Bi-level clustering of mixed categorical and numerical biomedical data

Bill Andreopoulos* and Aijun An

Department of Computer Science and Engineering,
York University, M3J1P3, Toronto, Ontario, Canada
E-mail: billa@cs.yorku.ca E-mail: aan@cs.yorku.ca

*Corresponding author

Xiaogang Wang

Department of Mathematics and Statistics,
York University, M3J1P3, Toronto, Ontario, Canada
E-mail: stevenw@mathstat.yorku.ca

Abstract: Biomedical data sets often have mixed categorical and numerical types, where the former represent semantic information on the objects and the latter represent experimental results. We present the BILCOM algorithm for ‘Bi-Level Clustering of Mixed categorical and numerical data types’. BILCOM performs a pseudo-Bayesian process, where the prior is categorical clustering. BILCOM partitions biomedical data sets of mixed types, such as hepatitis, thyroid disease and yeast gene expression data with Gene Ontology annotations, more accurately than if using one type alone.

Keywords: clustering; categorical; numerical; nominal; ordinal; biomedical; bi-level; Bayesian.

Biographical notes: Bill Andreopoulos is a PhD student at the Department of Computer Science and Engineering of York University, Toronto, Canada. He received his MSc at the Department of Computer Science of the University of Toronto (2001) and his BSc at the Department of Computing and Software of McMaster University (1999). His research interests include data mining, clustering and computational biology.

Aijun An is an Associate Professor at the Department of Computer Science and Engineering of York University. She received her PhD Degree in Computer Science from the University of Regina in 1997. She worked at the University of Waterloo as a Postdoctoral Fellow from 1997 to 1999 and as a Research Assistant Professor from 1999 to 2001. She joined York University in 2001. Her research interests include data mining, machine learning and information retrieval.
1 Introduction

Large data sets emerging from studies in biomedical research are often analysed using clustering tools. Clustering aims to partition a set of objects into groups, so that objects with similar characteristics are grouped together and different groups contain objects with dissimilar characteristics (Fasulo, 1999; Goebel and Le, 1999; Grambeier and Rudolph, 2002; Hartigan, 1975). Often when clustering is applied to biomedical data sets of objects with Numerical Attribute Values (NAs), the process does not incorporate the semantic information that has been deposited in databases as Categorical Attribute Values (CAs) on the objects (Dwight et al., 1999; Gene Ontology Consortium, 2001; Grambeier and Rudolph, 2002; Lord et al., 2003). We present the BILCOM algorithm for clustering data sets of objects with mixed CAs and NAs. This algorithm clusters numerical data, incorporating semantic information in the form of CAs. Some characteristics of this clustering approach are:

- if little categorical similarity can be found between an object and a cluster, then the object will be clustered based on numerical similarity, thus, increasing its chance to be clustered correctly
- BILCOM clustering is not based on local decisions and there is an opportunity to re-evaluate the clusters later in the process (Fasulo, 1999; Goebel and Le, 1999; Grambeier and Rudolph, 2002; Hartigan, 1975)
- BILCOM clustering uses CAs during the clustering process, unlike other techniques that annotate the clusters with CAs after the process (Wu et al., 2002).

Data sets for which BILCOM clustering is particularly useful exist in the domain of evidence-based medicine. In these data sets the CAs represent the characteristics or symptoms of patients and NAs represent the results of medical experiments on patients. BILCOM applied to clustering such medical data sets can produce clusters reflecting the medical outcome of patients. Another important application area for BILCOM are microarray gene expression data sets that contain CAs representing known gene functions (Dwight et al., 1999; Gene Ontology Consortium, 2001; Lord et al., 2003) and NAs representing gene expression across time or across tissues (Eisen and Brown, 1999; Eisen et al., 1998; Slonim et al., 2000).

This paper is organised as follows. Section 2 describes previous related work. Section 3 describes the BILCOM clustering algorithm. Section 4 presents the pseudo-Bayesian rationale for the BILCOM algorithm. Section 5 describes application to real yeast data sets. Section 6 discusses experimental results for applying BILCOM to hepatitis and thyroid disease patient data sets. Section 7 discusses selecting the appropriate BILCOM parameter values. Finally, Section 8 concludes the paper.
2 Background on clustering algorithms for mixed data types

Algorithms have been proposed in the literature for clustering mixed categorical (discrete) and numerical (discrete or continuous) data types. In this section we provide an overview of such algorithms. We provide a thorough discussion of clustering algorithms in Andreopoulos (2005). An object o has m attributes $\{o_1, \ldots, o_m\}$. Each o_i, $i = 1 \ldots m$, has a value taken from a domain $S = \{s_1, \ldots, s_x\}$ whose values may be of categorical or numerical data types. A domain of categorical data type is SEX with the values M or F that have no ordering defined. A domain of numerical data type is GPA with ordered values in the range 0.0–4.0. In this paper m represents the number of CAs in each object and N represents the number of objects in the data set.

AutoClass can cluster mixed categorical and numerical data based on prior distributions (Stutz and Cheeseman, 1995). It does not require the user to specify the number of clusters. AutoClass uses a Bayesian method for determining the optimal classes. AutoClass takes a prior distribution of each attribute in each cluster, symbolising the prior beliefs of the user. It changes the classifications of items in clusters and changes the means and variances of the distributions, until the means and variances stabilise.

k-Modes is a clustering algorithm that deals with categorical data (Huang and Ng, 1999; Huang, 1998). The k-Modes clustering algorithm requires the user to specify the number of clusters to be produced and the algorithm builds and refines the specified number of clusters. Each cluster has a mode associated with it. Assuming that the objects in the data set are described by m CAs, the mode of a cluster is a vector $Q = \{q_1, q_2, \ldots, q_m\}$ where q_i is the most frequent value for the ith attribute in the cluster of objects. A similarity metric is needed to choose the closest cluster to an object by computing the similarity between the cluster’s mode and the object. Let $X = \{x_1, x_2, \ldots, x_m\}$ be an object, where x_i is the value for the ith attribute. The similarity between X and Q is defined as:

$$\text{similarity}(X, Q) = \sum_{i=1}^{m} \sigma(x_i, q_i)$$

$$\sigma(x_i, q_i) = \begin{cases} 1, & \text{if } x_i = q_i, \\ 0, & \text{if } x_i \neq q_i. \end{cases}$$

An extension of k-Modes called k-Prototypes was proposed in Huang (1997) to deal with mixed numerical and categorical data. K-Prototypes also adopts an iterative approach to clustering that continues until objects stop changing clusters.

ROCK is a hierarchical clustering algorithm for categorical data (Guha et al., 2000). ROCK assumes a similarity measure between tuples and defines a link between two tuples whose similarity exceeds a threshold w. Initially, each tuple is assigned to a separate cluster and then clusters are merged repeatedly according to the closeness between clusters. The closeness between clusters is defined as the sum of the number of ‘links’ between all pairs of tuples, where the number of ‘links’ represents the number of common neighbours between two clusters.

Supervised learning and Support Vector Machines classify objects based on prior knowledge (Burges, 1998; Vapnik, 1995). Supervised learning draws a boundary separating classes, based on a training data set of labelled objects. Future unlabeled
objects are classified on one side of the boundary. Some applications of SVMs to biomedical domains can be found in Golub et al. (1999) and Slonim et al. (2000).

3 The BILCOM clustering algorithm

The BILCOM ‘Bi-Level Clustering of Mixed categorical and numerical data types’ algorithm performs clustering at two levels, where the first level clustering acts as a prior for the second level, thus simulating a pseudo-Bayesian process as described later in Section 4. The data sets come primarily from the biomedical domain. In these sets, CAs represent semantic information on the objects, while NAs represent experimental results. By Bayesian theory it makes sense to use CAs at the first level and numerical attributes at the second level, rather than start by using numerical data and then categorical. Similarity based on CAs is emphasised at the first level and similarity based on NAs at the second level. The first level result is the prior that is given as input to the second level and the second level result is the output of BILCOM. Figure 1 shows an example, where the first level and second level involve four clusters. The second level clusters consist of subclusters. Object A is assigned to different first and second level clusters, because the NA similarity at the second level is stronger than the CA similarity at the first level. The following relationship holds for A:

\[\text{categorial similarity}(A,\text{cluster}2) + \text{numerical similarity}(A,\text{cluster}2) > \text{categorial similarity}(A,\text{cluster}3) + \text{numerical similarity}(A,\text{cluster}3). \]

On the other hand, object B is assigned to the same clusters in both levels, because both CA and NA similarities support this classification. Thus, BILCOM considers CA and NA similarities of an object to the clusters to which it may be assigned.

Different types of data are used at the first and second levels. The numerical data represent experimental results involving the objects. For example, the numerical data used at the second level might look as follows: BILIRUBIN : 0.39; ALBUMIN : 2.1; PROTIME : 10. The categorical data represent what was observed to be true about the objects before the experiment. For example, the categorical data used at the first level might be existing information on objects looking as follows: SEX : male; STEROID : yes; FATIGUE : no; ANOREXIA : no. BILCOM clustering has the following characteristics:
Bi-level clustering of mixed categorical and numerical biomedical data

3.1 Design of BILCOM

This section describes the first level and second level algorithms that form the BILCOM process, shown in Figure 1. The first level is the MULIC categorical clustering algorithm (Andreopoulos et al., 2004) and it clusters only a subset of the data set objects. The reason MULIC was chosen for the first level is that it creates multiple layers for each cluster and objects in top layers are more likely to be clustered correctly than objects in bottom layers. Thus, it is easy to select the objects in the top layers of MULIC clusters, as the most reliable classifications for the first level of BILCOM.

3.2 First level clustering

At the first level, clustering is performed using MULIC (Andreopoulos et al., 2004). Each cluster has a mode associated with it. Assuming that the objects in the data set are described by \(m \) CAs, the mode of a cluster is a vector \(Q = \{ q_1, q_2, \ldots, q_m \} \) where \(q_i \) is the most frequent value for the \(i \)th attribute in the given cluster.

The MULIC clustering algorithm ensures that when each object is clustered it is inserted into the cluster with the most similar mode, thus maximising the similarity between the object and the mode:

\[
\text{similarity}(o_i, \text{mod}_j)
\]

where \(o_i \) is the \(i \)th object in the data set and \(\text{mod}_j \) is the mode of the \(j \)th object’s cluster. The similarity metric is the \(k \)-Modes similarity, described in Section 2, which returns the number of identical CAs between an object and a mode.

The MULIC algorithm has the following characteristics. First, the number of clusters is not specified by the user. Clusters are created, removed or merged during the clustering process, as the need arises. Second, it is possible for all objects to be assigned to clusters of size two or greater by the end of the process. Third, clusters are layered.

Figure 2 shows the main part of the MULIC clustering algorithm. The algorithm starts by reading all objects from the input file and storing them in \(S \). The first object is inserted in a new cluster, the object becomes the mode of the cluster and the object is removed from \(S \). Then, it continues iterating over all objects that have not been assigned to clusters yet, to find the closest cluster. In all iterations, the closest cluster for each unclassified object is the cluster with the highest similarity between the cluster’s mode and the object, as computed by the similarity metric (Huang and Ng, 1999; Huang, 1998).
The MULIC clustering algorithm

Input: (1) a set S of objects;
Parameters: (1) $\delta \phi$: the increment for ϕ;
(2) threshold for ϕ : the maximum number of values that can differ between an object and the mode of its cluster;
Default parameter values: (1) $\delta \phi = 1$;
(2) $\text{threshold} = \text{the number of categorical attributes } m$;
Output: a set of clusters;
Method:
1. Insert the first object into a new cluster, use the object as the mode of the cluster, and remove the object from S;
2. Initialize ϕ to 0;
3. Loop through the following until S is empty or ϕ is greater than the specified threshold
 a. For each object o in S
 i. Find o's closest cluster c by using the similarity metric to compare o with the modes of all existing cluster(s);
 ii. If the number of different values between o and c's mode is larger than ϕ, insert o into a new cluster
 iii. Otherwise, insert o into c and update c's mode;
 iv. Remove object o from S;
 b. For each cluster c, if there is only one object in c, remove c and put the object back in S;
 c. If in this iteration no objects were inserted in a cluster with size > 1, increment ϕ by $\delta \phi$.

The variable ϕ is maintained to indicate how strong the similarity has to be between an object and the closest cluster’s mode for the object to be inserted in the cluster – initially ϕ equals 0, meaning that the similarity has to be very strong between an object and the closest cluster’s mode. If the number of different CAs between the object and the closest cluster’s mode is greater than ϕ then the object is inserted in a new cluster on its own, else, the object is inserted in the closest cluster and the mode is updated.

At the end of each iteration, all objects classified in clusters of size one have their clusters removed so that the objects will be re-clustered at the next iteration. This ensures that the clusters that persist through the process are only those containing at least two objects for which the required similarity can be found. Objects belonging to clusters with size greater than one are removed from the set of unclassified objects S, so those objects will not be re-clustered.

At the end of each iteration, if no objects have been inserted in clusters of size greater than one, then the variable ϕ is incremented by $\delta \phi$. Thus, at the next iteration the criterion for inserting objects in clusters will be more flexible. The iterative process stops when all objects are classified in clusters of size greater than one, or ϕ exceeds a user-specified threshold. If the threshold equals its default value of the number of attributes m, the process stops when all objects are assigned to clusters of size greater than one.
The MULIC algorithm can eventually classify all objects in clusters, even if the closest cluster to an object is not that similar, because \(\phi \) can continue increasing until all objects are classified. Even in the extreme cases, where an object \(o \) with \(m \) attributes has only zero or one value similar to the mode of the closest cluster, it can still be classified when \(\phi = m \) or \(\phi = m - 1 \).

Figure 3 illustrates what the results of MULIC look like. Each cluster consists of many different ‘layers’ of objects. The layer of an object represents how strong the object’s similarity was to the mode of the cluster when the object was assigned to the cluster. The cluster’s layer in which an object is inserted depends on the value of \(\phi \). Lower layers have a lower coherence – meaning a lower average similarity between all pairs of objects in the layer – and correspond to higher values of \(\phi \). MULIC starts by inserting as many objects as possible in high layers – such as layer 0 or 1 – and then moves to lower layers, creating them as \(\phi \) increases.

Figure 3 MULIC results. Each cluster consists of one or more different layers representing different similarities of the objects attached to the cluster

If an unclassified object has equal similarity to the modes of the two or more closest clusters, then the algorithm tries to resolve this ‘tie’ by comparing the object to the mode of the top layer of each of these clusters. The top layer of a cluster may be layer 0 or 1 or 2 and so on. Each cluster’s top layer’s mode was stored by MULIC when the cluster was created, so it does not need to be recomputed. If the object has equal similarity to the modes of the top layer of all of its closest clusters, the object is assigned to the cluster with the highest bottom layer. If all clusters have the same bottom layer then the object is assigned to the first cluster, since there is insufficient data for selecting the best cluster.

The complexity of MULIC is \(O(N^2) \), where \(N \) is the number of objects. Most of our trials had runtimes of several seconds. Increasing \(\delta \phi \) or decreasing \textit{threshold} reduces the runtime, often without hurting the quality of results (Andreopoulos et al., 2004).

The question remains of which objects to be clustered at the first level. The first level objects are those whose comparison to the mode of the closest cluster by the similarity metric yields a result that is greater than or equal to a value \textit{minimum_mode_similarity}, while the rest of the objects are clustered at the second level. The user can specify a value for the \textit{threshold} for \(\phi \) that is less than its default value of the number of CAs \(m \). This \textit{threshold} value for \(\phi \) is \(m - \textit{minimum_mode_similarity} \). When \(\phi \) exceeds the maximum allowed value specified by \textit{threshold}, any remaining objects are clustered at
the second level instead. The reason only the objects whose similarity to the closest mode is greater than minimum_mode_similarity are clustered at the first level is because the objects that yield a low similarity to the closest mode are more likely to be inserted in a wrong cluster, as we showed in Andreopoulos et al. (2004, 2005a, 2005b, 2005c). Thus, the objects whose classification in clusters based on categorical similarity is not reliable enough are clustered at the second level instead, where the numerical similarity of objects to clusters is more influential. We discuss setting the values of threshold and minimum_mode_similarity in Sections 6 and 7.

3.3 Second level clustering

The first level result is the input to the second level. The second level clusters all of the data set objects, including the objects clustered at the first level. The second level uses numerical data type similarity and the first level result as a prior. The second level clustering consists of five steps, whose rationale is to simulate maximising the numerator of the Bayesian equation, as described in Andreopoulos et al. (2005a, 2005b, 2005c). The second level result is the output of the BILCOM process.

Step 1. One object in each first level cluster is set as a seed, while all the rest of the objects in the cluster are set as centres. The seed is an object that is at the top layer of the cluster – ideally in layer zero. The reason we choose a top layer object as a seed is that the most influential objects at the second level should be those that have the minimum average distance to all other objects in the first level cluster. The MULIC paper (Andreopoulos et al., 2004) showed that objects at the top layer have a smaller average distance to all other cluster objects than lower layer objects do.

If the top layer of a cluster is layer 0 then we have no difficulty in choosing the seed since all objects have the same CAs. If the top layer of a cluster is not layer 0 and it contains more than one object, then we choose the seed by comparing all top layer objects to the cluster’s mode to find the closest object. If this does not resolve the ambiguity then we compare all top layer objects to the cluster’s top layer mode – which was stored by MULIC when the cluster was created – to find the closest object. If all top layer objects have the same similarities to modes then we assign the seed to be the first top layer object, since there is insufficient information for choosing the best seed.

Step 2. Each seed and centre is inserted in a new second level subcluster. The output of this step is a set of subclusters, referred to as seed-containing or centre-containing subclusters, whose number equals the number of objects clustered at the first level.

Step 3. Each object that did not participate at the first level is inserted into the second level subcluster containing the most numerically similar seed or centre. Numerical similarity for Steps 3–5 is determined by the Pearson correlation coefficient or the Shrinkage-based similarity metric introduced by Cherepinsky et al. (2003).

Step 4. Each centre-containing subcluster is merged with its most numerically similar seed-containing subcluster. The most numerically similar seed-containing subcluster is found using our version of the ROCK goodness measure (Guha et al., 2000) that is evaluated between the centre-containing subcluster in question and all seed-containing subclusters:
Bi-level clustering of mixed categorical and numerical biomedical data

\[G(C_i, C_j) = \frac{\text{link}[C_i, C_j]}{\text{size}(C_i) \times \text{size}(C_j)} \]

link\([C_i, C_j]\) stores the number of cross links between subclusters \(C_i\) and \(C_j\), by evaluating \(\Sigma(o_q \in C_i, o_r \in C_j) \text{link}(o_q, o_r)\). \(\text{link}(o_q, o_r)\) is a boolean value specifying whether a link exists between objects \(o_q\) and \(o_r\). A link is set between two objects if the objects’ numerical similarity is higher than a value \(\text{minimum_numerical_similarity}\). The rationale for using a variation of ROCK’s goodness measure for this step is that the link-based approach of ROCK adopts a global approach to the clustering problem, by capturing the global information about neighbouring objects between clusters. It has been shown to be more robust than methods that adopt a local approach to clustering, like hierarchical clustering (Guha et al., 2000).

Step 5. The loop shown in Figure 4 refines the subclusters merged in Step 4. All variables take real values in the range 0.0–1.0.

Figure 4 BILCOM step 5 process

```plaintext
repeat {
  for each centre-containing subcluster
    if (\text{num_sim_centre_subcluster_to_1st_level_cluster} > \text{cat_sim_centre_to_1st_level_seed} \times \text{num_sim_centre_subcluster_to_2nd_level_cluster} > \text{cat_sim_centre_to_2nd_level_seed})
      merge centre-containing subcluster to 1st level seed-containing subcluster;
} until (no centre-containing subcluster changes);
```

The variable:

\(\text{Cat_sim_centre_to_1st_level_seed}\)

represents the categorical similarity of the centre \(c\) of a subcluster \(C\) to the seed \(s\), such that \(c\) and \(s\) were in the same first level cluster.

The variable:

\(\text{Cat_sim_centre_to_2nd_level_seed}\)

represents the categorical similarity of the centre \(c\) of a subcluster \(C\) to the seed of \(C\)’s most numerically similar seed-containing subcluster \(N\) determined in Step 4. The categorical similarity is computed as follows:

\[
\text{similarity}(centre, seed) = \frac{\sum_{i=1}^{m} \sigma(centre, seed)}{m}
\]

\[\sigma(centre, seed) = \begin{cases} 1, & \text{if } centre = seed \\ 0, & \text{otherwise.} \end{cases}\]

The variables:

\(\text{Num_sim_centre_subcluster_to_1st_level_cluster}\)

\(\text{Num_sim_centre_subcluster_to_2nd_level_cluster}\)
represent the numerical similarity of a subcluster \(C \) containing centre \(c \) to the cluster containing seed \(s \), such that \(c \) and \(s \) were in the same first level cluster, and to the cluster containing \(C \)'s most numerically similar seed-containing subcluster \(N \) determined in Step 4, respectively. These similarities include the subclusters that were merged to the clusters in previous iterations of the loop.

According to this loop, a subcluster \(C \) containing centre \(c \) is attracted to the subcluster \(S \) containing seed \(s \), such that \(c \) and \(s \) were in the same first level cluster. The attraction is stronger if there is high categorical similarity between \(c \) and \(s \) and lower if there is low categorical similarity between \(c \) and \(s \). The subclusters \(C \) and \(S \) get merged if both the categorical similarity between \(c \) and \(s \) and numerical similarity between \(C \) and \(S \) are high enough. If \(c \) is not categorically similar enough to \(s \), then, \(C \) should be likely to remain merged with its most numerically similar seed-containing subcluster \(N \) determined in Step 4. Figure 5 shows Steps 4 and 5.

Figure 5 Steps 4 and 5 of the second level of BILCOM clustering

In Section 6.2 we discuss tests to show that BILCOM is able to escape a poor prior. For instance, if a centre \(c \) was inserted in a first level cluster with weak similarity to the cluster mode, or if the similarity to the mode was erroneously high enough, or if \(c \) had erroneous CAs with low confidence to be correct. The categorical similarity between the centre \(c \) and the seed \(s \), such that \(c \) and \(s \) were in the same first level cluster, is likely to return a low value when the prior is poor. In this case, the subcluster \(C \) containing centre \(c \) will be likely to remain merged with its most numerically similar seed-containing subcluster \(N \) determined in Step 4, instead of the subcluster \(S \) containing the seed \(s \). Thus, the prior can be escaped and the data can be clustered correctly. In this case, \(C \) will not be merged to \(S \), unless their numerical similarity is very high.

On the other hand, if the subcluster \(C \) containing centre \(c \) is merged to the subcluster \(S \) containing the seed \(s \), such that \(c \) and \(s \) were in the same first level cluster, then \(C \) must be numerically similar enough to \(S \). This way we ensure that if a subcluster \(C \) is merged to the subcluster \(S \) that is suggested by the results of the first level clustering, the numerical similarity between \(C \) and \(S \) is high enough to support the merging.

The reason why the inequality comparison in Step 5 considers the seeds of clusters instead of the cluster modes, is that by considering similarity to seeds we are effectively giving the objects a second chance to reorganise and to escape their first level clustering if the first level clustering was weak. Since the first level clustering was based on comparisons to modes that often yield wrong results and, therefore, objects may be attached to wrong clusters, the comparison in Step 5 allows the similarities to be
Bi-level clustering of mixed categorical and numerical biomedical data

reconsidered. We showed in Andreopoulos et al. (2004) that objects in the top layers 0 and 1, such as seeds, have a higher average similarity to all other cluster objects than do lower layer objects.

4 The Doctris framework

We introduce a framework providing the theoretical rationale for BILCOM, which we call Doctris ‘Double Criteria Triple Step’. Doctris assumes that two different criteria A and B exist and will be used at two different levels of the clustering process, such that the result of the first level provides a prior for the second level. The criteria A and B are objects’ attributes with values taken from different domains and are of different data types, categorical and numerical respectively. The Doctris framework is built upon the Bayesian framework but is pseudo-Bayesian at this moment. As in the Bayesian framework, the probabilities estimated at the first level are updated or corrected at the second level. Therefore, it bears a great resemblance to the empirical Bayes method. However, the probabilities are estimated by the similarity metric instead of using the likelihood as in the true Bayesian paradigm. The framework is based on the idea that a high similarity between an object and a cluster means a high probability that this is the correct cluster for the object, while a lower similarity means a lower probability. This approach lays a path to incremental empirical learning with more than one criterion, thus tackling an important problem. In this section we often use the term classification, but we are in fact referring to unsupervised clustering.

Figure 6 presents the general steps that define the Doctris framework. As shown, classification is performed on the basis of two criteria A and B. The first level consists of Doctris Step 1 that is based on criterion A (categorical). The second level consists of Doctris Steps 2 and 3 that are based on criteria A and B (numerical). When learning in Step 1 on the basis of criterion A, the likelihood of misclassification will increase to an unacceptable level after a number of M objects have been classified. A clustering algorithm for which this holds is the MULIC clustering algorithm (Andreopoulos et al., 2004). After M objects have been classified in Step 1, the unclassified $N - M$ objects are classified in Steps 2 and 3 based on both of the criteria A and B. In Step 2, each one of the remaining $N - M$ objects is matched to the closest of the M objects based on criterion B, thus resulting in M subclasses. In Step 3, the subclasses resulting from Step 2 are selectively merged to one another, based on both criteria A and B, until X classes emerge from the process. This sequence of steps simulates a Bayesian process described in Section 4.1, where the result of Step 1 is the prior for Steps 2 and 3.

The general steps that define the Doctris framework serve the ultimate purpose of enhancing the classification process to produce more accurate results. The process will be significantly improved if certain rules are satisfied. In the descriptions that follow $lmcAandB[M, A]$ is the “likelihood of misclassification of objects based on criteria A and B, after M objects have been classified based on criterion A”. $lmcA[M, A]$ is the “likelihood of misclassification of objects based on criterion A, after M objects have been classified based on criterion A".
Figure 6 The Doctris framework for unsupervised clustering using two criteria

1. Two criteria A and B exist. For example, similarity between objects could be computed on the basis of numerical and categorical data type values.
2. The input is a set of N objects $D = \{D_1, \ldots, D_N\}$
3. The output is a set of X classes $C = \{C_1, \ldots, C_X\}$ that are learnt from D, such that $X \leq N$.
4. The process of learning C from D consists of 3 steps:
 - **Step 1.** On the basis of criterion A, form a number of X classes $C = \{C_1, \ldots, C_X\}$, that are most likely to have as few misclassified objects as possible. Only M of the objects in D are classified, where $X \leq M \leq N$. Using more objects than M would increase the likelihood of misclassified objects in C.
 - **Step 2.** On the basis of criterion B, form a number of M subclasses $d = \{d_1, \ldots, d_M\}$, by matching each object in the set $u = \{u_1, \ldots, u_M\}$ of $N - M$ objects not classified in Step 1, to the closest one of the M objects classified in Step 1. Each subclass $d_i, i = 1, \ldots, M$, consists of one of the M objects classified in Step 1 and zero or more of the objects in u not classified in Step 1.
 - **Step 3.** On the basis of both criteria A and B, selectively merge the M subclasses $d = \{d_1, \ldots, d_M\}$ to one another, until a set of X classes $C = \{C_1, \ldots, C_X\}$ emerges.

In order for a Doctris algorithm to produce more accurate results than Step 1 of the framework would produce alone based on criterion A only, the following inequality needs to be satisfied:

$$\text{lmcaAndB}[M] \times \frac{(N-M) + (M-X)}{N} < \text{lmca}[M] \times \frac{N-M}{N}$$

$$\Leftrightarrow \text{lmcaAndB}[M] \times (N-X) < \text{lmca}[M] \times (N-M)$$

$$\Leftrightarrow \text{lmcaAndB}[M] < \text{lmca}[M] \times \frac{N-M}{N-X}$$.

The inequality (1) states that from the total number of objects $(N-M) + (M-X) = N-X$ whose classification may change in Steps 2 and 3 based on criteria A and B, fewer objects should be likely to be misclassified, than if using only criterion A in Step 1 to classify the remaining $N-M$ objects. $N-M$ is the number of objects that are matched to a subclass in Step 2, while $M-X$ is the number of merges between subclasses that may occur in Step 3. The products estimate the number of objects that are likely to be misclassified, based on the likelihood of misclassification.

As M increases, the term $\text{lmcaAndB}[M]$ on the left-hand side of inequality (1) changes less rapidly than the right-hand side because both criteria A and B are used and any objects misclassified in Step 1 will be given a second chance to be classified correctly during Steps 2 and 3. We would like to estimate the value of M such that the left-hand side of the inequality (1) is lower than the right-hand side and the distance between the left-hand side and the right-hand side is maximised. Thus, we would like to use the value of M such that the following ratio is maximised:

$$\frac{\text{lmca}[M] \times (N-M)/(N-X)}{\text{lmcaAndB}[M]}$$.

As M increases the term $\text{lmca}[M]$ increases. However, as M increases the ratio $(N-M)/(N-X)$ decreases at a constant rate since N and X are constants; since $X \leq M \leq N$, this ratio is in the range 0.0–1.0. A maximal product of the terms on the right-hand side
of inequality (1) can be estimated. For example, 0.9×0.1 and 0.1×0.9 return 0.09, but 0.5×0.5 returns 0.25. A conservative approach would be to classify few objects in Step 1 such that $(N - M)/(N - X)$ is high while $lmcA[M_A]$ remains relatively low. Another approach would be to classify many objects in Step 1 such that $(N - M)/(N - X)$ is low while $lmcA[M_A]$ is high.

Figures 7 and 8 show the graphs for two cases of the products of $lmcA[M_A]$ and $(N - M)/(N - X)$, for $X = 10$ and $N = 100$. M is represented by the horizontal axis. The term $(N - M)/(N - X)$ has a constant decrease rate. In the first case, $lmcA[M_A]$ increases at a rapid rate with M. The maximal product value of the two terms is at $M = 35$. In the second case, $lmcA[M_A]$ increases at a lower rate with M. The maximal product value of the two terms is at $M = 25$.

Figure 7 This graph shows how $lmcA[M_A]$ increases at a high rate, while $(N - M)/(N - X)$ decreases at a constant rate. Number of clusters $X = 10$ and number of objects $N = 100$. M ranges between X and N as represented by the horizontal axis. The product value is maximised at $M = 35$

Figure 8 This graph shows how $lmcA[M_A]$ increases at a lower rate, while $(N - M)/(N - X)$ decreases at a constant rate. Number of clusters $X = 10$ and number of objects $N = 100$. M ranges between X and N as represented by the horizontal axis. The product value is maximised at $M = 25$
4.1 Pseudo-Bayesian rationale for the Doctris framework

Doctris is based on the Bayesian theory of classification. The idea of Bayesian classification is to find for each data object, the classification H for which the Bayesian rule gives the maximum result:

$$
\pi(H \mid E) = \frac{\pi(E \mid H)\pi(H)}{\pi(E)}
$$

$\pi(H)$ is the prior probability of hypothesis H. $\pi(E)$ is the prior probability that some evidence E is observed on the object. $\pi(E|H)$ is the likelihood of E given H. $\pi(H|E)$ is the posterior probability of H given E. We seek the hypothesis H such that the numerator $\pi(E|H)\pi(H)$ of the Bayesian equation is maximised. In other words, we seek the classification H of each object for which this numerator returns the maximum value. This gives the most probable classification H for an object.

Linking the Doctris framework to Bayesian theory of classification, the prior E for an object is the classification of the object in a class in Step 1, based on criterion A. The hypothesis H for an object is the classification of the object in a class in Steps 2 and 3, based on criteria A and B. For example, the criterion A are CAs that represent information about the object or our observations before an experiment takes place. The criterion B are numerical attributes that represent the results of an experiment.

In this framework, $\pi(E)$ is a constant for each object that depends on the likelihood that the classification E of an object in a class in Step 1 is correct. This likelihood increases with the strength of the similarity of the object to the class to which it is assigned in Step 1 according to criterion A. Since $\pi(E)$ is a constant for each object and it does not affect the choice between classifications H we do not use $\pi(E)$ in our calculations. In traditional Bayesian clustering algorithms, such as AutoClass, the evidence E used in the Bayesian rules is given by the categorical or NAs of each object. In such traditional Bayesian clustering algorithms, the denominator $\pi(E)$ is often not considered in the process of finding the best classification. The term $\pi(H)$ is often not considered either in traditional algorithms, leaving the most important term to be $\pi(E|H)$.

In the following descriptions the term $\text{similarity}_{AB}(o, \text{classStep}_x)$ is the similarity of object o to the class in which o is classified in Step x, according to the criteria A and B. This similarity can be computed using various algorithms, such as ROCK’s similarity metric for numerical or CA value types (Goebel and Le, 1999).

Linking the Doctris framework to the Bayesian theory of classification, $\pi(H)$ is the likelihood that the classification of an object in a class in Steps 2 and 3 is correct, meaning that H is likely to be true. $\pi(H)$ increases with the strength of the similarity of the object to the subclass to which it is assigned in Step 2 according to criterion B. Since in Step 3 the subclasses are selectively merged to one another to form classes, to find $\pi(H)$ we are interested both in the similarity of the object to its Step 2 subclass according to criterion B, as well as the similarity of that subclass to the subclass to which it gets merged in Step 3 according to criteria A and B. Thus, we simulate maximising $\pi(H)$ by seeking the classification H for an object o such that the following term is maximised:

$$
\max(\pi(H)) = \max(\text{similarity}_{AB}(o, \text{classStep}_3))
= \max(\text{similarity}_{AB}(o, \text{subclassStep}_2)) \times \text{similarity}_{AB}(\text{subclassStep}_2, \text{classStep}_3))
$$
Maximising $\pi(E|H)$ is related to equation (2) since it may indicate a different best class for o. Linking the Doctris framework to the Bayesian theory of classification, $\pi(E|H)$ is the likelihood that the classification of an object in a class in Step 1 is correct, meaning that E is likely to be true, given that the object is classified in Steps 2 and 3 and in the class represented by H. $\pi(E|H)$ increases with the strength of the similarity of the object to the class to which it was assigned in Step 1 according to criterion A, as represented by E and $\pi(E)$. $\pi(E|H)$ also increases if the Step 1 class for the object, represented by E, is the same one as the class to which the object is assigned in Steps 2 and 3 based on criteria A and B, represented by H. Maximising $\pi(E|H)$ is related to equation (2) above, in the sense that the $\text{classStep}_{3, o}$ that previously yielded the highest similarity for o according to criteria A and B might not necessarily be the best choice. Instead, o might need to be assigned back to the class in which o was classified in Step 1, if the similarity of o to this class according to criteria A and B suggests this is a better choice. In our final decision on which class to assign o to, the similarity according to criteria A and B needs to be computed between o and the classes to which it was assigned in Steps 1 and 3, since both criteria are likely to contain information about the classification of object o. Thus, we simulate maximising $\pi(E|H)$ by choosing between the Step 1 or Step 3 classification H for an object o:

$$
\text{max}(\pi(E \mid H)) = \max(\text{similarity}_{AB}(o, \text{classFinal}_{1, o}))
\quad = \max(\max(\pi(H)), \text{similarity}_{AB}(o, \text{classStep}_{1, o}))
\quad = \max(\max(\text{similarity}_{AB}(o, \text{classStep}_{3, o})), \text{similarity}_{AB}(o, \text{classStep}_{1, o})).
$$

(Object 3)

Objects with low similarity to the closest Step 1 class according to criterion A are not classified in Step 1, thus ignoring for these objects the term $\text{similarity}_{AB}(o, \text{classStep}_{1, o})$ from equation (3). Such an object o is likely to produce a higher value for $\max(\text{similarity}_{AB}(o, \text{classStep}_{3, o}))$ than $\text{similarity}_{AB}(o, \text{classStep}_{1, o})$, since Steps 2 and 3 will classify o based on both criteria A and B. Step 2 will assign o to the closest subclass based on criterion B and Step 3 will merge this subclass to the closest class based on criteria A and B, thus simulating maximising $\pi(H)$ and $\text{similarity}_{AB}(o, \text{classStep}_{3, o})$. Furthermore, not classifying these objects in Step 1 reduces the computation time.

The above similarity terms are defined below, where $\text{metric}_{AB}(x, y)$ represents a metric based on criterion Z for estimating the similarity between objects x and y, returning a value in the range 0.0–1.0, for low and high similarity between x and y respectively. For example, this metric could be the Euclidean distance for numerical attributes, or the modes-based similarity for CAs as defined by Eisen and Brown (1999), Eisen et al. (1998) and Huang (1998):

- $\text{similarity}_{AB}(o, \text{subclassStep}_{2, o})$ can be estimated using $\text{metric}_{AB}(o, y)$ where y is a representative object for $\text{subclassStep}_{2, o}$

- $\text{similarity}_{AB}(o, \text{classStep}_{1, o})$ can be estimated using $\alpha \times \text{metric}_{AB}(o, y)$ $+$ $\beta \times \text{metric}_{AB}(o, y)$, where y is a representative object for $\text{classStep}_{1, o}$ and α and β are weights in the range 0.0–1.0, such that $\alpha + \beta = 1.0$

- $\text{similarity}_{AB}(\text{subclassStep}_{2, o}, \text{classStep}_{3, o})$ can be estimated using:
A Doctris algorithm takes into consideration all of these probabilities. The purpose is to classify each object in the class represented by H that maximises the probability for the numerator $\pi(E|H)\pi(H)$ of the Bayesian rules.

4.2 An evaluation metric

The similarity metric of the Doctris framework can be adopted as a metric for evaluating the quality of the results. This would involve using $\text{similarity}_{AB}(o, \text{classFinal}_o)$ from equation (3) to calculate the average similarity of all objects o in the data set D to their respective classes. This evaluation metric can be described as follows:

$$\text{Quality} = \frac{\sum_{o \in D} \text{similarity}_{AB}(o, \text{classFinal}_o)}{\text{size}(D)}.$$ \hspace{1cm} (4)

4.3 A possible extension of the Doctris framework

The Doctris framework can be extended to more than two levels and criteria. New objects with a criterion Z may be presented to the classification process, after object classification has been done using criteria $A \ldots Y$. Criterion Z’s attribute values might be of the same or different domains as the previous criteria $A \ldots Y$. For example, Z might be numerical while the previous criteria were categorical. In either case, criterion Z is presented to the classification process at a different time point from criteria $A \ldots Y$. The new objects possess the previous criteria $A \ldots Y$ as well as the new criterion Z. M is the number of objects that were previously classified using criteria $A \ldots Y$ and N is the total number of objects including the new objects with criterion Z. Inequality (5) holds for the general case:

$$\text{lmcAandB} \ldots \text{YandZ}[M_{A,Y}] \times \frac{(N-M) \times (M-X)}{N} < \text{lmcAand} \ldots \text{andY}[M_{A,Y}] \times \frac{(N-M)}{N}. \hspace{1cm} (5)$$

The new objects are added to one of the Step 2 subclasses based on the criterion Z, as shown in Step 2 of the Doctris framework. Then Step 3 is repeated based on all criteria $A \ldots Z$, so that the subclasses from Step 2 are refined. For Step 1 there exist two options:
• Step 1 may not be repeated each time new objects are presented, in which case the Step 1 results remain stable throughout the classification process based on the initial criterion A. Thus, the Step 1 results can serve as a constant basis for the future classification process.

• Step 1 may be repeated based on the criteria $A \ldots Y$, when new objects are presented with a new criterion Z. Thus, the basis of the classification process could change when new objects are presented. However, this is time consuming and inefficient for classification.

After a series of objects with new criteria have been presented to the algorithm, the size of the subclasses formed in Step 2 will increase beyond an acceptable level. In this case, option b described above should be executed, to decrease the size of the Step 2 subclasses and increase the accuracy of the results.

5 Real yeast data

We compared BILCOM to AutoClass and Shrinkage-based hierarchical clustering, a latest algorithm proposed by Cherepinsky et al. (2003), on yeast data sets of genes with mixed CAs and NAs. We used numerical data derived from gene expression studies on the yeast Saccharomyces cerevisiae. These data sets were produced at Stanford to study the yeast cell cycle across time and under various experimental conditions and are available from the SGD database (Eisen et al., 1998; Lord et al., 2003). When clustering this data set, we consider each gene to be an object.

We represented CAs on a gene in terms of Gene Ontology (GO) which is a dynamically controlled vocabulary that can be applied to many organisms, even as knowledge changes on gene/protein roles in cells. GO annotations represent knowledge on genes and are organised along the categories of molecular function, biological process and cellular location (Dwight et al., 1999; Gene Ontology Consortium, 2001; Lord et al., 2003). GOSlim are GO annotations that represent higher level knowledge on genes. Most of the GO and GOSlim annotations on the yeast genes exist in the publicly accessible SGD database (Eisen et al., 1999; Gene Ontology Consortium, 2001; Lord et al., 2003).

We created six pools of CAs for each gene and each pool contained GO annotations of a specific type. Three pools contained GO annotations for molecular function, biological process and cellular location of a gene. The other three pools contained GOSlim annotations for each GO annotation.

5.1 Experiments on yeast

We have validated BILCOM on the yeast data sets by Cherepinsky et al. (2003) shown in Table 1, with mixed categorical and NAs (Eisen et al., 1998; Dwight et al., 1999). We represented CAs on a gene in terms of GO as described above. However, we perturbed 50% of the CAs randomly. This simulates the uncertainty that exists on current knowledge and that is expressed in SGD as GO evidence codes (Eisen et al., 1999; Gene Ontology Consortium, 2001; Lord et al., 2003). For this purpose, we set a limit equal to 0.5 and, then, for each CA we generated a random number ρ from 0.0 to 1.0. If ρ exceeded the limit, then we perturbed the CA by assigning it a value taken randomly from the set of possible values for that CA.
Table 1

Genes in the data set of Cherepinsky et al. grouped by functions. This is first hypothesis about the ‘correct’ grouping of genes

<table>
<thead>
<tr>
<th>Group</th>
<th>Activators</th>
<th>Genes</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Swi4, Swi6</td>
<td>Cln1, Cln2, Gic1, Msb2, Rar1, Bud9, Mnn1, Oeh1, Exg1, Kre6, Cwp1</td>
<td>Budding</td>
</tr>
<tr>
<td>2</td>
<td>Swi6, Mbp1</td>
<td>Clb5, Clb6, Rar1, Rad27, Cdc21, Dun1, Rad51, Cdc45, Mcm2</td>
<td>DNA replication and repair</td>
</tr>
<tr>
<td>3</td>
<td>Swi4, Swi6</td>
<td>Htb1, Htb2, Hta1, Hta2, Hta3, Hho1</td>
<td>Chromatin</td>
</tr>
<tr>
<td>4</td>
<td>Fkh1</td>
<td>Hhf1, Hht1, Tel2, Arp7</td>
<td>Chromatin</td>
</tr>
<tr>
<td>5</td>
<td>Fkh1</td>
<td>Tem1</td>
<td>Mitosis control</td>
</tr>
<tr>
<td>6</td>
<td>Ndd1, Fkh2, Mcm1</td>
<td>Clb2, Ace2, Swi5, Cdc20</td>
<td>Mitosis control</td>
</tr>
<tr>
<td>7</td>
<td>Ace2, Swi5</td>
<td>Cts1, Egt2</td>
<td>Cytokinesis</td>
</tr>
<tr>
<td>8</td>
<td>Mcm1</td>
<td>Mcm3, Mcm6, Cdc6, Cdc46</td>
<td>Prereplication complex formation</td>
</tr>
<tr>
<td>9</td>
<td>Mcm1</td>
<td>Ste2, Far1</td>
<td>Mating</td>
</tr>
</tbody>
</table>

The yeast microorganism performs a constant cell-cycle. The yeast cell-cycle gene expression program is regulated by the nine known cell-cycle transcriptional activators that control the flow from one stage of the cell-cycle to the next. This regulation of transcriptional activators together with various functional properties suggests a way of partitioning cell-cycle genes into clusters, each one characterised by a group of transcriptional activators working together and by their functions (Cherepinsky et al., 2003).

Tables 1 and 2 show two hypotheses about how the genes should be correctly grouped. Table 1 shows grouping by cell-cycle functions. Table 2 shows grouping by stages of the yeast cell-cycle. For instance, by the first hypothesis group 2 is characterised by the activators Swi6 and Mbp1 and the function involving DNA replication and repair at the juncture of G1 and S stages. By the second hypothesis group 2 is characterised by the genes involved in the S stage. The first hypothesis is the same as the one used by Cherepinsky et al. (2003), grouping together genes that have the same functions during the cell cycle and are regulated by the same transcriptional activators. The second hypothesis groups together genes that play a prominent role during the same cell-cycle stage.

Cherepinsky et al. (2003) defined a notation to represent the resulting cluster sets and an error scoring function to aid in their comparison. Each cluster set is written as:

\[\{x \rightarrow \{y_1, z_1\}, \{y_2, z_2\}, \ldots, \{y_{n_x}, z_{n_x}\}\}_{x=1}^{\text{number of groups}}, \]

where \(x \) denotes the group number as described in Table 1, \(n_x \) is the number of clusters the members of group \(x \) appear in, and for each cluster \(j \leq 1, \ldots, n_x \) there are \(y_j \) genes from group \(x \) and \(z_j \) genes from other groups in Table 1. The cluster set can then be scored as follows:
Table 2 Genes in our data set grouped by cell-cycle stage. This is the second hypothesis about the ‘correct’ grouping of genes

<table>
<thead>
<tr>
<th>Group</th>
<th>Cell cycle stage</th>
<th>Genes</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G1</td>
<td>Cln1, Cln2, Gic1, Msh2, Rsr1, Bud9, Mnn1, Och1, Exg1, Kre6, Cwp1</td>
<td>Budding</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>Clb5, Clb6, Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45, Mcm2</td>
<td>DNA replication and repair</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Htb1, Htb2, Hta1, Hta2, Hta3, Hho1, Hhf1, Hht1, Tel2, Arp7</td>
<td>Chromatin</td>
</tr>
<tr>
<td>3</td>
<td>G2</td>
<td>Tem1</td>
<td>Mitosis control</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>Cts1, Egt2, Clb2, Acc2, Swi5, Cdc20</td>
<td>Mitosis control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mcm3, Mcm6, Cdc6, Cdc46</td>
<td>Cytokinesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ste2, Far1</td>
<td>Prereplication complex formation</td>
</tr>
</tbody>
</table>

\[FP(\gamma) = \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} y_{ij} \cdot z_{ij} \]

\[FP(\gamma) = \sum_{j \in \mathcal{A}} \sum_{i \notin \mathcal{A}} y_{ij} \cdot y_{ik} \]

\[\text{Error score}(\gamma) = FP(\gamma) + FN(\gamma). \]

We have compared the error scores of BILCOM on the ‘perturbed’ mixed yeast data set to those of AutoClass (Stutz and Cheeseman, 1995) on the ‘perturbed’ mixed yeast data set and the Shrinkage-based hierarchical clustering method on the numerical yeast gene expression data set. As discussed in Cherepinsky et al. (2003) the Shrinkage-based hierarchical clustering error score for the first hypothesis is 164 and for the second hypothesis it is 264.

Table 3 shows the results for applying AutoClass (Stutz and Cheeseman, 1995) to the ‘perturbed’ categorical and numerical yeast data set.

Table 3 Clustering results of AutoClass

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLN1, CLN2, GIC1, GIC2, MSB2, RSR1, BUD9, MNN1, OCH1, EXG1, KRE6, CWP1, CLB5, CLB6, RAD51, Cdc45, HTB1, HTA2, HHO1, TEL2</td>
</tr>
<tr>
<td>2</td>
<td>ARP7, TEM1, CLB2, ACE2, SW15, CDC20, CTS1, EGT2, MCM3, MCM6, CDC6, CDC46, STE2</td>
</tr>
<tr>
<td>3</td>
<td>RNR1, RAD27, CDC21, DUN1, MCM2, HTB2, HTA1, HHF1, HHT1, FAR1</td>
</tr>
</tbody>
</table>

Given the first hypothesis shown in Table 1 and the set of AutoClass results shown in Table 3, the resulting clusters with the error score are written as follows:
Given the second hypothesis shown in Table 2 and the set of AutoClass results shown in Table 3, the resulting clusters with the error score are written as follows:

\[
\{1 \rightarrow \{11, 9\},
2 \rightarrow \{4, 16, \{5, 5\},
3 \rightarrow \{3, 17\}, \{2, 8\},
4 \rightarrow \{1, 19, \{1, 12\}, \{2, 8\},
5 \rightarrow \{1, 12\},
6 \rightarrow \{4, 9\},
7 \rightarrow \{2, 11\},
8 \rightarrow \{4, 9\},
9 \rightarrow \{1, 12, \{1, 9\}\}).
\]

\[FP = 265\]
\[FN = 32\]
\[Error = 297.\]

Table 4 shows the results for applying BILCOM to the ‘perturbed’ categorical and numerical yeast data set. We produced several sets of results. Because of space limitations we only discuss one set of results here, using as numerical similarity metric the Pearson Correlation coefficient and for a threshold value of 1. More experiments for other numerical similarity metrics and different threshold values are described in the Appendix.

Table 4 Clustering results of BILCOM using as numerical similarity metric between objects the Pearson correlation coefficient and for a threshold value of 1. Twenty five objects were clustered at the first level

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CTS1, EGT2</td>
</tr>
<tr>
<td>2</td>
<td>ACE2, SW15, CDC20, CLB2, TEM1</td>
</tr>
<tr>
<td>3</td>
<td>HHO1, ARP7, HHT1</td>
</tr>
<tr>
<td>4</td>
<td>RAD27, CDC21, RNR1, OCH1, MNN1, CLN2, DUN1</td>
</tr>
<tr>
<td>5</td>
<td>EXG1, CWP1</td>
</tr>
<tr>
<td>6</td>
<td>RSR1, BUD9</td>
</tr>
<tr>
<td>7</td>
<td>GIC1, TEL2, KRE6, GIC2, MSB2</td>
</tr>
<tr>
<td>8</td>
<td>HTB1, HTB2, HTA1, HTA2, HHF1</td>
</tr>
<tr>
<td>9</td>
<td>CDC45, MCM2, MCM3, FAR1, CDC6, MCM6, CDC46, STE2</td>
</tr>
<tr>
<td>10</td>
<td>CLB5, CLB6, RAD51, CLN1</td>
</tr>
</tbody>
</table>
Given the first hypothesis shown in Table 1 and the set of BILCOM results shown in Table 4, the resulting clusters with the error score are written as follows:

\[\{1 \rightarrow \{3, 4\}, \{2, 0\}, \{2, 0\}, \{4, 1\}, \{1, 3\}\}, \]
\[2 \rightarrow \{4, 3\}, \{3, 1\}, \{2, 6\}, \]
\[3 \rightarrow \{\{1, 2\}, \{4, 1\}\}, \]
\[4 \rightarrow \{\{2, 1\}, \{1, 4\}, \{1, 4\}\}, \]
\[5 \rightarrow \{\{1, 4\}\}, \]
\[6 \rightarrow \{\{4, 1\}\}, \]
\[7 \rightarrow \{\{2, 0\}\}, \]
\[8 \rightarrow \{\{4, 4\}\}, \]
\[9 \rightarrow \{\{2, 6\}\}. \]

\[FP = 49 \]
\[FN = 5 + 4 + 26 + 55 = 90 \]
\[Error = 139. \]

The BILCOM error of 139 is lower than the Shrinkage-based hierarchical clustering error of 164 and the AutoClass error of 297 for the first hypothesis.

Given the second hypothesis shown in Table 2 and the set of BILCOM results shown in Table 4, the resulting clusters with the error score are written as follows:

\[\{1 \rightarrow \{3, 4\}, \{2, 0\}, \{2, 0\}, \{4, 1\}, \{1, 3\}\}, \]
\[2 \rightarrow \{3, 0\}, \{4, 3\}, \{1, 4\}, \{5, 0\}, \{3, 1\}, \{2, 6\}, \]
\[3 \rightarrow \{\{5, 0\}\}, \]
\[4 \rightarrow \{\{2, 0\}, \{6, 2\}\}. \]

\[FP = 31 \]
\[FN = 12 + 55 + 130 = 228 \]
\[Error = 228. \]

The BILCOM error of 228 is lower than the Shrinkage-based hierarchical clustering error of 264 and the AutoClass error of 249 for the second hypothesis.

The error scores are summarised in Table 5. The BILCOM error rate is lower than AutoClass and Shrinkage-based hierarchical clustering, for both hypotheses in Tables 1 and 2. BILCOM clusters are closer to the desired groupings.

Table 5 Comparative error rates of algorithms applied to the yeast data set

<table>
<thead>
<tr>
<th>Clustering algorithm</th>
<th>First hypothesis</th>
<th>Second hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>BILCOM</td>
<td>139</td>
<td>228</td>
</tr>
<tr>
<td>Shrinkage-based hierarchical</td>
<td>164</td>
<td>264</td>
</tr>
<tr>
<td>AutoClass</td>
<td>297</td>
<td>249</td>
</tr>
</tbody>
</table>
6 Hepatitis and thyroid disease data

Given a biomedical disease data set, predicting which patients will live or die may be tackled as a supervised learning problem involving finding a hyperspace separator between patients of the ‘DIE’ and ‘LIVE’ class, based on a set of training cases with known outcomes. However, such a hyperspace separator is often not trivial, as Figure 9 shows. Clustering methods can be used instead to cluster the patients into ‘DIE’ and ‘LIVE’ groups. We apply BILCOM and other clustering algorithms to cluster the hepatitis and thyroid disease data sets of mixed CAs and NAs from the UCI Irvine Machine Learning Repository (Mertz and Merphy, 1998). Tables 6 and 7 describe these data sets. The objects in both data sets are patients with class labels that enable us to compare our clustering results with the true classes. Class labels were removed from the objects before clustering and no information about the true classes was given to the process.

Figure 9 Clusters in a three-dimensional biomedical disease data set containing objects (patients) who will live or die. The red clusters contain patients of the ‘LIVE’ class. The yellow clusters contain patients of the ‘DIE’ class. As shown, this data set is unbalanced since the ‘LIVE’ patients outnumber the ‘DIE’ patients. It would be hard to find a hyperspace separator between ‘LIVE’ and ‘DIE’ patients.

The hepatitis data set has 155 objects with 13 CAs and 6 NAs. The objects are split into two classes: ‘DIE’ and ‘LIVE’. Of the 155 objects, 32 belong to the ‘DIE’ class and 123 to the ‘LIVE’ class.

The thyroid disease data set has 3163 objects with 12 CAs and 7 NAs. The objects are split into two classes: ‘hypothyroid’ and ‘negative’. Of the 3163 objects, 151 belong to the ‘hypothyroid’ class and 3012 to the ‘negative’ class. For the thyroid disease data set we make the clustering challenge harder by perturbing about half of all CAs before clustering, turning ‘true’ to ‘false’ and ‘false’ to ‘true’. The reason we perturbed the CAs was to show that if little categorical similarity can be found between an object and a cluster at the first level, then the object will be clustered at the second level based on numerical similarity, increasing its chance to be clustered correctly.
Bi-level clustering of mixed categorical and numerical biomedical data

Table 6 Hepatitis data set (155 objects). Classes: DIE (32 objects), LIVE (123 objects)

<table>
<thead>
<tr>
<th>13 CAs – represent something observed to be true about a hepatitis patient</th>
<th>6 NAs – represent the results of an experiment on a hepatitis patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEX: male, female</td>
<td>Bilirubin: real</td>
</tr>
<tr>
<td>Steroid: no, yes</td>
<td>Alk Phosphate: real</td>
</tr>
<tr>
<td>Antivirals: no, yes</td>
<td>SGOT: real</td>
</tr>
<tr>
<td>Fatigue: no, yes</td>
<td>Albumin: real</td>
</tr>
<tr>
<td>Malaise: no, yes</td>
<td>Protime: real</td>
</tr>
<tr>
<td>Anorexia: no, yes</td>
<td>Age: integer</td>
</tr>
<tr>
<td>Liver big: no, yes</td>
<td></td>
</tr>
<tr>
<td>Liver firm: no, yes</td>
<td></td>
</tr>
<tr>
<td>Spleen Palpable: no, yes</td>
<td></td>
</tr>
<tr>
<td>Spiders: no, yes</td>
<td></td>
</tr>
<tr>
<td>Ascites: no, yes</td>
<td></td>
</tr>
<tr>
<td>Varices: no, yes</td>
<td></td>
</tr>
<tr>
<td>Histology: no, yes</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 Thyroid disease data set (3163 objects). Classes: hypothyroid (151 objects), negative (3012 objects)

<table>
<thead>
<tr>
<th>12 CAs – represent something observed to be true about a thyroid patient</th>
<th>7 NAs – represent the results of an experiment on a thyroid patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEX: male, female</td>
<td>TSH: real</td>
</tr>
<tr>
<td>On thyroxine: no, yes</td>
<td>T3: real</td>
</tr>
<tr>
<td>Query on thyroxine: no, yes</td>
<td>TT4: real</td>
</tr>
<tr>
<td>On antithyroid medication: no, yes</td>
<td>T4U: real</td>
</tr>
<tr>
<td>Thyroid surgery: no, yes</td>
<td>FTI: real</td>
</tr>
<tr>
<td>Query hypothyroid: no, yes</td>
<td>TBG: real</td>
</tr>
<tr>
<td>Query hyperthyroid: no, yes</td>
<td>Age: integer</td>
</tr>
<tr>
<td>Pregnant: no, yes</td>
<td></td>
</tr>
<tr>
<td>Sick: no, yes</td>
<td></td>
</tr>
<tr>
<td>Tumor: no, yes</td>
<td></td>
</tr>
<tr>
<td>Lithium: no, yes</td>
<td></td>
</tr>
<tr>
<td>Goitre: no, yes</td>
<td></td>
</tr>
</tbody>
</table>

Our misclassification rate measure is the *classes to clusters evaluation* that is used by the clustering algorithms of the WEKA package (Reutemann et al., 2004; Witten and Frank, 2000). In this mode we first ignore the class attribute and generate the clusters. Then during the test phase we assign classes to the clusters, based on the majority value of the class attribute within each cluster. We compute the classification error, based on this assignment.
6.1 Comparison of BILCOM to other algorithms for the hepatitis and thyroid disease data sets

We cluster hepatitis and thyroid disease data sets of mixed CAs and NAs with BILCOM, AutoClass (Stutz and Cheeseman, 1995), as well as k-Means (Huang, 1998) treating the CAs as NAs. Then we split each of the data sets into numerical and categorical data types and we cluster each type separately. We cluster the numerical type with k-Means. We cluster the categorical type with k-Modes (Huang, 1998) and MULIC (Andreopoulos et al., 2004). For k-Modes and k-Means we set the number of clusters to the number of ‘true’ classes in the data sets of 2 and the convergence threshold to zero. We have also experimented with a number of clusters larger than two but the misclassification rate did not change significantly. The modes of the initial clusters are set equal to the values of the first objects inserted in the clusters. For AutoClass, k-Modes, k-Means and MULIC we run five random starts on each data set with different orderings of objects and we report the average result, since these algorithms may produce different results for different orderings. For AutoClass we did not specify the number of clusters as the software considers results for numbers of clusters varying from 2 to 35; we set the prior distribution for the attributes to the single multinomial distribution, with no attributes ignored, which was also the distribution chosen by the developers of the software for their tests on the soybean data sets (Mertz and Merphy, 1998).

Tables 8 and 9 compare the accuracy of the results for all algorithms. The hepatitis disease data set contains two classes – ‘DIE’ and ‘LIVE’ – and the first class has 32 objects while the second class has 123 objects, implying that the misclassification rate is likely to be between 0 and 32/155. The BILCOM misclassification rate is lower than this at 17/155. When clustering the hepatitis disease data set with BILCOM, the average ratio of ‘DIE’ to ‘LIVE’ objects across all clusters in which at least one ‘DIE’ object appears is $32/64 = 50\%$, which is higher than the ratio of ‘DIE’ to ‘LIVE’ objects for the entire data set of $32/123 = 26\%$. When clustering with k-Modes or AutoClass, this average ratio is $32/95 = 33\%$. When clustering with MULIC inputting just the CAs of each object, this average ratio is $32/76 = 42\%$. This supports that BILCOM separates the objects of the minority ‘DIE’ class in such an imbalanced data set, better than other algorithms. This suggests that if an unannotated patient z is clustered together with at least one other ‘DIE’ patient then patient z is 50% likely to die.

<table>
<thead>
<tr>
<th>Clustering algorithms and misclassification rates for the hepatitis data set</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoClass for 2 clusters taking as input CAs and NAs</td>
</tr>
<tr>
<td>$32/155 = 20.64%$</td>
</tr>
<tr>
<td>k-Modes for 2 clusters taking as input CAs only</td>
</tr>
<tr>
<td>$32/155 = 20.64%$</td>
</tr>
<tr>
<td>k-Means for 2 clusters taking as input NAs only</td>
</tr>
<tr>
<td>$32/155 = 20.64%$</td>
</tr>
<tr>
<td>k-Means for 2 clusters taking as input CAs and NAs</td>
</tr>
<tr>
<td>$25/155 = 16%$</td>
</tr>
<tr>
<td>MULIC taking as input CAs only</td>
</tr>
<tr>
<td>$20/155 = 12.9%$</td>
</tr>
<tr>
<td>BILCOM taking as input CAs and NAs</td>
</tr>
<tr>
<td>$17/155 = 10.9%$</td>
</tr>
</tbody>
</table>
Bi-level clustering of mixed categorical and numerical biomedical data

Table 9 Clustering algorithms and misclassification rates for thyroid disease data set

<table>
<thead>
<tr>
<th>Algorithm and Input</th>
<th>Misclassification Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoClass for 2 clusters taking as input CAs and NAs</td>
<td>151/3163 = 4.77%</td>
</tr>
<tr>
<td>k-Modes for 2 clusters taking as input CAs only</td>
<td>151/3163 = 4.77%</td>
</tr>
<tr>
<td>k-Means for 2 clusters taking as input NAs only</td>
<td>151/3163 = 4.77%</td>
</tr>
<tr>
<td>k-Means for 2 clusters taking as input CAs and NAs</td>
<td>145/3163 = 4.58%</td>
</tr>
<tr>
<td>MULIC taking as input CAs only</td>
<td>138/3163 = 4.36%</td>
</tr>
<tr>
<td>BILCOM taking as input CAs and NAs</td>
<td>130/3163 = 4.11%</td>
</tr>
</tbody>
</table>

The thyroid disease data set contains two classes – ‘hypothyroid’ and ‘negative’ – and the first class has 151 objects while the second class has 3012 objects, implying that the misclassification rate is likely to be between 0 and 151/3163. The BILCOM misclassification rate is lower than this at 130/3163. When clustering the thyroid disease data set with BILCOM, the average ratio of ‘hypothyroid’ to ‘negative’ objects across all clusters in which at least one ‘hypothyroid’ object appears is 151/755 = 20%, which is higher than the ratio of ‘hypothyroid’ to ‘negative’ objects for the entire data set of 151/3012 = 5%. When clustering with k-Modes or AutoClass, this average ratio is 151/2200 = 6.8%. When clustering with MULIC inputting just the CAs of each object, this average ratio is 151/1520 = 9.9%. This supports that BILCOM separates the objects of the minority ‘hypothyroid’ class in such an imbalanced data set, better than other algorithms. This suggests that if an unannotated patient z is clustered together with at least one other ‘hypothyroid’ patient then patient z is 20% likely to be thyroid positive.

Table 10 The average percentage of misclassified objects increases in bottom layers of MULIC clusters

<table>
<thead>
<tr>
<th>Layer</th>
<th>Misclassifications (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 0</td>
<td>2</td>
</tr>
<tr>
<td>Layer 1</td>
<td>5</td>
</tr>
<tr>
<td>Layer 2</td>
<td>45</td>
</tr>
<tr>
<td>Layer 3</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Misclassifications (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 0</td>
<td>3</td>
</tr>
<tr>
<td>Layer 1</td>
<td>20</td>
</tr>
<tr>
<td>Layer 2</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 11 MULIC average misclassification rates for the objects clustered in layers of depth greater than the threshold value (0 for hepatitis and 0 for thyroid data sets)

<table>
<thead>
<tr>
<th>Data set</th>
<th>Misclassification Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis data set</td>
<td>15/75 = 20%</td>
</tr>
<tr>
<td>Thyroid disease data set</td>
<td>120/1700 = 9.2%</td>
</tr>
</tbody>
</table>
6.2 Discussion of results for the hepatitis data set

In our experiments with the hepatitis data set, the number of objects participating at the first level is 76, while the number of objects participating at the second level is 79. At the second level there are 53 centre-containing subclusters and 23 seed-containing subclusters, implying a total of 23 clusters.

Despite the imbalanced hepatitis data set classes, most BILCOM clusters produced have either a strong majority of ‘DIE’ objects or a strong majority of ‘LIVE’ objects. For example, the 3 clusters shown in Table 12 contain a strong majority of ‘DIE’ objects, showing that the algorithm is able to separate ‘DIE’ objects from ‘LIVE’ objects, even though ‘DIE’ objects compose a minority ratio of 32/155 of the objects in the hepatitis data set.

Table 12 Three clusters resulting from clustering the hepatitis data set with BILCOM, containing a majority of ‘DIE’ objects. The numerical similarity metric is the average distance over all pairs of numerical attributes between two objects and the threshold value is zero

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Subcluster 1.1: DIE, DIE, DIE, DIE, DIE, DIE, DIE, DIE, LIVE, LIVE</th>
<th>Subcluster 1.2: LIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 2</td>
<td>Subcluster 2.1: DIE, DIE, DIE, DIE, DIE, LIVE</td>
<td>Subcluster 2.2: DIE, LIVE</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>Subcluster 3.1: DIE</td>
<td>Subcluster 3.2: DIE</td>
</tr>
</tbody>
</table>

Many clusters produced by BILCOM contain only or mostly ‘LIVE’ objects. For example, the largest cluster produced contains 18 subclusters and each subcluster contains between 1 and 3 objects all of which belong to the ‘LIVE’ class.

There are several cases where objects are assigned to a different cluster at the second level from what the first level results suggested. This might have been caused because an object had a low categorical similarity to the mode of its first level cluster, or because it was assigned erroneously to its first level cluster and its numerical similarity to its second level cluster is stronger. Table 13 shows that in our experiments with the hepatitis data set, 18 centre-containing subclusters (out of 53) containing 38 objects in total, end up being merged to a different cluster from what the first level results suggested. The other 35 centre-containing subclusters are merged to the same cluster as the first level results suggested. Four of these 18 centre-containing subclusters have a majority of ‘DIE’ objects. The percentage of objects in these 18 centre-containing subclusters that are attached to the wrong cluster is 10%, based on whether ‘LIVE’ or ‘DIE’ is most prominent in the cluster.

When comparing Column 7 to Tables 10 and 11, the BILCOM misclassification rate (derived by subtracting Column 7 from 100) is slightly lower than the MULIC misclassification rate for the objects clustered at layers greater than the value of threshold. BILCOM clustered these objects based on numerical rather than categorical similarity.
For many centre-containing subclusters, as the looping of Step 5 of the second level progresses, their numerical similarity to their most numerically similar seed-containing subclusters determined at Step 4 decreases. This is a sign that their tendency to get merged to the clusters suggested by the first level becomes stronger. For example, in an earlier loop of Step 5 the numerical similarities of several centre-containing subclusters to
their most numerically similar seed-containing subclusters have the values 0.121951, but in the last loop of Step 5 they have weaker similarities of 0.11875.

6.3 Runtime evaluation of BILCOM

Tables 14 and 15 compare BILCOM’s runtime to AutoClass (Stutz and Cheeseman, 1995), k-Modes (Huang, 1998) and MULIC (Andreopoulos et al., 2004) on two data sets. All of these algorithms are implemented in C or C++. The experiments were performed on a Sun Ultra 60 with 256 MB of memory and a 300 MHz processor.

<table>
<thead>
<tr>
<th>Table 14</th>
<th>Seconds for clustering the hepatitis data set</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoClass</td>
<td>0.24</td>
</tr>
<tr>
<td>k-Modes</td>
<td>0.01</td>
</tr>
<tr>
<td>MULIC</td>
<td>0</td>
</tr>
<tr>
<td>BILCOM</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 15</th>
<th>Seconds for clustering the thyroid disease data set</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoClass</td>
<td>8.24</td>
</tr>
<tr>
<td>k-Modes</td>
<td>1.13</td>
</tr>
<tr>
<td>MULIC</td>
<td>0.49</td>
</tr>
<tr>
<td>BILCOM</td>
<td>1.14</td>
</tr>
</tbody>
</table>

BILCOM often executes faster by decreasing the value of $minimum_numerical_similarity$ at the second level, or decreasing $threshold$ or $\delta\phi$ at the first level (Andreopoulos et al., 2004; Andreopoulos et al., 2005a, 2005b, 2005c). Section 7 discusses selecting values for these parameters.

7 Selecting BILCOM parameters

The objects clustered at the first level are those whose similarity to the closest mode is greater than or equal to the value of $minimum_mode_similarity$, translating to a $threshold$ value of $m - minimum_mode_similarity$. One could choose a quarter of all objects to participate at the first level so that each second level sub-cluster would have on average four objects. We do not use this approach because it is more reasonable for the user to select the first level objects based on their similarity to modes, since the objects with high similarity are more likely to be classified in the correct cluster. For example, Tables 10 and 11 showed that when clustering the hepatitis and thyroid disease data sets with MULIC inputting categorical data only, at lower layers of a cluster the percentage of objects misclassified increases.

We experiment with various values of $minimum_mode_similarity$ for separating first and second level objects, for the hepatitis data set. Table 16 shows the resulting changes in the number of objects that are clustered at the first level, as well as the average size of the second level subclusters. The lower the value of $minimum_mode_similarity$, the more objects are clustered at the first level and the lower the average size of the second level.
subclusters. Thus, the value should be neither too high nor too low. For hepatitis we use a minimum_mode_similarity value of 12, translating to a threshold value of 1.

Table 16 Results for various values of minimum_mode_similarity

<table>
<thead>
<tr>
<th>Minimum_mode_similarity</th>
<th>1</th>
<th>10</th>
<th>15</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of objects clustered at first level</td>
<td>155</td>
<td>142</td>
<td>110</td>
<td>76</td>
</tr>
<tr>
<td>Average size of second level subclusters</td>
<td>1</td>
<td>1.09</td>
<td>1.4</td>
<td>2.12</td>
</tr>
</tbody>
</table>

The values of the variables in the loop of Step 5 of the second level depend on the value of minimum_numerical_similarity, used for creating links between objects at Step 4. If the value of minimum_numerical_similarity is too low, then there will be links created between most of the objects and many subclusters will be numerically similar to one another. On the other hand, if the value is high then there will be fewer links created and fewer subclusters will be numerically similar to one another.

We experiment with various values of minimum_numerical_similarity for the hepatitis data set, to determine how many centre-containing subclusters remain merged to their numerically closest seed-containing subcluster after Step 5 of the second level. Table 17 shows the results. With a low value more centre-containing subclusters remain merged to the numerically closest seed-containing subcluster to which they were merged in Step 4 of the second level. This value can be chosen by the user, depending on how s/he wants to distribute the classification of objects based on numerical similarity or categorical similarity. For hepatitis we use a minimum_numerical_similarity value of 0.5.

Table 17 Results for various values of minimum_numerical_similarity

<table>
<thead>
<tr>
<th>Minimum_numerical_similarity</th>
<th>0.1</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subclusters that remain merged to their numerically closest seed-containing subcluster after step 5 of the second level</td>
<td>40</td>
<td>39</td>
<td>35</td>
<td>33</td>
<td>31</td>
</tr>
</tbody>
</table>

Figure 10 is a graph showing what values the variables in the inequality comparison of Step 5 would need to take, for a centre-containing subcluster to remain merged to its numerically similar seed-containing second level subcluster, instead of the subcluster suggested by level one. This graph assumes a value of 1.0 for the numerical similarity of the centre-containing subcluster to its most numerically similar second level seed-containing subcluster. For lower values of this variable the shape of the figure looks the same, except that the y axis has a higher range.
Figure 10 This graph illustrates the values that the variables in the inequality comparison of second level Step 5 would need to take, for a centre-containing subcluster to remain merged to its numerically similar seed-containing second level subcluster, instead of the subcluster suggested by level one. The $x-z$ axis shows the categorical and numerical similarity of the centre-containing subcluster to the first level cluster in which the centre was clustered. The y axis shows how high the categorical similarity of the centre to the seed in the most numerically similar seed-containing second level subcluster would need to be for the centre-containing subcluster to remain merged to it.

8 Conclusion

In analysing biological data, it is important to include all of the existing information into the analysis process. The BILCOM clustering algorithm gives the ‘full picture’ of a data set by using a mix of two data types: categorical and numerical data types. This algorithm is inspired by Bayesian classification theory (Andreopoulos et al., 2005a, 2005b, 2005c) and uses categorical clustering as a prior to maximise the probabilities that objects will be assigned to the correct clusters. We have tested BILCOM’s accuracy against other algorithms that cluster mixed and non-mixed types. BILCOM’s runtime is comparable to other algorithms.

Physicians will find this technique useful in the field of evidence-based medicine, for drawing conclusions about the outcome of a patient’s condition based on evidence from outcomes of other patients’ conditions. In our example of clustering hepatitis patient data, there were clusters that contained a majority of objects of class ‘DIE’ even though this class occurred infrequently in the data set. If a new unknown object gets clustered in a cluster with many other objects of class ‘DIE’, a physician could draw conclusions about the future outcome of a patient’s condition.

Biologists will also find this method useful in wet lab work, for obtaining hints about the potential functions of genes and proteins. In Andreopoulos et al. (2005a, 2005b, 2005c) we discussed significance metrics to identify the most significant functional annotations in a cluster and apply them to other genes classified in the same cluster, for
which less or no functional knowledge exists. Many genes have little or no knowledge associated with them. The hints that are derived about a gene’s function can be validated experimentally.

Acknowledgements

The authors acknowledge the financial assistance of the National Science and Engineering Research Council (NSERC) and Ontario Graduate Scholarship (OGS).

References

Bibliography

Appendix

Detailed BILCOM results on yeast

We produced four sets of results for BILCOM. Table 18 shows our results for using as numerical similarity metric the average distance over all pairs of numerical attributes between two objects and for a threshold value (maximum value for ϕ) of 11. Table 19 shows our results for using as numerical similarity metric between two objects the Pearson correlation coefficient and for a threshold value of 11. Table 20 shows our results for using as numerical similarity metric between two objects the Pearson correlation coefficient and for a threshold value of 1. Table 21 shows our results for using as numerical similarity metric the average distance over all pairs of numerical attributes between two objects and for a threshold value of 1.

Table 18
Clustering results of BILCOM using as numerical similarity metric the average distance over all pairs of numerical attributes between two objects and for a threshold value of 11. Thirty five objects were clustered at the first level.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLB2, CLN2, CDC21, FAR1</td>
</tr>
<tr>
<td>2</td>
<td>CTS1, EGT2</td>
</tr>
<tr>
<td>3</td>
<td>ACE2, CDC20, SWI5</td>
</tr>
<tr>
<td>4</td>
<td>ARP7, TEM1, HH01, HHT1</td>
</tr>
<tr>
<td>5</td>
<td>RAD27, DUN1</td>
</tr>
<tr>
<td>6</td>
<td>KRE6, TEL2, EXG1, CWP1</td>
</tr>
<tr>
<td>7</td>
<td>RSR1, BUD9</td>
</tr>
<tr>
<td>8</td>
<td>GIC1, GIC2, MSB2</td>
</tr>
<tr>
<td>9</td>
<td>HTB1, HTB2, HTA1, HTA2, HHF1</td>
</tr>
<tr>
<td>10</td>
<td>RNR1, MNN1, CDC6, CDC45, MCM2, STE2, MCM3, MCM6, CDC46</td>
</tr>
<tr>
<td>11</td>
<td>CLB5, RAD51, OCH1, CLB6, CLN1</td>
</tr>
</tbody>
</table>

Table 19
Clustering results of BILCOM using as numerical similarity metric between 2 objects the Pearson correlation coefficient and for a threshold value of 11. Thirty five objects were clustered at the first level.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CDC21, CLN2, RAD51, CLB2, CDC20, FAR1, STE2</td>
</tr>
<tr>
<td>2</td>
<td>CTS1, EGT2</td>
</tr>
<tr>
<td>3</td>
<td>ACE2, SWI5, TEM1</td>
</tr>
<tr>
<td>4</td>
<td>ARP7, HH01, HHT1</td>
</tr>
<tr>
<td>5</td>
<td>RAD27, OCH1, MNN1, DUN1</td>
</tr>
<tr>
<td>6</td>
<td>KRE6, EXG1, CWP1</td>
</tr>
<tr>
<td>7</td>
<td>RSR1, BUD9</td>
</tr>
<tr>
<td>8</td>
<td>GIC1, TEL2, GIC2, MSB2</td>
</tr>
<tr>
<td>9</td>
<td>HTB1, HTB2, HTA1, HTA2, HHF1</td>
</tr>
<tr>
<td>10</td>
<td>RNR1, CDC6, CDC45, MCM2, MCM3, MCM6, CDC46</td>
</tr>
<tr>
<td>11</td>
<td>CLB5, CLB6, CLN1</td>
</tr>
</tbody>
</table>
Table 20
Clustering results of BILCOM using as numerical similarity metric between two objects the Pearson correlation coefficient and for a threshold value of one. Twenty five objects were clustered at the first level.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CTS1, EGT2</td>
</tr>
<tr>
<td>2</td>
<td>ACE2, SWI5, CDC20, CLB2, TEM1</td>
</tr>
<tr>
<td>3</td>
<td>HHO1, ARP7, HHT1</td>
</tr>
<tr>
<td>4</td>
<td>RAD27, CDC21, RNR1, OCH1, MNN1, CLN2, DUN1</td>
</tr>
<tr>
<td>5</td>
<td>EXG1, CWP1</td>
</tr>
<tr>
<td>6</td>
<td>RSR1, BUD9</td>
</tr>
<tr>
<td>7</td>
<td>GIC1, TEL2, KRE6, GIC2, MSB2</td>
</tr>
<tr>
<td>8</td>
<td>HTB1, HTB2, HTA1, HTA2, HHT1</td>
</tr>
<tr>
<td>9</td>
<td>CDC45, MCM2, MCM3, FAR1, CDC6, MCM6, MCM6, CDC46, STE2</td>
</tr>
<tr>
<td>10</td>
<td>CLB5, CLB6, RAD51, CLN1</td>
</tr>
</tbody>
</table>

Table 21
Clustering results of BILCOM using as numerical similarity metric the average distance over all pairs of numerical attributes between two objects and for a threshold value of one. Twenty five objects were clustered at the first level.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CTS1, EGT2</td>
</tr>
<tr>
<td>2</td>
<td>ACE2, CDC20, SWI5, CLB2</td>
</tr>
<tr>
<td>3</td>
<td>HHO1, HHT1</td>
</tr>
<tr>
<td>4</td>
<td>RAD27, CDC21, RNR1, MNN1, DUN1</td>
</tr>
<tr>
<td>5</td>
<td>EXG1, CWP1</td>
</tr>
<tr>
<td>6</td>
<td>RSR1, BUD9</td>
</tr>
<tr>
<td>7</td>
<td>GIC1, ARP7, TEL2, KRE6, GIC2, MSB2</td>
</tr>
<tr>
<td>8</td>
<td>HTB1, HTB2, HTA1, HTA2, HHT1</td>
</tr>
<tr>
<td>9</td>
<td>CDC45, MCM2, STE2, MCM3, FAR1, CDC6, MCM6, TEM1, CDC46</td>
</tr>
<tr>
<td>10</td>
<td>CLB6, CLB5, RAD51, OCH1, CLN1, CLN2</td>
</tr>
</tbody>
</table>

Cherepinsky et al. (2003) defined a notation to represent the resulting cluster sets and an error scoring function to aid in their comparison. Each cluster set is written as:

\[
\{x \rightarrow \{y_1, z_1\}, \{y_2, z_2\}, \ldots, \{y_{n_x}, z_{n_x}\}\}_{x=1}^{\text{number of groups}},
\]

where \(x\) denotes the group number (as described in Tables 1 and 2), \(n_x\) is the number of clusters the members of group \(x\) appear in, and for each cluster \(j \in 1, \ldots, n_x\) there are \(y_j\) genes from group \(x\) and \(z_j\) genes from other groups in Tables 1 and 2. The cluster set can then be scored according to the following measure:
\[FP(\gamma) = \frac{1}{2} \sum_{x} \sum_{j=1}^{x} y_j \cdot z_j \]
\[FN(\gamma) = \sum_{x \in \mathcal{X}_0} \sum_{y} y_j \cdot y_k \]
\[\text{Error score}(\gamma) = FP(\gamma) + FN(\gamma). \]

We have compared the error scores of BILCOM on the ‘perturbed’ mixed yeast data set to those of the Shrinkage-based hierarchical clustering method on the numerical yeast gene expression data set, a latest algorithm proposed by Cherepinsky et al. As discussed in Cherepinsky et al. (2003) the Shrinkage-based hierarchical clustering error score for the first hypothesis is 164 and for the second hypothesis it is 264.

Given the first hypothesis (Table 1) and the set of BILCOM results shown in Table 20, the resulting clusters with the corresponding error score are written as follows:

\{1 \rightarrow \{3, 4\}, \{2, 0\}, \{2, 0\}, \{4, 1\}, \{1, 3\}, \}
\{2 \rightarrow \{4, 3\}, \{3, 1\}, \{2, 6\}, \}
\{3 \rightarrow \{1, 2\}, \{4, 1\}, \}
\{4 \rightarrow \{2, 1\}, \{1, 4\}, \{1, 4\}, \}
\{5 \rightarrow \{1, 4\}, \}
\{6 \rightarrow \{4, 1\}, \}
\{7 \rightarrow \{2, 0\}, \}
\{8 \rightarrow \{4, 4\}, \}
\{9 \rightarrow \{2, 6\}, \}
\[FP = 49 \]
\[FN = 5 + 4 + 26 + 55 = 90 \]
\[Error = 139. \]

This is better than the Shrinkage-based hierarchical clustering error for the first hypothesis of 164.

Given the second hypothesis (Table 2) and the set of BILCOM results shown in Table 20, the resulting clusters with the corresponding error score are written as follows:

\{1 \rightarrow \{3, 4\}, \{2, 0\}, \{2, 0\}, \{4, 1\}, \{1, 3\}, \}
\{2 \rightarrow \{3, 0\}, \{4, 3\}, \{1, 4\}, \{5, 0\}, \{3, 1\}, \{2, 6\}, \}
\{3 \rightarrow \{5, 0\}, \}
\{4 \rightarrow \{2, 0\}, \{6, 2\}, \}
\[FP = 31 \]
\[FN = 12 + 55 + 130 = 228 \]
\[Error = 228. \]

This is better than the Shrinkage-based hierarchical clustering error for the second hypothesis of 264.

Given the first hypothesis (Table 1) and the set of BILCOM results shown in Table 21, the resulting clusters with the corresponding error score are written as follows:
\{1 \rightarrow \{1,4\}, \{2,0\}, \{2,0\}, \{4,2\}, \{3,3\}\},

2 \rightarrow \{\{4,1\}, \{2,7\}, \{3,3\}\},

3 \rightarrow \{\{1,1\}, \{4,1\}\},

4 \rightarrow \{\{1,1\}, \{2,4\}, \{1,4\}\},

5 \rightarrow \{\{1,8\}\},

6 \rightarrow \{\{4,0\}\},

7 \rightarrow \{\{2,0\}\},

8 \rightarrow \{\{4,5\}\},

9 \rightarrow \{\{2,7\}\}.

\text{FP} = 54

\text{FN} = 5 + 4 + 26 + 55 = 90

\text{Error} = 144.

This is better than the Shrinkage-based hierarchical clustering error for the first hypothesis of 164.

Given the second hypothesis (Table 2) and the set of BILCOM results shown in Table 21, the resulting clusters with the corresponding error score are written as follows:

\{1 \rightarrow \{1,4\}, \{2,0\}, \{2,0\}, \{4,2\}, \{3,3\}\},

2 \rightarrow \{\{2,0\}, \{4,1\}, \{2,4\}, \{5,0\}, \{3,3\}, \{2,7\}\},

3 \rightarrow \{\{4,0\}, \{1,8\}\},

4 \rightarrow \{\{2,0\}, \{6,3\}\}.

\text{FP} = 41

\text{FN} = 12 + 4 + 131 + 55 = 202

\text{Error} = 243.

This is better than the Shrinkage-based hierarchical clustering error for the second hypothesis of 264.

Given the first hypothesis (Table 1) and the set of BILCOM results shown in Table 19, the resulting clusters with the corresponding error score are written as follows:

\{1 \rightarrow \{1,6\}, \{2,2\}, \{3,0\}, \{2,0\}, \{3,1\}, \{1,2\}\},

2 \rightarrow \{\{2,5\}, \{2,2\}, \{2,1\}, \{3,4\}\},

3 \rightarrow \{\{1,2\}, \{4,1\}\},

4 \rightarrow \{\{2,1\}, \{1,3\}, \{1,4\}\},

5 \rightarrow \{\{1,2\}\},

6 \rightarrow \{\{2,5\}, \{2,1\}\},

7 \rightarrow \{\{2,0\}\},

8 \rightarrow \{\{4,3\}\},

9 \rightarrow \{\{2,5\}\}.

\text{FP} = 47

\text{FN} = 4 + 5 + 4 + 30 + 58 = 101

\text{Error} = 148.
This is better than the Shrinkage-based hierarchical clustering error for the first hypothesis of 164.

Given the second hypothesis (Table 2) and the set of BILCOM results shown in Table 19, the resulting clusters with the corresponding error score are written as follows:

\[
\begin{align*}
\{1 \rightarrow \{1, 2\}, \{3, 1\}, \{2, 0\}, \{3, 0\}, \{2, 2\}, \{1, 6\}\}, \\
\{2 \rightarrow \{2, 1\}, \{3, 4\}, \{5, 0\}, \{1, 3\}, \{2, 2\}, \{3, 0\}, \{2, 5\}\}, \\
\{3 \rightarrow \{3, 0\}, \{2, 5\}\}, \\
\{4 \rightarrow \{4, 3\}, \{2, 0\}, \{2, 5\}\}.
\end{align*}
\]

\[FP = 39\]

\[FN = 20 + 6 + 134 + 58 = 218\]

\[Error = 257.\]

This is better than the Shrinkage-based hierarchical clustering error for the second hypothesis of 264.

Given the second hypothesis (Table 1) and the set of BILCOM results shown in Table 18, the resulting clusters with the corresponding error score are written as follows:

\[
\begin{align*}
\{1 \rightarrow \{1, 3\}, \{3, 1\}, \{2, 0\}, \{3, 0\}, \{2, 3\}, \{1, 8\}\}, \\
\{2 \rightarrow \{1, 3\}, \{2, 0\}, \{3, 2\}, \{3, 6\}\}, \\
\{3 \rightarrow \{1, 3\}, \{4, 1\}\}, \\
\{4 \rightarrow \{2, 2\}, \{1, 3\}, \{1, 4\}\}, \\
\{5 \rightarrow \{1, 3\}\}, \\
\{6 \rightarrow \{1, 3\}, \{3, 0\}\}, \\
\{7 \rightarrow \{2, 0\}\}, \\
\{8 \rightarrow \{4, 5\}\}, \\
{9 \rightarrow \{1, 3\}, \{1, 8\}\}.
\end{align*}
\]

\[FP = 50\]

\[FN = 13 + 29 + 55 = 97\]

\[Error = 147.\]

This is better than the Shrinkage-based hierarchical clustering error for the first hypothesis of 164.

Given the second hypothesis (Table 2) and the set of BILCOM results shown in Table 18, the resulting clusters with the corresponding error score are written as follows:

\[
\begin{align*}
\{1 \rightarrow \{1, 3\}, \{3, 1\}, \{2, 0\}, \{3, 0\}, \{1, 8\}, \{2, 3\}\}, \\
\{2 \rightarrow \{1, 3\}, \{3, 1\}, \{2, 0\}, \{1, 3\}, \{5, 0\}, \{3, 6\}, \{3, 2\}\}, \\
\{3 \rightarrow \{1, 3\}, \{3, 0\}, \{1, 3\}\}, \\
\{4 \rightarrow \{1, 3\}, \{2, 0\}, \{5, 4\}\}.
\end{align*}
\]

\[FP = 41\]

\[FN = 58 + 7 + 17 + 133 = 215\]

\[Error = 256.\]
This is better than the Shrinkage-based hierarchical clustering error for the second hypothesis of 264.

These error scores support that BILCOM is successful in identifying the sought after clusters. The best results are shown in Table 20 where the threshold value is set to 1.