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Abstract

Object/scene detection by discriminative kernel-based
classification has gained great interest due to its promis-
ing performance and flexibility. In this paper, unlike tra-
ditional approaches that independently build binary clas-
sifiers to detect individual concepts, we proposed a new
framework for multi-class concept detection based on ker-
nel sharing and joint learning. By sharing “good” kernels
among concepts, accuracy of individual weak detectors can
be greatly improved; by joint learning of common detectors
among classes, the required kernels and the computational
complexity for detecting each individual concept can be re-
duced. We demonstrated our approach by developing an
extended JointBoost framework, which was used to choose
the optimal kernel and subset of sharing classes in an itera-
tive boosting process. In addition, we constructed multi-
resolution visual vocabularies by hierarchical clustering
and computed kernels based on spatial matching. We tested
our method in detecting 12 concepts (objects, scenes, etc)
over 80+ hours of broadcast news videos from the challeng-
ing TRECVID 2005 corpus. Significant performance gains
were achieved - 10% in mean average precision (MAP) and
up to 34% average precision (AP) for some concepts like
maps, building, and boat-ship. Extensive analysis of the
results also revealed interesting and important underlying
relations among concepts.

1. Introduction
This paper investigates the problem of automatic detec-

tion and recognition of the semantic categories, terms con-
cepts, in images, such as scene (e.g. waterscape-waterfront),
location (e.g. court) and objects (e.g. car). Among various
approaches for concept detection, kernel-based discrimina-
tive methods, e.g. classifiers based on the Support Vector
Machine (SVM), have been demonstrated effective for de-
tecting generic concepts in previous works [1, 5, 6, 7, 9, 11].
A kernel computes the similarity between images and can
be used to find the optimal decision boundary for classifi-
cation. A large variety of kernels can be constructed based
on different local part descriptors extracted from regions or

patches, e.g. color descriptor [20], texture descriptor [13],
SIFT descriptor [5], or the bag-of-features (BOF) represen-
tation [3, 8, 19, 21]. In BOF, images are represented by a
visual vocabulary constructed by clustering the original lo-
cal descriptors into a set of visual tokens. Based on these
local representations, recently, the pyramid matching algo-
rithms [5, 6, 9] have also been proposed to fuse information
from multiple resolutions in the spatial domain or feature
space. In these approaches, vocabularies constructed from
the training data of each concept are used to compute ker-
nels for different concepts, and detectors for each individual
concept are independently learned in an one-vs-all manner.

In this paper, instead of building independent binary one-
vs-all detectors, we explore this multi-class concept detec-
tion problem based on joint learning and vocabulary/kernel
sharing. Different kernels designed for individual concepts
are shared by all the concept detectors, and common detec-
tors for multiple concepts are jointly learned. The motiva-
tion is intuitive: concepts are generally related to each other,
e.g. the “boat-ship” concept is related to the “waterscape-
waterfront” concept; by sharing vocabularies/kernels from
interrelated concepts, each individual concept can be en-
hanced by incorporating the descriptive power from oth-
ers. For example, as shown in Fig.1, the “boat-ship” con-
cept is very difficult to recognize, due to the diverse object
appearances and the resulting lacking of strong visual to-
kens. Kernels computed using such low-quality vocabular-
ies from “boat-ship” itself usually do not have adequate dis-
criminative power and thus yield unsatisfactory recognition
performance. On the other hand, images from “waterscape-
waterfront” have good consistency in visual appearances,
and high quality vocabularies can be learned. Since “boat-
ship” is strongly related to “waterscape-waterfront”, kernels
calculated using the good vocabularies from “waterscape-
waterfront” provide useful complementary information to
help detect “boat-ship”. Moreover, the sharing of common
classifiers among different concepts can be used to construct
multi-class concept detectors. As will be shown in Section 3
and 4, required kernels for learning each individual concept
as well as the detection complexity will be largely reduced.

We demonstrate our approach by developing a new
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Figure 1. Examples of vocabulary/kernel construction. For each
concept, e.g. CA, SIFT features are extracted from uniform grids
over each training image from this concept. Hierarchical cluster-
ing is applied to construct vocabularies with different resolutions:
V0

A, . . . ,VL
A (L is vocabulary resolution and L = 2 in this ex-

ample), where V l
A consists of nl visual tokens {vl

A,1, . . . , v
l
A,nl

}.
Then vocabulary-spatial pyramid match kernels K0

A, . . . ,KL
A are

computed (see Sec.2.2 for details), one kernel for each vocabulary.

multi-class concept detection framework. To jointly learn
the kernel-based detectors and to share kernels from differ-
ent concepts, we propose a joint boosting algorithm to auto-
matically select the optimal kernel and the subset of sharing
concepts in an iterative boosting process. We modify the
traditional JointBoost algorithm [17] to incorporate the gen-
eral Real AdaBoost method [4], so that kernel-based classi-
fiers can be applied for joint learning. Our method provides
a flexible framework that any type of kernel can be conve-
niently incorporated for multi-class concept detection.

In addition, we propose a new kernel construction al-
gorithm, vocabulary-spatial pyramid matching (VSPM),
which constructs multi-resolution visual vocabularies by hi-
erarchical clustering and computes kernels based on spa-
tial matching. This is essentially an extension of the pre-
vious spatial-pyramid matching [9] and vocabulary-guided
pyramid matching [6] methods. Although impressive per-
formance has been obtained by these two previous ap-
proaches, there are still some issues: as both indicated in [9]
and our experiments, it is usually difficult for spatial pyra-
mid matching to automatically choose an appropriate vo-
cabulary resolution for each specific concept; vocabulary-
guided pyramid matching does not consider the spatial lay-
out of local features, which are proven to be effective for
generic concept detection [9, 12]. In order to combine the
power of multi-resolution spatial matching from the former
and multi-layer vocabulary fusion from the latter, we ex-
plore such combined method to generate multiple vocab-
ularies/kernels for each concept, which are further aggre-
gated and shared by all concepts. Richer kernels are pro-
vided and the above problems are alleviated .

We evaluate our method in detecting 12 concepts (ob-

jects, scenes, etc) over 80+ hours (60000+ key frames) of
broadcast news videos from the TRECVID 2005 corpus
[18]. This is one of the largest and most challenging bench-
mark data sets existing for concept detection. Significant
performance gains are achieved - 10% in mean average pre-
cision (MAP) and up to 34% average precision (AP) for
some concepts like “maps”, “building”, and “boat-ship”.
Extensive analysis of the results also reveals interesting and
important underlying relations among object classes. In ad-
dition, we avoid the linear increase of complexity at run
time as the number of concepts grows, due to the sharing of
detectors among concepts.

The remaining part of this paper is as follows. Section 2
introduces the vocabulary and kernel construction method.
Section 3 describes our joint boosting algorithm. Section 4
gives experimental results. Section 5 is our conclusion.

2. Construction of Vocabulary/Kernel Pool
We start by defining notations. Assume there are M se-

mantic concepts, C1, . . . , CM . Let D = {Ip,yIp
} denote

the data set, where Ip is an image and yIp
=[y1

Ip
, . . . , yM

Ip
] is

ground truth concept labels of image Ip, with yj
Ip

=1 or −1
representing the presence or absence of concept Cj in image
Ip. Let F denote a certain feature space for local descrip-
tors (e.g. 128 dimensional SIFT feature space used in [9]).
In the following subsection, we will introduce the procedure
for constructing multi-resolution vocabularies, followed by
our vocabulary-spatial pyramid matching algorithm.

2.1. Vocabulary construction
The bag-of-features representation provides an effec-

tive framework for partitioning the original feature space
F to establish a vocabulary of prototypical image features
[3, 8, 19, 21]. These prototypes are usually called visual
tokens. Recently, in [6] Grauman et al. construct multi-
resolution vocabularies by hierarchical clustering. Images
are represented with multi-level histograms defined over to-
kens of vocabularies, and kernel matching between images
is computed based on histogram intersection. As discussed
in [6], vocabularies established from hierarchical clustering
take advantage of the underlying structure of feature space.

In this paper, we adopt the similar hierarchical vocabu-
lary construction procedure and apply the pyramid match-
ing process in the spatial domain. We incorporate the spa-
tial layout of local descriptors which have been shown to be
effective for generic concept detection [9, 12].

Specifically as shown in Fig.1, for each concept Cj , the
local descriptors from the positive training samples are ag-
gregated together, and hierarchical clustering is applied to
generate L+1 coarse to fine vocabularies which partition
the feature spaceF into a pyramid of non-uniformly shaped
regions. Let V l

j={vl
j,1, . . . , v

l
j,nl
} denote the vocabulary at

level l, 0≤ l≤L, where each vl
j,g represents the gth visual
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token in vocabulary V l
j . Based on these multi-level vocabu-

laries, in the next subsection, a vocabulary-spatial pyramid
matching algorithm will be developed to construct multi-
resolution kernels for each individual concept.

2.2. Kernel construction
For each concept Cj , with each vocabulary V l

j , we con-
struct a vocabulary-spatial pyramid match (VSPM) kernel
based on spatial matching. We adopt the spatial pyramid
matching algorithm proposed by Lazebnik et al. in [9],
which computes correspondence between images by repeat-
edly subdividing images into a spatial pyramid and comput-
ing histogram intersections at multiple spatial resolutions.
This method achieves robust performance for generic scene
detection by incorporating spatial layout information of lo-
cal descriptors [9]. In this paper, we extend the original spa-
tial pyramid matching to incorporate multi-resolution vo-
cabularies. As both evidenced by experiments in [9] and
our experiments in Section 4 (Table 1 and Fig.5), different
concepts favor different resolutions of vocabularies, and it
is generally difficult to determine one optimal resolution for
detecting all concepts in spatial pyramid matching. In our
proposed method, we construct a pool of vocabularies over
multiple resolutions and develop automatic mechanism for
selecting the optimal ones.

Specifically, given a concept Cj and a vocabulary V l
j , the

spatial pyramid matching method [9] hierarchically quan-
tizes the spatial coordinates of images at S +1 different
levels, with 4s discrete blocks at each level s, 0 ≤ s ≤
S. Then for each image Ip, a nl-dimensional histogram
Hs,l

j,k(Ip) = [hs,l
j,k,1(Ip), . . . , h

s,l
j,k,nl

(Ip)] is calculated from
block k at spatial level s, using a certain vocabulary V l

j ,
where hs,l

j,k,g(Ip) is the element bin over visual token vl
j,g.

The number of matches at spatial level s between two im-
ages Ip and Iq is computed by histogram intersection:

Is,l
j (Ip, Iq) =

∑4s

k=1

∑nl

g=1
min

{
hs,l

j,k,g(Ip), h
s,l
j,k,g(Iq)

}

Since the matches found at level s include all the matches at
level s+1, when we go down from fine (level s+1) to coarse
(level s), the new matches found is given by Is−Is+1,
0≤ s≤ S−1. Assume that each level s is associated with
a weight 1

2S−s , which favors matches found in finer cells
because they involve increasingly similar features. The final
VSPM kernel defined by vocabulary V l

j is given by:

Kl
j(Ip, Iq)= IS,l

j (Ip, Iq)+
S−1∑
s=0

Is,l
j (Ip, Iq)−Is+1,l

j (Ip, Iq)
2S−s

=
1
2S
I0,l

j (Ip, Iq) +
∑S

s=1

1
2S−s+1

Is,l
j (Ip, Iq) (1)

For each concept Cj , we have L+1 multi-resolution
VSPM kernels K0

j , . . . ,KL
j defined by L+1 vocabularies.

Instead of training one-vs-all detectors independently, we
propose to share various kernels from different concepts

across multiple detectors. Specifically, all VSPM kernels
from different concepts are aggregated together to generate
a kernel pool K. In the next section, a joint boosting algo-
rithm is developed which provides a systematic data-driven
framework to select optimal kernels from K to be shared
and the optimal sets of concepts that share them.

Note that it is also possible to use these VSPM kernels in
the one-vs-all manner similar to previous concept detection
approaches [6, 9] (as shown in Fig.2 (a)). One method is
the weighted combination of the L+1 kernels K0

j , . . . ,KL
j

from each concept Cj into one ensemble kernel:

Kj(Ip, Iq) =
∑L

l=0
ωlKl

j(Ip, Iq) (2)

Weight ωl can be heuristically defined as in [6]. Then this
ensemble kernel can be used to train one-vs-all classifiers
to detect this concept independently from other concepts.
Another way is to directly apply traditional boosting algo-
rithms (e.g. Real AdaBoost [4]) to train one-vs-all detectors
for each individual concept Cj by selecting appropriate ker-
nels from Kl

0, . . . ,Kl
j through boosting iterations. In our

experiments in Section 4, we will use these two approaches
as baselines to compare with our joint boosting algorithm.

3. Joint Learning with Joint Boosting
The idea of joint boosting is built upon the sharing

of features and classifiers throughout multiple categories.
Most of the existing concept detection approaches [3, 5, 6,
9, 13] recognize each individual concept Cj independently
from other concepts. As shown in Fig.2 (a), these one-vs-all
detectors train a binary classifier to detect each concept Cj ,
only based on the VSPM kernels K0

j , . . .,KL
j derived from

this concept. While in joint boosting (shown in Fig.2 (b)),
multi-class concepts are detected simultaneously by sharing
a kernel pool consisting of all VSPM kernels from various
concepts and sharing the classifiers during boosting itera-
tions. The motivation is intuitive. For example, as shown in
Fig.1, for the “boat-ship” concept, due to the diverse visual
appearances of objects, the extracted vocabularies cannot
provide adequate discriminative power. In such case, the
high-quality VSPM kernels from related concepts (such as
“waterscape-waterfront”) may contain useful additional in-
formation to help detection. By sharing good kernels among
detectors, individual concepts can be enhanced by incorpo-
rating descriptive power from others. Moreover, by sharing
common detectors among concepts, required kernels and tr-
aining samples for detecting individual concepts will be re-
duced [17]. In the next subsections, we will introduce the
boosting framework followed by our joint boosting method.

3.1. Learning with boosting
The multi-class concept detection problem can be for-

mulated as minimizing a multi-class objective function:

J =
∑M

j=1

∑
I∈D

wj
Ie
−yj

IQj
I (3)
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Figure 2. Illustration of learning procedures. (a) one-vs-all detec-
tors recognize each individual concept, e.g. CA, only based on ker-
nels K0

A, . . . ,KL
A derived from this concept, independently from

other concepts. (b) in joint boosting, a kernel pool K (including
kernels from all concepts) is shared by different detectors. First,
using kernel K∗(1) (an optimal kernel chosen from K), a binary
classifier is used to separate CA, CB from the background, i.e.
CA and CB share this classifier and kernel. Then using K∗(2),
a binary classifier further picks out CA. By sharing kernels indi-
vidual concepts are enhanced by incorporating the descriptive po-
wer from others; by sharing classifiers fewer kernels and training
samples are needed to detect each concept (see Sec.3.2 for details).

where yj
I is the ground-truth label of concept Cj for image

I , and wj
I is the sample weight for image I in concept Cj .

Qj
I is a discriminative function (the classification result) we

want to learn. In one-vs-all independent detection methods,
the multi-class concept detection problem is converted into
a set of binary classification problems. That is, J is approx-
imately optimized by minimizing Jj =

∑
I∈D wj

Ie
−yj

IQj
I

for each concept Cj independently. In contrast, in the joint
learning scenario, we directly optimize J jointly by training
a multi-class classifier. Since concepts are usually related to
each other, joint learning is intrinsically reasonable and can
better optimize J than independent training approaches.

The well-known boosting framework effectively com-
bines many weak classifiers to form a powerful ensemble
classifier. In the training stage, training samples are re-
weighted according to the training error from previous weak
learners, and classifiers trained later are forced to focus on
harder samples with higher weights. The boosting proce-
dure is formulated by assuming an additive model for Qj

I :

Qj
I(T )=

∑
t
qj
I(t) (4)

where each qj
I(t) is the hypothesis generated by the tth

weak learner in iteration t. Several variants of boosting al-
gorithm have been developed, such as AdaBoost [15], Real
AdaBoost [4], GentleBoost [4], LogitBoost [4], and boost-
ing feature selection [16].

The original boosting algorithm is designed for binary
classification, and several multi-class learning algorithms,
e.g. AdaBoost.MO, AdaBoost.MH and AdaBoost.MR [15],

have been proposed as extensions of original boosting. In
[17] Torralba et al. propose a JointBoost algorithm based on
GentleBoost. This method tries to find the common feature
axes and the corresponding weak learners that can be shared
across different classes. In [14] the JointBoost algorithm
is extended into a Joint-AdaBoost approach which enables
incremental additions of new classes.

3.2. Joint boosting and kernel sharing
Motivated by the work of [14, 17], in this paper we de-

velop our joint boosting algorithm based on Real AdaBoost
due to its flexibility for incorporating the powerful kernel-
based classifiers for concept detection and its compatibil-
ity for our proposed strategy to share kernels in the itera-
tive boosting steps. Specifically, during each iteration t, our
joint boosting method selects the optimal subset of concepts
S∗(t) and the corresponding optimal kernel K∗(t). Positive
training samples from any concept in S∗(t) are treated as
positive, and a binary classifier is learned based on K∗(t) to
separate these positive data from the background negative
data (samples not belonging to any concept). The optimal
S∗(t) and K∗(t) are chosen by searching from every possi-
ble subset S(t) of concepts using every possible kernelK(t)
in kernel pool K so that the corresponding classifier has the
smallest error on the weighted training set for all concepts.

In the Real AdaBoost formulation [4], during each it-
eration t, we want to minimize the objective function J in
Eqn.(3) with respect to qj

I(t), S(t) and K(t) as follows:

J(qj
I(t),S(t),K(t))=

M∑

j=1

∑

I∈D
wj

I(t)e
−yj

I(Qj
I(t−1)+qj

I(t)) (5)

where qj
I(t) has the following form:

qj
I(t) =

{
1
2 log pt(yj

I=1|I)

pt(yj
I=−1|I)

, Cj ∈S(t)

kj
c(t) , others

(6)

pt(yj
I = 1|I) is the posterior probability of positive detec-

tion of concept Cj generated by the binary weak classi-
fier that separates the positive training samples from the
subset S(t) and the background samples. All concepts
Cj ∈ S(t) share this binary classifier and have the same
pt(yj

I = 1|I) value. kj
c(t) is a constant for concept Cj

which is not selected to share the weak learner in itera-
tion t. A natural choice of kj

c(t) is to use the prior, namely

pt(yj
I =1|I)=

P
I∈D wj

I(t)δ(yj
I=1)P

I∈D wj
I(t)

, where δ(·) is the indica-

tor function. Then kj
c(t) is given by:

kj
c(t)=

1

2
log

P
I∈D wj

I(t)δ(y
j
I =1)P

I∈D wj
I(t)δ(y

j
I =−1)

(7)

kj
c(t) depends on the empirical counts of the positive and

negative training samples of Cj only, rather than the kernel-
based classifier shared with other concepts. kj

c(t) prevents
sharing of kernels due to asymmetry between the number of
positive and negative samples for concept Cj .

Any type of classifiers can be used to generate the poste-
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rior probability pt(yj
I = 1|I) for concepts in S(t). In the

paper, we use the SVM classifier for concept detection. To
conduct sample re-weighting for SVM, we use the random
sampling method. That is, during each iteration t, for each
concept Cj , we form a new training set D̃j(t) generated by
random sampling training samples from the original train-
ing set D according to sample weights wj

I(t).
The detailed joint boosting algorithm is summarized in

Fig.3. Originally, we need to search all possible N(2M−1)
combinations of concepts and kernels, where M is the num-
ber of concepts, and N is the number of kernels in K. To
reduce the computational complexity, during each iteration
t, we adopt the forward selection procedure from [17]: in
the first step, we try every concept using every possible ker-
nel in the kernel pool, and then select the best pair of kernel
K∗(t) and concept C∗1 (t) which has the smallest cost based
on Eqn.(5). Then in the next step, we set S1(t)= {C∗1 (t)},
and for r =2, . . . , M , a concept C∗r (t) is added to Sr−1(t)
to form Sr(t) = Sr−1(t)∪C∗r (t) so that the joint detec-
tor of subset Sr(t) has the smallest cost among all possible
Cr(t). Finally SM (t) will include all concepts. Then from
the M candidate subsets S1(t), . . .,SM (t), we select S∗(t)
with the smallest cost. Note that since our weak learners
generate hypotheses according to Eqn.(6) and samples are
re-weighted in the same way as the original Real AdaBoost:
wj

I(t)=wj
I(t−1)e−yj

Iqj
I(t), our joint boosting algorithm in-

herits the convergence property of the Real AdaBoost algo-
rithm [4]. In other words, the multi-class objective function
is guaranteed to improve in every iterative step.

The major difference between our joint boosting algo-
rithm and the original JointBoost [17] is that we use Real
AdaBoost for sharing kernels, while the original JointBoost
uses GentleBoost [4] for sharing feature axes. GentleBoost
is a “gentle” version of Real AdaBoost, where the “gentle”
Newton stepping is used to improve the objective function
J in each step. In contrast, for Real AdaBoost exact opti-
mization of the objective function is performed in each step.
GentleBoost uses logistic regression as the weak learner,
which has less flexibility (in terms of weak learner) than
Real AdaBoost where any type of classifier can be adopted
to generate the hypotheses. Therefore, to incorporate the
powerful kernel-based discriminative classifiers for detect-
ing generic concepts, we build our joint boosting algorithm
based on the general Real AdaBoost method.

4. Experiments
In this section, we will introduce the details about fea-

ture extraction and the experimental setting, followed by the
experimental results.

4.1. Feature extraction
Similar to [9], SIFT descriptors are extracted from each

16x16 block over a grid with spacing of 8 pixels. For each
concept, the SIFT features from the positive training samp-

algorithm: Joint Boosting
Input: The data set D = {Ip,yIp}, and the kernel pool: K =�K0

1, . . . ,KL
1 , . . . ,K0

M , . . . ,KL
M

	
(M concepts, and L multi-

resolution kernels for each individual concept).
• Initialization: ∀j, set wj

I(0)=1, Qj
I(0) = 0.

• For iteration t=1, . . . , T

– get training set D̃j(t) for each concept Cj by random
sampling D according to weights wj

I(t).
– select the optimal kernel K∗(t) and subset of concepts
S∗(t) in a forward selection procedure:
∗ find the optimal pair of kernel K∗(t) and concept

C∗1 (t) by searching from all possible pairs.
∗ set S1(t)={C∗1 (t)}
∗ Repeat for r=2, . . . , M

Get Sr(t)=Sr−1(t)∪C∗r (t) by finding the optimal
C∗r (t) from all possible Cr(t) /∈Sr−1(t).

∗ Select the optimal S∗(t) from all candidate sub-
sets S1(t), . . . ,SM (t).

– Train a SVM classifier based on S∗(t) and get qj
I(t) .

– For each concept Cj :
∗ re-weight samples: wj

I(t)=wj
I(t−1)e{−y

j
I

q
j
I
(t)}

∗ Update decision: Qj
I(t)=Qj

I(t−1) + qj
I(t).

Figure 3. The joint boosting algorithm based on Real AdaBoost.

les are aggregated and k-means clustering is applied to get a
visual vocabulary V0 at level l=0, consisting of 100 visual
tokens (n0 = 100). Then hierarchical clustering is applied
to generate higher level vocabularies as follows: for each
token vl

i, 0≤ l≤ L−1, we perform k-means clustering to
divide this token to two sub visual tokens vl+1

2i and vl+1
2i+1.

That is, the sizes of vocabularies have nl = 2nl−1. In our
implementation we have three levels in total, i.e. L=2. So
the maximum size of vocabulary is n2 =400.
4.2. Data sets

Our experiments are carried out over a challenging da-
taset: 80+ hours broadcast news videos from the TRECVID
2005 corpus [18]. This is one of the largest and most chal-
lenging data sets existing for concept detection. It contains
137 international news videos, which are divided to sub-
shots and 60000+ key frames are extracted from each sub-
shot. The key frames are labeled with 39 concepts from
LSCOM-Lite ontology [10], e.g. “car”, “outdoor”, etc. In
our experiment 12 diverse concepts are manually selected,
including objects (e.g. “flag-us” and “boat-ship”), locations
(e.g. “urban”), and scenes (e.g. “waterscape-waterfront”
and “vegetation”). One semantic concept, “government-
leader”, is also included as a challenging case. Although
recognition of such highly specific semantic concept seems
very difficult, it is made more feasible by the consistent vi-
sual scenes (like press conference rooms) often seen in im-
ages including government leaders. The selected 12 con-
cepts have moderate performances (not too high or too low)
[1, 18], which makes them suitable for comparing various
concept detection algorithms. Example images for the 12
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Figure 4. Example images for the TRECVID data set.

concepts are shown in Fig.4. In TRECVID data, images can
belong to different concepts, i.e., concepts are not exclusive.
The training set consists of at most 2000 positive images
for each concept and 1000 “background” images (negative
to all 12 concepts). All images are randomly sampled from
90 training videos. 16 videos from the remaining set are
randomly selected as the test data. Finally there are 11952
images for training and 6507 images for evaluation.

The AP (average precision) and MAP (mean average
precision) are used as performance measurements. AP is
an official TRECVID performance metric, which is related
to multi-point average precision value of a precision-recall
curve [18]. To calculate AP for concept Cj , we first rank
the test data (from all concepts) according to the classifi-
cation posteriors of concept Cj . Then from top to bottom,
the precision after each positive sample is calculated. These
precisions are averaged over the total number of positive
samples for Cj . AP favors highly ranked positive samples
and combines precision and recall values in a balanced way.
MAP is calculated by averaging APs across all concepts.

4.3. Comparison between different kernels
First, we evaluate our VSPM kernel using a baseline

approach (called VSPM baseline in the following experi-
ments), where for each concept Cj , an ensemble kernel is
generated based on Eqn.(2) and an one-vs-all SVM classi-
fier is trained using the ensemble kernel to detect this con-
cept (as discussed in Section 2.2). We compare this base-
line with a state-of-the-art approach [9]: SVM classifiers
based on the spatial pyramid match kernel using a single
vocabulary. Table 1 shows the MAP comparison, and Fig.5
shows the per-concept AP performance. From the results,
the VSPM baseline slightly outperforms single-vocabulary
kernels in terms of MAP, and performs best for 5 concepts
in terms of AP, while kernels with single-vocabulary wins
over the remaining 7 concepts. Also, no single vocabulary
setting outperforms others over all concepts. The single-
vocabulary kernel at different levels, l = 0, 1, 2, achieves
the best performance for 1, 2, and 4 concepts respectively.
These results show that different concepts favor different
resolutions of kernels, and the VSPM baseline which av-
erages multi-resolution kernels with heuristic predefined
weights does not result in unambiguous performance gains.

4.4. Vocabulary sharing with joint boosting
In this experiment, we compare our joint boosting with

two baseline approaches: the VSPM baseline presented in
the above subsection, and the regular boosting approach

where Real AdaBoost is directly applied to detect indi-

Table 1. MAP: VSPM baseline vs. single-vocabulary kernels
single-vocabulary kernel
l=0 l=1 l=2

VSPM baseline

0.213 0.219 0.242 0.248

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10 11 12

fla
g-

us
bu

ild
in
g

m
ap

s

bo
at

-S
hi
p

co
ur

t
go

v.
 le

ad
er

ve
ge

ta
tio

n

w
at

er
sc

ap
e

ca
r

ch
ar

ts
ur

ba
n

ro
ad

A
P

single-vocabulary 0l =
1l =
2l =

VSPM baseline

single-vocabulary

single-vocabulary

Figure 5. Per-concept AP: VSPM baseline vs. single-vocabulary
kernels. l indicates the vocabulary resolution level.

vidual concepts independently (as discussed in Section 2.2).
Fig.6 shows the AP performance over each of the 12 con-
cepts. The regular boosting uses 120 weak classifiers (10 it-
erations for each concept) and joint boosting uses 100 weak
classifiers (100 iterations for joint boosting). From the fig-
ure we can see that regular boosting actually hurts the per-
formance over most of the concepts. This phenomenon in-
dicates that severe overfitting occurs by using regular boost-
ing due to the small positive training set for many concepts,
e.g. 254 positive samples out of 41847 training samples
for “boat-ship”. As demonstrated in [2], with such few and
noisy positive training samples, regular boosting is usually
very sensitive and overfits greatly. Compared with the base-
lines, our joint boosting method consistently achieves su-
perior performance for most of the concepts with the lim-
ited training data. This phenomenon is consistent with pre-
vious literatures. As shown in [17, 14], when the num-
ber of training samples are reduced, joint boosting can still
get good performance, since through sharing weak learn-
ers and kernels among different concepts the required train-
ing kernels and samples are reduced for detecting each in-
dividual concept [17]. On average, the overall MAP im-
provement of joint boosting is 24% and 10%, respectively,
compared with regular boosting and VSPM baseline. The
performance improvements over many concepts are signif-
icant, e.g. compared with VSPM baseline, joint boosting
achieves the following AP gain: “building” 30%, “maps’
34%, “urban” 10%, “boat-ship” 17%, “vegetation” 19%,
and “government-leader” 11%.

In addition, Fig.7 shows the evolution of the MAP perfor-
mance during boosting iterations. When more weak clas-
sifiers are added in, joint boosting can achieve better per-
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Figure 6. Per-concept AP of joint boosting and two baseline ap-
proaches: VSPM baseline and regular boosting.

formance, confirming the convergence property of the joint
boost algorithm. Note in the current experiment, we stop at
100 weak learners, and the performance curve is still rising.
This is in contrast to the regular boosting algorithm, where
the performance keeps decreasing throughout the iterations.
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Figure 7. Performance evolution of joint boosting and regular
boosting with different numbers of weak classifiers.

4.5. Exploring concept relations
In this subsection, we explore the relationships between

the 12 concepts in TRECVID data through analysis of the
experimental results from joint boosting. There are 36 ker-
nels in the kernel pool, 3 kernels for each concept. Only 19
kernels are selected to be used by the joint boosting algo-
rithm. Fig.8 shows the frequency of the usage for each ker-
nel. From the figure, kernels of some concepts, e.g. “maps”
and “boat-ship”, are seldom used. These concepts are ei-
ther low-supported rare concepts, or the supporting images
have large diversity in visual appearances (e.g. boat-ship as
shown in Fig.1). Thus the quality of visual vocabularies
from these concepts are relatively poor. This result is con-
sistent with above experiments that these concepts can ben-
efit a lot using kernels from other concepts, and joint boost-
ing has significant performance improvement over “maps”
and “boat-ship” compared with independent detectors.

Fig.9 gives the details about the usage of kernels by each
concept. The figure clearly shows the sharing of vocabular-
ies across different concepts. For example, “boat-ship” uses
the kernels from “waterscape-waterfront” frequently in ad-
dition to its own kernels, and “maps” uses the kernels from
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Figure 8. Usage of individual kernels by 100 weak classifiers.
The horizontal axis shows kernels from different concepts, where
numbers 0,1,2 represent multiple resolutions, i.e. l. Kernels from
“maps” and “boat-ship” are seldom used. Interestingly, these two
concepts are enhanced significantly in joint boosting by leveraging
kernels from other related concepts.

many other concepts such as “charts”, “flag-us”, etc. This
is because of the high correlation between “boat-ship” and
“waterscape-waterfront”, and between “maps” and “charts”
etc. Since images from “waterscape-waterfront” or “charts”
etc have high consistency, the high-quality visual tokens
extracted for ‘waterscape-waterfront” or “charts” etc pro-
vide important semantic cues for detecting “boat-ship” or
“maps” respectively. In addition, Fig.10 shows the AP
evolution of “boat-ship” and “maps” during 100 itera-
tions, where the kernels corresponding to big performance
changes are also listed. Note the same kernel may be
used multiple times throughout the iterative process. Fig.10
further confirms that the performance of “boat-ship” and
“maps” are helped significantly by sharing kernels from
“waterscape-waterfront” and “charts” etc respectively.

4.6. Computational complexity
The test stage of joint boosting is very fast, while its

training stage needs more computational time than regular
boosting or VSPM baseline without boosting. Since train-
ing can be done offline, joint boosting works efficiently in
practice. During the test stage, joint boosting only needs
T SVM classification, one for each iteration, to classify
M concepts simultaneously. While regular boosting needs
M ·T SVM classification. In the training stage, for each
iteration, joint boosting needs to train M ·N +

∑M−1
i=1 i =

(M−1)M
2 +MN classifiers for finding the optimal kernel

and subset of concepts, where N is the total size of kernel
pool K. This is larger than the number needed for regular
boosting – M ·L classifiers during each iteration.

5. Conclusion
We proposed a novel multi-class concept detection

framework based on kernel sharing and joint learning. By
sharing “good” kernels among concepts, accuracy of in-
dividual detectors can be improved; by joint learning of
common detectors across different classes, required kernels
and computational complexity for detecting individual con-
cepts can be reduced. We demonstrated our approach by
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Figure 9. Sharing of kernels among different concepts. Each bar
gives the frequency of a concept using a kernel in 100 iterations.
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developing an extended JointBoost framework, which au-
tomatically selected optimal kernels and subsets of sharing
concepts in an iterative boosting process. Our joint boost-
ing method can be applied for multi-class concept detec-
tion using any type of kernel. In this paper, we proposed a
VSPM kernel for each individual concept based on the bag-
of-features representation. Our method constructed multi-
level kernels over multi-resolution visual vocabularies and
multi-resolution spatial coordinates. We have tested our
method in detecting 12 concepts (objects, scenes, etc) over
80+ hours of broadcast news videos from the TRECVID
2005 corpus, which is one of the largest and most challeng-
ing benchmark data sets for concept detection. Significant
performance gains were achieved–10% in MAP and up to
34% AP for some concepts like “maps”, “building”, and
“boat-ship”. Extensive analysis of the results also revealed
interesting relations among concepts. Our results also con-
firm the great potential of the proposed direction – leverag-
ing strong visual tokens constructed from some concepts to
help detection of challenging categories.
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