Time: Tu 4:10-6:40pm.

Room: 1024 Mudd.

Text: T.M. Cover and J.A. Thomas. *Elements of Information Theory*, Wiley, 1991.

Prerequisite: ELEN 4815 (basic knowledge on probability and random process).

Instructor: X. Wang (Email: wangx@ee.columbia.edu, Phone: 854-6592).

Office Hours: Th 4:00pm – 5:00pm, 717 CEPSR.

Grading: Homework (bi-weekly) 20% + Midterm 40% + Final 40%.

Course Outline:

- 1. Preliminaries.
- 2. Lossless Source Coding.
- 3. Lossy Source Coding.
- 4. Discrete Memoryless Channels.
- 5. Gaussian Channels.
- 6. Information Theory and Portfolio Theory.

(Midterm covers chapters 1-3, and Final covers chapters 4-6.)

Chapter 1: Preliminaries

- Entropy of discrete sources
 - Definition of H(X)
 - Properties of entropy: nonnegativity, upper bound, concavity
- Joint entropy and conditional entropy
 - Definitions of H(X, Y) and H(X|Y)
 - Chain rule of entropy
 - Conditioning reduces entropy
 - Independence bound on entropy
 - Entropy of a function of r.v.'s
- Relative entropy
 - Definitions of $D(p(x, y) \parallel q(x, y))$ and $D(p(x, y|z) \parallel q(x, y|z))$
 - Information inequality (nonnegativity of relative entropy)
 - Convexity of relative entropy
 - Chain rule of relative entropy
- Mutual information
 - Definitions of I(X;Y) and I(X;Y|Z)
 - Mutual information and entropy
 - Chain rule of information
 - Nonnegativity of information
 - Concavity/Convexity of information
 - Data processing inequality
- Entropy rate
 - Two definitions of entropy rate: $H(\mathcal{X})$ and $H'(\mathcal{X})$
 - Equivalence of $H(\mathcal{X})$ and $H'(\mathcal{X})$ for stationary process

- Entropy rate of a stationary Markov chain
- Upper and lower bounds on entropy rate of functions of a stationary Markov chain
- Differential entropy of continuous sources
 - Definition of h(X)
 - Properties differential entropy: translation, scaling
 - Joint and conditional differential entropy: chain rule, conditioning, independence bound, entropy of a function of r.v.'s
 - Differential entropy of a linear transformation of a random vector
 - Differential entropy of multivariate Gaussian distribution
 - Relative differential entropy and mutual information: nonnegativity, mutual information and differential entropy, chain rules, data processing inequality
 - Gaussian distribution maximizes entropy
- Differential entropy rate
 - Definitions of $h(\mathcal{X})$
 - Differential entropy rate of a stationary process
 - Differential entropy rate of a stationary Gaussian process
 - Maximum entropy theorem

Chapter 2: Lossless Source Coding

- Shannon source coding theorems
 - Asymptotic equipartition property (AEP) for i.i.d. and stationary ergodic sources
 - Properties of typical sets
 - Fixed-length-to-fixed-length source coding theorem and its converse
 - Fixed-length-to-variable-length source coding theorem
- Properties of optimal (fixed-length-to-variable-length) codes
 - Non-singular codes, uniquely decodable codes, instantaneous codes
 - Kraft's inequality for instantaneous codes
 - Lower and upper bounds on optimal codeword length, large block encoding to approach entropy
 - Kraft's inequality for uniquely decodable codes
 - Shannon code, length of Shannon code using wrong distribution, competitive optimality of Shannon code
- Huffman coding
 - Huffman encoding algorithm
 - Optimality of Huffman code
- Arithmetic coding
 - Shannon-Fano-Elias code
 - Arithmetic codes
- Universal source coding
 - Definitions of type and type class
 - Properties of type for i.i.d. sequences
 - Existence of universal source code for i.i.d. sources
 - Lempel-Ziv encoding and decoding algorithms
 - Asymptotical optimality of Lempel-Ziv code

Chapter 3: Lossy Source Coding (Rate Distortion Theory)

- Rate distortion function
 - Hamming distortion and squared error distortion, rate distortion code, rate distortion function
 - Rate distortion function for binary source
 - Rate distortion function for Gaussian source
 - KKT conditions for constrained optimization
 - $-\,$ Rate distortion function for independent Gaussian sources reverse water-filling
- Achievability of rate distortion theorem
 - Distortion typical sequence pair
 - Rate distortion theorem achievability
- Converse of rate distortion theorem
 - Convexity of rate distortion function
 - Rate distortion theorem converse
 - Properties of optimal rate distortion codes
- Computation of rate distortion function
 - Blahut-Arimoto algorithm alternating minimization

Chapter 4: Discrete Memoryless Channels

- Channel capacity
 - Discrete memoryless channel, channel code, probability of error, achievability, channel capacity
 - Capacity of binary symmetric channel
 - Capacity of binary erasure channel
 - Capacity of (weakly) symmetric channel
- Property of channel capacity
 - $0 \le C \le \max\{\log |\mathcal{X}|, \log |\mathcal{Y}|\}$
 - Continuous and concave in p(x).
 - Blahut-Arimoto algorithm for computing C: alternating maximization
- Achievability of channel coding theorem
 - Joint AEP
 - Proof of achievability
- Converse to channel coding theorem
 - Multiple use of DMC does not increase capacity per transmission
 - Zero-error code and properties of capacity achieving codes
 - Fano's inequality
 - Proof of converse
- Feedback capacity
 - Feedback code and feedback channel capacity
 - Capacity of DMC with feedback = Capacity of DMC without feedback

- Joint source-channel coding theorem
- Discrete memoryless multiple access channels
 - Definitions of multiple-access channel, code, and capacity region
 - Capacity of multiple-access channel
 - Convexity of capacity region
 - Interpretation of capacity region
- Distributed encoding of correlated sources
 - Distributed source coding problem
 - Slepian-Wolf theorem and interpretations
 - Duality between Slepian-Wolf coding and multiple access channel

Chapter 5: Gaussian Channels

- Discrete-time memoryless channel with input constraint
 - Definitions, achievability, channel capacity
 - Capacity of Gaussian channel
 - Gaussian channel is the worst additive noise channel
- Achievability of Gaussian channel capacity
 - Joint AEP
 - Achievability of capacity
 - Sphere packing interpretation
- Converse to Gaussian channel coding theorem
- Parallel Gaussian channels
 - Independent noise water-filling interpretation
 - Colored noise water-filling on eigenvalues
- Gaussian channels with feedback
 - Feedback code
 - Capacity of white Gaussian feedback channel same as without feedback
 - Capacity of colored Gaussian feedback channel increase by at most $\frac{1}{2}$ bit compared with no feedback
- Band-limited Gaussian channels
 - White Gaussian noise channel with idea filter
 - Colored Gaussian noise with arbitrary filtered input
- Gaussian multiple-access and broadcast channels
 - Gaussian multiple-access channel capacity and interpretation
 - Gaussian broadcast channel capacity and interpretation

Chapter 6: Information Theory and Portfolio Theory

- Definitions on stock market
 - Portfolio and growth rate
 - Properties of growth rate
- Properties of log-optimal portfolio
 - KTT characterization of log-optimal portfolio
 - Asymptotic optimality of log-optimal portfolio
 - Competitive optimality of log-optimal portfolio
 - Side information and growth rate
- Stationary markets
 - Chain rule
 - Growth rate and AEP
- Examples: Horse race
 - Doubling rate
 - Gambling and side information
 - Dependent horse races