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Abstract

In this a novel supervised learning method
is proposed to map low-level visual features to high-level
semantic conceptsfor region-based image retrieval. The 
contributions of thispaper lie in threefolds. ( I ) For each
semantic concept, a set of low-level tokens are extracted
fmm the segmented regions of training images. Those to-
kens capture the representative information for describing
the semantic meaning of that concept; (2)A set of poste-
riors are generated based on the low-level tokens through

which denote the probabilities of
images belonging to the semantic concepts. The posteriors 
are treated as high-level features that connect images with
high-level semantic concepts. Long-term relevance feed-
back learning is incorporated to provide the supervisory
information needed in the above learning process,
including the concept information and the relevant training 
setfor each concept; (3)An integrated algorithm is imple-
mented to combine two kinds of informationfor retrieval:
the information from the feature-to-conceptmapping
process and the high-level semantic from the
long-tern learned Experimental evaluation on
10,000images proves the effectiveness ofour method. 

1. Introduction

Content-based image retrieval (CBIR)has been exten-
sively explored since last decade. It is well known that the 
retrieval performance of CBIR systems is hindered by the
gap between high-level semantic concepts and low-level vi-
sual features Relevance Feedback and Region-Based
Image Retrieval (RBIR)have been proposed as two promis-
ing solutions to bridge this gap. Relevance feedback ap-
proaches can be classified into two categories: the short-
term relevancefeedback learning (SRF)is generally treated 
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as the onlinesupervisedlearningprocess where
the user labels some images to be “relevant” or “irrelevant”
to his query concept during each feedback round and helps
the system to successively refine query and give better re-
trieval results in the next feedback round; the long-termrel-
evance feedback learning [3, 4, memorizes the
information labeled by the user during the feedback pro-
cess, and accumulates the information as semantic experi-
ence to help retrieval in subsequentquery sessions. RBIR
approaches segment images into several regions and use
region-based low-level features, which represent images at
the object level, to retrieveimagesinstead of global features
of the entire image. Most previous RBIR methods directly
calculate the region-to-regionor the image-to-image simi-
larity for retrieval [ 2, Recently, relevance feedback
learning is introduced into RBIR by

To bridge the feature-to-concept gap, CBIR systems
should solve two problems: feature extraction and feature
selection. Other than conventional low-level visual fea-
tures color histogram or wavelet texture), new fea-
tures should be learned, which are more representative to
describethe semanticmeaning of concepts. Also, for a spe-
cific concept, we should tell that which features are more
representativethan the others. In the CBIR context, feature
extraction and feature selection can be carried out in two
ways. (1) During the online SRF process: Most previous
systems carry out online feature extraction or selection us-
ing the labeled images from the user as training samples.
The Boosting featureselection method is a typical ap-
proach. Sincethe labeled training samples are usually very
few compared with the feature dimensionalityand the size
of the database, the performanceis often unsatisfactory. (2)
During an offline learning process: More training samples
may be obtained, and better performance can be expected
for the offline feature extraction and feature selection. As
far as the authors know, previously reported works seldom
addresson this issue. The latest RBIR approachesin [6,
treat offline feature extraction in the form of unsupervised
learning. They learn new features out of the region pool
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from all images in the database, and represent images by the
extracted features instead of by conventional region-based
low-level features for retrieval. However, feature selection
is not carried out in the unsupervised approaches, whose
effectiveness is limited.

To conduct offline feature selection, the supervisory in-
formationabout high-level semantic concepts is needed. In-
tuitively, this of information can be obtained 
learning, because the long-term cumulate memory provides
high-level semantic information, some images come 
from the same semantic concept and some images should
be classified into different concepts. Our recent work in
proposes an LRF learning mechanism, which learns
world semantic concepts underlying images and records
positive training samples for each learned concept. The su-
pervisory informationin the cumulate experience can be ex-
ploited in the learning process of the offline feature extrac-
tion and feature selection (see for details).

The contributions of this paper are mainly in three folds. 
(1)Offlinefeatureextractionand feature selection: For each
semantic concept, a set of new features- low-level tokens-
are extracted based on images in this concept. For every in-
dividual concept, the extracted low-level tokens are specifi-
cally learned according to this concept, and they contain the
most representative information in describing the semantic
meaning of this concept. Thus through extracting low-level
tokens, feature extraction and feature selection are simulta-
neously accomplished. (2) A set of posteriors are generated
through classification based on low-level tokens, 
which denote the probabilities of images belonging to the
semantic concepts. The posteriors are treated as high-level
features which connect images to high-level semantic con-
cepts. The above two steps together are called the process
of mapping low-level features to high-level semantic con-
cepts (feature-to-concept mapping), because the posterior-
based features are generated from region-based low-level
features through extracting low-level tokens. This mapping
process is carried out offline in the formof supervised learn-
ing. LRF learningis adopted to provide the supervisoryin-
formation - information about semantic concepts and the
“relevant” training samples for each concept. (3) The of-
fline learned posterior-based features and the high-level se-
mantic information from LRF records are incorporated to
retrieve images. SRF is carried out based on the posterior-
based features. LRF is carried out after every query ses-
sion when users use our system to retrieve images. The
system evolves through time. When more and more re-
trievals are conducted,the semanticknowledgekeeps grow-
ing, and the posterior-based features map low-level features 
to high-level semantic concepts better and better. We eval-
uate our algorithm and compare it with the state-of-the-arts
based on 10,000images. Experimental results show that out 
method can effectively improve the retrieval performance of

the RBIR system.

2. Feature-to-ConceptMapping

Fig.1 illustrates the entire process of mapping low-level
features to high-level concepts through extracting low-level
tokens. We will describe the detailed steps in this part. 

2.1. Low-level features image segmentation

Let = . . . , be N images in a database. An
image is firstly partitioned into small tiles without over-
lapping, and feature vectors (color features and texture fea-
tures) areextracted based on each tile. Then is segmented
into a setof regions = (xi),. . . , (xi)}through
the spectral clustering method proposed in Each re-
gion is representedby the mean featurevectorsof the mem-
ber tiles in it, and the regions correspond to a set of saliency
memberships = . . . , (xi)} which de-
scribe how well the regions represent the image. can
be determined by many mechanisms, such as by the region
size or position in the image. In our system is mea-
sured by the computational visual attention. The static at-
tention model described in [8] is adopted to calculate the
saliency map of the entire image, and (xi)is given by the
average saliency value of the member pixels in

2.2. Extracting low-level tokens

Let . . . , be semantic concepts, the system ex-
tracts different low-level tokens, respectively, for different
concepts. Let = . . . , be the set of images

belonging to the concept = is all the
segmented regions from all the images in The Principle
Component Analysis (PCA)is exploited based on to re-
duce the dimensionalityof the original featurespace,which
reducesthe redundancy of the image representation by
level region-based features, and alleviates the singularity
problem in matrix computation during the token extraction 
process. After PCA, the is projected to be
Rename elements in as = . . ., We assume
that region is generatively formed by low-level tokens

. . ., through a GaussianMixture Model as:

= k=l

where follows the Gaussian distribution:

and are the mean vector and covariance matrix of the
token respectively. The mixture-basedgrouping method
with model selection proposed in [7] is adopted to extract

..., by clustering the regions in This method
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Figure 1. The work flow of the feature-to-conceptmapping process.

adaptively determinesthe token number by the Minimum
Message Length (MML) criterion, and uses the Expecta-
tion Maximization (EM) algorithm to iteratively calculate
the followingparameters: the token priors the mean
vectors

Given an image x X and its partitions (x) x, we
assume that the probability of x belonging to is deter-
minedby its region partitions. Thus we havethe conditional
independence relationship = Let

be the probability of x belonging to we have:

and the co-variancematrixes =1,...,

=

where

is the region saliency and
are obtained by previous grouping process.

can be interpreted as the appropriate degree
of using to represent image x. Thus defining a vec-
tor = . . . can be
treated as a set of real-valued features for x in the fea-
ture space spanned by ,. . ., with each entry de-
noting how well each interprets the image. The fea-
ture representation process can be intuitively explained as
follows: the region of x, is represented in the
feature space spanned by . . . , as =

.. . Then x is represented
=

2.3. Generatingposterior-basedfeatures

Given three semantic concepts and the way
that differs from is not the same in the way that
differs from classificationcan be used to rea-
sonably determine the optimal way to discriminate every
pair of them. After classification,a posterior-based
featurerepresentationcan be established for images.

. . . . . . . . .
1 :

Figure 2. An example of representing a new image
x in the feature space spanned by the two low-level to-
kens t , ;, which are specifically extracted for semantic
concept x contains 2 regions and Im-
age x is then represented as a real-valued feature vector

To discriminate M semantic concepts, totally M ( M-
painvise classifiers are generated. Each classifier is

learned as follows. For two semantic concepts and
we can put images in a uniform feature space spanned by
their low-level tokens. Given an image x, we combine its
feature vectors and together as

Put all images in and together as and represent
each image x by the new Then a classifier
can be constructedbased on to separate and Let

be the estimated class label of x, and let

be the class probability estimated by the classifier between
and We have = or x )=

Then the class probabilities estimated by the M ( M-
painvise classifiers can be combined to give an ensemble 
class probability estimation = for any image x
in the database. In this paper, we use the probability esti-
mation method proposed in [9] to combinethe hypotheses:
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where normalizes = to 1. Vec-

tor .. . can be treated as a
posterior-based feature vector of image x represented by

semantic concepts. This feature is high-level feature
because it is better related to high-level semantic concepts 
than the original low-level features. This posterior-based
high-level feature is generated based on low-level tokens, 
which is extracted from region-based low-level features. 
Thus we call the whole process the mapping of low-level
visualfeatures to high-level semantic concepts.

3. Supervisory Information from LRF

LRF is an effective mechanism to accumulate high-
level semanticinformationfromretrievals by previous users
[4, In [ 5 ] a multi-layer semantic representation (MSR)
is proposed to describe the real-world semanticsof images,
and an automatic algorithm is implemented to extract the
MSR through LRF process. The MSR records direct multi-
correlationsamong images, and integrates these records to
extract hidden semantic concepts from the database. The
extracted concepts are distributed in multiple semantic lay-
ers, with one semantic layer corresponding to one kind of
hard partitions of the semantic space. We do not verbosely
describe the detailed process of generating the MSR. The
informationcontained in the MSR is what we need.

Assume that the system extracts M semantic con-
cepts ... in the MSR. In each concept
is represented by a quadruple =

.. . , is the labeled “relevant” image set for
= . . . , where is the the counting num-

ber of image being labeled to be in Similarly

= .. ., and = . . . , are the
labeled “irrelevant”image set and the counting number of
each image in being labeled to be in respectively.
The learned concept information . ., and “rele-
vant” sets = 1,...,M can be used as the supervi-
sory information to extract low-leveltokens for the learned
concepts, and to generate posterior-based features through

classification.

4. The Integrated Image Retrieval

In this section, we implemented an integrated system, 
which combines SRF with LRF in our system.

4.1. Retrieval by SRF and LRF

Assumethat during a retrieval process, in feedbackround
t , images in sets and are labeled to be “relevant”
and “irrelevant”respectively by the user. For an image x in
the database, let denote the probability that 
it fits the current query concept. is given by:

where is the probabilityestimatedby offline
feature-to-conceptmapping, and is the prob-
ability predictedby cumulate long-term records.

In practical retrieval, and follow uniformdis-
tribution. We as:

where and respectively are normalization factors
and is

the probability that the current query concept fits the con-
cept estimated by offline feature-to-concept mapping.

is the probability estimated by long-term
memory. They can be given by:

where and respectively are normalization factors for
and In fact for any image

= =i = Theof-
fline feature-to-conceptmapping process and the long-term
records give ( = x)and ( = x),respectively, as:

0 Offline feature-to-concept mapping: 

( = is given by the ensemble class probability de-
scribedin

1 1
= =- . 1

0 Long-term memory: 

is given by:

where is the count of the image x being labeled to be
in the “relevant” set for concept

With can be obtained by
With can be obtained

by Then the integrated can be cal-
culated. During the feedback round t , the images in the
database are ranked based on and thosewith
larger are returned as the retrieval result. 

is an integrated retrieval strategy, which com-
bines the posterior-based features from the 
concept mapping process and the semantic information 
from the accumulated LRF records to improve the retrieval
performance. is a parameter to adjust the relative impor-
tance of these two kinds of information.
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4.2. System implementation

By now we give the entireschemeof our RBIR systemin
Fig.3. In the firstround of retrieval,there is only aquery im-
age as the positive sample, the system retrieves images
by calculatingtheir similarities to the query image and then
ranking the similarities in descending order. The similar-
ity is given by the UnifiedFeature Matching (UFM)
surement described in Feature-to-concept mapping is
carriedout when every 100retrievals are taken by the users.

In here, the Support Vector Machine is adopted
as the classifier mentioned in The output
of the SVM classifier is the distance of image x
from the classificationboundary. can be converted
to probability in as:

= +
Initialization: User provides a query image to start retrieval.
The firstround of retrieval isconductedby rankingimagesaccord-
ing to their UFM similarity to .
Iteration: for =1

1. Calculate by with
2. Calculate by with
3. Calculate
4. Rank images by
5. If user is satisfied, stop iteration; otherwise, user labels the

images which has not been labeled during this query

by
in descending order;

top
session as feedback

Terminal: Long-term MSR learning by algorithmin

Figure Retrieval algorithm in our system.

5. Experimental Results

set = 1 in the algorithm described in Fig.3 (the long-
term records are not used), and compare our method with
two other RBIR approaches: the classical Unified Fea-
ture Matching method [2] (a typical method to re-
trieve imagesbased on directly calculating image-to-image
similarity); and the unsupervisedhidden concept discovery

method (a typical method to retrieve images
based on extracting new features in the form of offline un-
supervisedlearning). In thisexperiment, 1000query images
are randomly selected for 1000 retrievals, and the average

is calculated. For a fair comparison,all the methods use
the same low-level features, the same segmentationresults,
and the same query images. Moreover for all methods, the
first round of retrieval is carried out by ranking images ac-
cording to their UFM similarity to the query image.

Fig.4 gives the average and of our method, UFM
and HCD. The dimensionalityof the extractednew features
for HCD is set to 800. From the figure, we can see
that both HCD and our method are better than the UFM
approach. This indicatesthat the method to extractnew fea-
tures for retrieval is more effectivethan the method directly
using the original region-basedlow-level features. Further-
more, our method outperformsHCD significantlyand con-
sistently from the secondfeedback round. For example, the
precision improvementin round 5 attains 41%. This shows
that the supervised feature extraction and feature selection
can better map low-level features to high-level semantic
conceptsthan the unsupervisedfeatureextractionapproach.

60%

The image database used in our experimentshas 10,000

mentation there are 73,083 regions for the entire database.
30%

real-world images from in which there are 100
semantic categories, 100 images per category. After

The color features used are the first three color moments in
LUV space (9 dimensions),and the color histogramin HSV
space (64 dimensions); the texture features used are the
coarsenessvector (10 dimensions),directionality (8dimen-
sions) and tree-structured Wavelet transform texture (104
dimensions). We perform 2000 rounds of simulated retrie-
val based on the ground-truthconceptsto accumulatethe se-
mantic conceptsand the “relevant”training set foreachcon-
cept through the learning. In the experiments, the per-
formance measurement used is the top-k precision (the
percentage of “relevant”images in the returned k images).
The user labels 10images during each feedback round.

5.1. Comparison with the state-of-the-arts

1 3 4 5
Feedback Round

(a)Average
80% - -

, UFM

30%

20%
1 2 3 4 5

Feedback Round

@)Average 60

Figure 4. Comparisonof our methodand UFM and HCD.

To clearly evaluate the performance of the offline
5.2. Evaluation of the integrated retrieval

process which maps low-level features to high-level se-
mantic concepts through extracting low-level tokens, we

In this experiment, we evaluate the performance of the
integrated retrieval strategy which incorporates
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from feature-to-concept mapping and that from cu-
mulate LRF records. The long-term experience usually
yields good results when query images have already been
recorded, and does not work well when query images have
not. To make the evaluation more reasonable, 2000 query
sessions are conducted to calculate the average precision as
follows. 1000 images are randomly selected from the im-
ages which have already been recorded in cumulate mem-
ory, 1000images are randomly selected from the remaining
images which are not recorded in previous memory.

gives the average and of our proposal
with varying from 0 to 1. The figure shows that both
the long-term records and information from the feature-to-
concept mapping process can improve the retrieval perfor-
mance. When 0.3 or 0.7, the system almost uses
only the offline learned information from the mapping pro-
cess or only the LRF learned records for retrieval, and the
performance deteriorates rapidly. When 0.3 0.7, the
retrieval performance is stable, which indicates that the sys-
tem is not sensitive to when it takes value in a large range.

100%
90%
80%

60%
50%
40%
30%
20%
10%

0 0.1 0.2 0.3 0 . 4 0.5 0.6 0 . 7 0.8 0 . 9 1
a

(a) Average
100%
90%

60%
50%
40%
30%
20%
10%

0 0 . 1 0.2 0.3 0 .4 0.6 0.8 0.9 1
a

Average
Figure5. Retrieval accuracy with varying from to

6. Conclusions
We propose a novel offline supervised learning method 

to map low-level features to high-level concepts through ex-
tracting low-level tokens in RBIR context. According to the
assumption that regions from images in the same semantic 
concept are generatively formed by low-level tokens, dif- 
ferent low-level tokens are extracted for different concepts 
respectively. Representing images in the new feature space 
spanned by low-level tokens, classifiers are con-
structed to discriminate each pair of concepts and generate 
posteriors for images, which are treated as high-level fea-
tures connecting images to concepts. LRF is incorporated to

provide supervisory information. An integrated algorithm is
implemented to combine the information from feature-to-
concept mapping and that from LRF memory for retrieval.
Experimental results demonstrate the effectiveness of our
proposed approach.
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