to find a linear
projection matrix a that maps data points xi to aT xi, so that aTxi can best
approximate graph embedding x̂i. Similar to Eq(2), the cost function of LPP is:

mina Qs = mina

{
tr(aT XLXTa)

}
, s.t. aT XDXTa = I . (3)

We can get the optimal projection as the matrix of eigenvectors corresponding to
the lowest eigenvalues of generalized eigenvalue problem: XLXTa = λXDXTa.

Regularization for classification. The idea of graph Laplacian has been used
in semi-supervised classification, leading to the development of Laplacian SVM
and Laplacian RLS [10]. The assumption is that if two points xi,xj ∈X are close
to each other in the feature space, then they should have similar discriminative
functions f(xi) and f(xj). Specifically the following cost function is optimized:

min
f

1
nL

∑nL

i=1
V (xi, yi, f) + γA||f ||22 + γIfT Lf . (4)

where V(xi,yi,f) is the loss function, e.g., the square loss V(xi,yi,f)=(yi−f(xi))2

for LapRLS and the hinge loss V(xi,yi,f) = max(0, 1−yif(xi)) for LapSVM;
f is the vector of discriminative functions over the entire data set X , i.e., f =
[f(x1), . . . , f(xnU+nL)]T . Parameters γA and γI control the relative importance
of the complexity of f in the ambient space and the smoothness of f according
to the feature manifold, respectively.

2.3 Motivation

In this paper, we pursue a new semi-supervised approach for feature subspace
discovery as well as classifier learning. We propose a novel algorithm, Locality
Preserving Semi-supervised SVM (LPSSVM ), aiming at joint learning of both an
optimal feature subspace and a large margin SVM classifier in a semi-supervised
manner. Specifically, the graph Laplacian regularization condition in Eq(3) is
adopted to maintain the smoothness of the neighborhoods over both labeled
and unlabeled data. At the same time, the discriminative constraint in Eq(1)
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is used to maximize the discriminative property of the learned feature subspace
over the labeled data. Finally, through optimizing a joint cost function, the semi-
supervised feature subspace learning and semi-supervised classifier learning can
work together to generate a smooth and discriminative feature subspace as well
as a large-margin SVM classifier.

In comparison, standard SVM does not consider the manifold structure pre-
sented in the unlabeled data and thus usually suffers from small sample learn-
ing problems. The subspace learning methods (e.g. LPP) lack the benefits of
large margin discriminant models. Semi-supervised graph Laplacian approaches,
though incorporating information from unlabeled data, do not exploit the ad-
vantage of feature subspace discovery. Therefore, the overarching motivation
of our approach is to jointly explore the merit of feature subspace discovery
and large-margin discrimination. We will show through four sets of experiments
such approach indeed outperforms the alternative methods in many classification
tasks, such as semantic concept detection in challenging image/video sets.

3 Locality Preserving Semi-supervised SVM

In this section we first introduce the linear version of the proposed LPSSVM
technique then show it can be readily extended to a nonlinear kernel version.

3.1 LPSSVM

The smooth regularization term Qs in Eq(3) and discriminative cost function Qd

in Eq(1) can be combined synergistically to generate the following cost function:

min
a,w,b,ε

Q = min
a,w,b,ε

{Qs + γQd} = min
a,w,b,ε

{
tr(aTXLXTa)+γ[

1
2
||w||22+C

∑nL

i=1
εi]

}
(5)

s.t. aT XDXTa = I, yi(wTaTxi+b)≥1−εi, εi≥0, ∀ xi∈XL .

Through optimizing Eq(5) we can obtain the optimal linear projection a and
classifier w, b simultaneously. In the following, we develop an iterative algorithm
to minimize over a and w, b, ε which will monotonically reduce the cost Q by
coordinate ascent towards a local minimum. First, using the method of Lagrange
multipliers, Eq(5) can be rewritten as the following:

min
a,w,b,ε

Q= min
a,w,b,ε

max
α,μ

{
tr(aTXLXTa)+γ[

1
2
||w||22−FT(XT

Law−B)+M ]
}

, s.t.aTXDXTa=I.

where we have defined quantities: F=[α1y1, . . . , αnLynL]T , B= [b, . . . , b]T , M=
C
∑nL

i=1εi+
∑nL

i=1αi(1−εi)−
∑nL

i=1μiεi, and non-negative Lagrange multipliers α=
α1, . . . , αnL , μ=μi, . . . , μnL . By differentiating Q with respect to w, b, εi we get:

∂Q

∂w
= 0 ⇒ w =

∑nL

i=1
αiyiaT xi = aT XLF . (6)

∂Q

∂b
= 0 ⇒

∑nL

i=1
αiyi = 0,

∂Q

∂εi
= 0 ⇒ C − αi − μi = 0 . (7)
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Note Eq(6) and Eq(7) are the same as those seen in SVM optimization [3], with
the only difference that the data points are now transformed by a as x̃i =aT xi.
That is, given a known a, the optimal w can be obtained through the standard
SVM optimization process. Secondly, by substituting Eq(6) into Eq(5), we get:

min
a

Q=min
a

{
tr(aTXLXTa)+

γ

2
FT XT

L aaT XLF
}

, s.t. aT XDXTa = I . (8)

∂Q

∂a
=0 ⇒ (XLXT +

γ

2
XLFFT XT

L )a=λXDXTa . (9)

It is easy to see that XLXT + γ
2XLFFT XT

L is positive semi-definite and we can
update a by solving the generalized eigenvalue problem described in Eq(9).

Combining the above two components, we have a two-step interative process
to optimize the combined cost function:

Step-1. With the current projection matrix at at the t-th iteration, train an
SVM classifier to get wt and α1,t, . . . , αnL,t.

Step-2. With the current wt and α1,t, . . . , αnL,t, update the projection matrix
at+1 by solving the generalized eigenvalue problem in Eq(9).

3.2 Kernel LPSSVM

In this section, we show that the LPSSVM method proposed above can be ex-
tended to a nonlinear kernel version. Assume that φ(xi) is the projection function
which maps the original data point xi into a high-dimension feature space. Sim-
ilar to the approach used in Kernel PCA [14] or Kernel LPP [9], we pursue the
projection matrix a in the span of existing data points, i.e.,

a =
∑n

i=1
φ(xi)vi = φ(X)v . (10)

where v=[v1, . . . , vn]T . Let K denote the kernel matrix over the entire data set

X =[XL, XU ], where Kij = φ(xi)·φ(xj). K can be written as: K =
[

KL KLU

KUL KU

]
,

where KL and KU are the kernel matrices over the labeled subset XL and the
unlabeled subset XU respectively; KLU is the kernel matrix between the labeled
data set and the unlabeled data set and KUL is the kernel matrix between the
unlabeled data and the labeled data (KLU = KT

UL).
In the kernel space, the projection updating equation (i.e., Eq(8)) turns to:

min
a

Q=min
a

{
tr(aTφ(X)LφT(X)a)+

γ

2
FTφT(XL)aaTφ(XL)F

}
, s.t.aTφ(X)DφT(X)a=I .

By differentiating Q with respect to a, we can get:

φ(X)LφT(X)a+
γ

2
φ(XL)FFTφT(XL)a=λφ(X)DφT(X)a

⇒
(
KLK+

γ

2
KLU|LFFT (KLU|L)T

)
v=λKDKv . (11)
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where KLU|L =[KT
L , KT

UL]T . Eq(11) plays a role similar to Eq(9) that it can be
used to update the projection matrix.

Likewise, similar to Eq(6) and Eq(7) for the linear case, we can find the
maximum margin solution in the kernel space by solving the dual problem:

Q̃dual
svm =

∑nL

i=1
αi − 1

2

∑nL

i=1

∑nL

j=1
αiαjyiyjφ

T(xi)aaT φ(xj)

=
∑nL

i=1
αi− 1

2

∑nL

i=1

∑nL

j=1
αiαjyiyj

[∑n

g=1
K

L|LU
ig vg

][∑n

g=1
K

LU|L
gj vg

]
.

where KL|LU=[KL, KLU ]. This is the same with the original SVM dual problem
[3], except that the kernel matrix is changed from original K to:

K̂ =
[
KL|LUv

][
vT KLU|L

]
. (12)

Combining the above two components, we can obtain the kernel-based two-step
optimization process as follows:

Step-1: With the current projection matrix vt at iteration t, train an SVM to
get wt and α1,t, . . . , αnL,t with the new kernel described in Eq(12).

Step-2: With the current wt, α1,t, . . . , αnL,t, update vt+1 by solving Eq(11).
In the testing stage, given a test example xj (xj can be an unlabeled training

sample, i.e., xj ∈ XU or xj can be an unseen test sample), the SVM classifier
gives classification prediction based on the discriminative function:

f(xj)=wTaTφ(xj)=
nL∑
i=1

αiyiφ(xi)aaTφ(xj)=
nL∑
i=1

αiyi

[
n∑

g=1

K
L|LU
ig vg

][
n∑

g=1

K(xg,xj)vg

]T

.

Thus the SVM classification process is also similar to that of standard SVM [3],
with the difference that the kernel function between labeled training data and
test data is changed from KL|test to: K̂L|test =

[
KL|LUv

][
vT KLU|test

]
. v plays

the role of modeling kernel-based projection a before computing SVM.

3.3 The Algorithm

The LPSSVM algorithm is summarized in Fig. 1. Experiments show usually
LPSSVM converges within 2 or 3 iterations. Thus in practice we may set T =3. γ
controls the importance of SVM discriminative cost function in feature subspace
learning. If γ =0, Eq(11) becomes traditional LPP. In experiments we set γ =1 to
balance two cost components. The dimensionality of the learned feature subspace
is determined by controlling the energy ratio of eigenvalues kept in solving the
eigenvalue problem of Eq(11). Note that in LPSSVM, the same Gram matrix is
used for both graph construction and SVM classification, and later (Sec.4) we will
see without extensive tuning of parameters LPSSVM can get good performance.
For example, the default parameter setting in LibSVM [15] may be used. This is
very important in real applications, especially for large-scale image/video sets.
Repeating experiments to tune parameters can be time and resource consuming.
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Input: nL labeled data XL, and nU unlabeled data XU .
1 Choose a kernel function K(x, y), and compute Gram matrix Kij = K(xi,xj), e.g.
RBF kernel K(xi,xj)=exp{−θ||xi−xj ||22} or Spatial Pyramid Match Kernel [16].
2 Construct data adjacency graph over entire XL∪XU using kn nearest neighbors. Set
edge weights Wij based on the kernel matrix described in step 1.
3 Compute graph Laplacian matrix: L=D−W where D is diagonal, Dii = j Wij .
4 Initialization: train SVM over Gram matrix of labeled XL, get w0 and α1,0, . . . , αnL,0.
5 Iteration: for t=1, . . . , T

– Update vt by solving problem in Eq(11) with wt−1 and α1,t−1, . . . , αnL,t−1.
– Calculate new kernel by Eq(12) using vt. Train SVM to get wt, α1,t, . . . , αnL,t.
– Stop iteration if nL

i=1(αi,t−1 − αi,t)
2 <τ .

Fig. 1. The LPSSVM algorithm

In terms of speed, LPSSVM is very fast in the testing stage, with complexity
similar to that of standard SVM classification. In training stage, both steps of
LPSSVM are fast. The generalized eigenvalue problem in Eq(11) has a time com-
plexity of O(n3) (n=nL+nU ). It can be further reduced by exploiting the sparse
implementation of [17]. For step 1, the standard quadratic programming opti-
mization for SVM is O(n3

L), which can be further reduced to linear complexity
(about O(nL)) by using efficient solvers like [18].

4 Experiments

We conduct experiments over 4 data sets: a toy set, two UCI sets [11], Caltech
101 for image classification [12], and Kodak’s consumer video set for concept de-
tection [13]. We compare with some state-of-the-arts, including supervised SVM
[3], semi-supervised LapSVM and LapRLS [10]. We also compare with a naive
LPP+SVM: first apply kernel-based LPP to get projection and then learn SVM
in projected space. For fair comparison, all SVMs in different algorithms use
RBF kernels for classifying UCI data, Kodak’s consumer videos, and toy data,
and use the Spatial Pyramid Match (SPM) kernel [16] for classifying Caltech
101 (see Sec.4.3 for details). This is motivated by the promising performance in
classifying Caltech 101 in [16] by using SPM kernels. In LPSSVM, γ =1 in Eq(5)
to balance the consideration on discrimination and smoothness, and θ =1/d in
RBF kernel where d is feature dimension. This follows the suggestion of the pop-
ular toolkit LibSVM [15]. For all algorithms, the error control parameter C =1
for SVM. This parameter setting is found robust for many real applications [15].
Other parameters: γA, γI in LapSVM, LapRLS [10] and kn for graph construc-
tion, are determined through cross validation. LibSVM [15] is used for SVM,
and source codes from [17] is used for LPP.

4.1 Performance over Toy Data

We construct a “three suns” toy problem in Fig. 2. The data points with each
same color (red, blue or cyan) come from one category, and we want to separate



278 W. Jiang et al.

“three suns”toy data SVM classification result
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Fig. 2. Performance over toy data. Compared with others, LPSSVM effectively dis-
criminates 3 categories. Above results are generated by using the SVM Gram matrix
directly for constructing Laplacian graph. With more deliberate tuning of the Lapla-
cian graph, LapSVM, LapRLS, and LPSSVM can give better results. Note that the
ability of LPSSVM to maintain good performance without graph tuning is important.

the three categories. This data set is hard since data points around the class
boundaries from different categories (red and cyan, and blue and cyan) are close
to each other. This adds great difficulty to manifold learning. The one-vs.-all
classifier is used to classify each category from others, and each test data is
assigned the label of the classifier with the highest classification score. Fig. 2
gives an example of the classification results using different methods with 10%
samples from each category as labeled data (17 labeled samples in total). The
averaged classification error rates (over 20 randomization runs) when varying the
number of labeled data are also shown. The results clearly show the advantage
of our LPSSVM in discriminative manifold learning and classifier learning.

4.2 Performance over UCI Data

This experiment is performed on two UCI data sets [11]: Johns Hopkins Iono-
sphere (351 samples with 34-dimension features), and Sonar (208 samples with
60-dimension features). Both data sets are binary classification problems. In Fig.
3 we randomly sample N points from each category (2N points in total) as la-
beled data and treat the rest data as unlabeled data as well as test data for
evaluation. The experiments are repeated for 20 randomization runs, and the
averaged classification rates (1 - error rates) are reported. From the result, our
LPSSVM consistently outperforms all other competing methods over different
numbers of labeled data in both data sets.

4.3 Performance over Caltech 101

The Caltech 101 set [12] consists of images from 101 object categories and an
additional background class. This set contains some variations in color, pose and
lighting. The bag-of-features representation [19] with local SIFT descriptors [20]
has been proven effective for classifying this data set by previous works [16]. In
this paper we adopt the SPM approach proposed in [16] to measure the image
similarity and compute the kernel matrix. In a straightforward implementation
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Fig. 3. Classification rates over UCI data sets. The vertical dotted line over each point
shows the standard deviation over 20 randomization runs.

of SPM, only the labeled data is fed to the kernel matrix for standard SVM.
For other methods, the SPM-based measure is used to construct kernel matrices
for both labeled and unlabeled data (i.e., KL, KU , KLU) before various semi-
supervised learning methods are applied. Specifically, for each image category,
5 images are randomly sampled as labeled data and 25 images are randomly
sampled as unlabeled data for training. The remaining images are used as novel
test data for evaluation (we limit the maximum number of novel test images
in each category to be 30). Following the procedure of [16], a set of local SIFT
features of 16 × 16 pixel patches are uniformly sampled from these images over
a grid with spacing of 8 pixels. Then for each image category, a visual codebook
is constructed by clustering all SIFT features from 5 labeled training images
into 50 clusters (codewords). Local features in each image block are mapped
to the codewords to compute codeword histograms. Histogram intersections are
calculated at various locations and resolutions (2 levels), and are combined to
estimate similarity between image pairs. One-vs.-all classifiers are built for classi-
fying each image category from the other categories, and a test image is assigned
the label of the classifier with the highest classification score.

Table 1 (a) and (b) give the average recognition rates of different algorithms
over 101 image categories for the unlabeled data and the novel test data, respec-
tively. From the table, over the unlabeled training data LPSSVM can improve
baseline SVM by about 11.5% (on a relative basis). Over the novel test data,
LPSSVM performs quite similarly to baseline SVM1.

It is interesting to notice that all other competing semi-supervised meth-
ods, i.e., LapSVM, LapRLS, and naive LPP+SVM, get worse performance than
LPSSVM and SVM. Please note that extensive research has been conducted for
supervised classification of Caltech 101, among which SVM with SPM kernels
gives one of the top performances. To the best of our knowledge, there is no
report showing that the previous semi-supervised approaches can compete this
state-of-the-art SPM-based SVM in classifying Caltech 101. The fact that our
LPSSVM can outperform this SVM, to us, is very encouraging.

1 Note the performance of SPM-based SVM here is lower than that reported in [16].
This is due to the much smaller training set than that in [16]. We focus on scenarios
of scarce training data to access the power of different semi-supervised approaches.
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Table 1. Recognition rates for Caltech 101. All methods use SPM to compute image
similarity and kernel matrices. Numbers shown in parentheses are standard deviations.

(a) Recognition rates (%) over unlabeled data

SVM LapSVM LapRLS LPP+SVM LPSSVM

30.2(±0.9) 25.1(±1.1) 28.6(±0.8) 14.3(±4.7) 33.7(±0.8)

(b) Recognition rates (%) over novel test data

SVM LapSVM LapRLS LPP+SVM LPSSVM

29.8(±0.8) 24.5(±0.9) 26.1(±0.8) 11.7(±3.9) 30.1(±0.7)

The reason other competing semi-supervised algorithms have a difficult time
in classifying Caltech 101 is because of the difficulty in handling small sam-
ple size in high dimensional space. With only 5 labeled and 25 unlabeled high
dimensional training data from each image category, curse of dimensionality
usually hurts other semi-supervised learning methods as the sparse data mani-
fold is difficult to learn. By simultaneously discovering lower-dimension subspace
and balancing class discrimination, our LPSSVM can alleviate this small sample
learning difficulty and achieve good performance for this challenging condition.

4.4 Performance over Consumer Videos

We also use the challenging Kodak’s consumer video data set provided in [13],
[21] for evaluation. Unlike the Caltech images, content in this raw video source
involves more variations in imaging conditions (view, scale, lighting) and scene
complexity (background and number of objects). The data set contains 1358
video clips, with lengths ranging from a few seconds to a few minutes. To avoid
shot segmentation errors, keyframes are sampled from video sequences at a 10-
second interval. These keyframes are manually labeled to 21 semantic concepts.
Each clip may be assigned to multiple concepts; thus it represents a multi-label
corpus. The concepts are selected based on actual user studies, and cover several
categories like activity, occasion, scene, and object.

To explore complementary features from both audio and visual channels, we
extract similar features as [21]: visual features, e.g., grid color moments, Gabor
texture, edge direction histogram, from keyframes, resulting in 346-dimension
visual feature vectors; Mel-Frequency Cepstral Coefficients (MFCCs) from each
audio frame (10ms) and delta MFCCs from neighboring frames. Over the video
interval associated with each keyframe, the mean and covariance of the audio
frame features are computed to generate a 2550-dimension audio feature vector
. Then the visual and audio feature vectors are concatenated to form a 2896-
dimension multi-modal feature vector. 136 videos (10%) are randomly sampled
as training data, and the rest are used as unlabeled data (also for evaluation). No
videos are reserved as novel unseen data due to the scarcity of positive samples
for some concepts. One-vs.-all classifiers are used to detect each concept, and
average precision (AP) and mean of APs (MAP) are used as performance metrics,
which are official metrics for video concept detection [22].
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Fig. 4. Performance over consumer videos: per-concept AP and MAP. LPSSVM gets
good performance over most concepts with strong cues from both visual and audio chan-
nels, where LPSSVM can find discriminative feature subspaces from multi-modalities.

Fig. 4 gives the per-concept AP and the overall MAP performance of different
algorithms2. On average, the MAP of LPSSVM significantly outperforms other
methods - 45% better than the standard SVM (on a relative basis), 42%, 41% and
92% better than LapSVM, LapRLS and LPP+SVM, respectively. From Fig. 4,
we notice that our LPSSVM performs very well for the “parade” concept, with
a 17-fold performance gain over the 2nd best result. Nonetheless, even if we
exclude “parade” and calculate MAP over the other 20 concepts, our LPSSVM
still does much better than standard SVM, LapSVM, LapRLS, and LPP+SVM
by 22%, 15%, 18%, and 68%, respectively.

Unlike results for Caltech 101, here semi-supervised LapSVM and LapRLS
also slightly outperform standard SVM. However, the naive LPP+SVM still per-
forms poorly - confirming the importance of considering subspace learning and
discriminative learning simultaneously, especially in real image/video classifica-
tion. Examining individual concepts, LPSSVM achieves the best performance
for a large number of concepts (14 out of 21), with a huge gain (more than
100% over the 2nd best result) for several concepts like “boat”, “wedding”, and
“parade”. All these concepts generally have strong cues from both visual and
the audio channels, and in such cases LPSSVM takes good advantage of finding
a discriminative feature subspace from multiple modalities, while successfully
harnessing the challenge of the high dimensionality associated with the multi-
modal feature space. As for the remaining concepts, LPSSVM is 2nd best for 4
additional concepts. LPSSVM does not perform as well as LapSVM or LapRLS
for the rest 3 concepts (i.e., “ski”, “park”, and “playground”), since there are
no consistent audio cues associated with videos in these classes, and thus it is
difficult to learn an effective feature subspace. Note although for “ski” visual

2 Note the SVM performance reported here is lower than that in [21]. Again, this is
due to the much smaller training set than that used in [21].
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Fig. 5. Effect of varying energy ratio (subspace dimensionality) on the detection per-
formance. There exists a reasonable range of energy ratio that LPSSVM performs well.

features have consistent patterns, the performance may be influenced more by
high-dimension audio features than by visual features.

Intriguing by the large performance gain for several concepts like “parade”,
“crowd”, and “wedding”, we analyze the effect of varying dimensionality of the
subspace on the final detection accuracy. The subspace dimensionality is deter-
mined by the energy ratio of eigenvalues kept in solving the generalized eigen-
value problem. As shown in Fig. 5, even if we keep only 10% energy, LPSSVM
still gets good performance compared to standard SVM - 73% gain for “pa-
rade” and 20% gain for “crowd”. On the other hand, when we increase the
subspace dimensionality by setting a high energy ratio exceeding 0.7 or 0.8, the
performances start to decrease quickly. This further indicates that there exist
effective low-dimension manifolds in high-dimension multi-modal feature space,
and LPSSVM is able to take advantage of such structures. In addition, there
exists a reasonable range of energy ratio (subspace dimension) that LPSSVM
will outperform competing methods. How to automatically determine subspace
dimension is an open issue and will be our future work.

5 Conclusion

We propose a novel learning framework, LPSSVM, and optimization methods
for tackling one of the major barriers in large-scale image/video concept clas-
sification - combination of small training size and high feature dimensionality.
We develop an effective semi-supervised learning method for exploring the large
amount of unlabeled data, and discovering subspace structures that are not only
suitable for preserving local neighborhood smoothness, but also for discrimi-
native classification. Our method can be readily used to evaluate unseen test
data, and extended to incorporate nonlinear kernel formulation. Extensive ex-
periments are conducted over four different types of data: a toy set, two UCI
sets, the Caltech 101 set and the challenging Kodak’s consumer videos. Promis-
ing results with clear performance improvements are achieved, especially under
adverse conditions of very high dimensional features with very few training sam-
ples where the state-of-the-art semi-supervised methods generally tend to suffer.

Future work involves investigation of automatic determination of the opti-
mal subspace dimensionality (as shown in Fig. 5). In addition, there is another
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way to optimize the proposed joint cost function in Eq(5). With relaxation
aTXDXTa− I � 0 instead of aTXDXTa− I = 0, the problem can be solved
via SDP (Semidefinite Programming), where all parameters can be recovered
without resorting to iterative processes. In such a case, we can avoid the local
minima, although the solution may be different from that of the original problem.
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