
A Probability Refresher

1 Introduction

The word probability evokes (in most people) nebulous concepts related to uncertainty, \ran-

domness", etc.

Probability is also a concept which is hard to characterize formally. The temptation is to

de�ne it in terms of frequency of events in repeated experiments, but, as we shall see later,

this approach leads to a circular de�nition: we would end up de�ning probability in terms

of probability.

Instead, as we did with numbers, we will de�ne probability in terms of axioms. We

will also develop the necessary knowledge to read papers in the �eld of Information Theory,

that often will make explicit use of probabilistic notation.

Section 2 contains the \new and hard" material of this introduction, and rigorously de�nes

probability. You will not be responsible for it in the course.

Section 3 contains a refresher of the elementary probability notions that you should have

learned in a prerequisite class, and that will come handy throughout the course. You should

be familiar with the notions and theorems listed in this section.

Section 4 contains a brief discussion of random variables, and lists some of the most im-

portant de�nitions and theorems, known from elementary probability courses.

Section 5 extends the concepts introduced in the previous section to multiple random

variables, and addresses the concept of independence.

Section 6 deals with the topic of expectation, which is really nothing but integration, and

introduces the concept of moments.

Section 7 is really an appendix, and deals with simple counting theorems.

2 Axiomatic de�nition of probability

2.1 Measurable Spaces

De�nition: Sample Space . We start or journey towards the de�nition of probability

by introducing a set 
, called the sample space or the sure event, which, in this course, is

the collection of all possible outcomes of an experiment. 1

1Note that possible is not a probabilistic concept: an outcome is possible if it can occur, impossible if it

cannot occur. For example, if the experiment is the measure of the voltage between two points of a circuit,

1



�

In general, we will not be concerned with the probability of individual outcomes of an

experiment, but with collections of outcomes, called events. For instance, when we send a

message across a channel, we will be interested in the number of errors in the received signal,

rather than in the individual errors. Thus, probability will be de�ned as a function on sets.

If 
 is uncountable, then some of its subsets might be extremely ugly (really, really ugly),

and we need suitable collections of sets to work with. These are called �-algebras.

De�nition: Algebra. A collection � of subsets of 
 is called an algebra on � if it has

the following three properties:

� 
 2 �;

� F 2 � ) F
c
2 �;

� F 2 �; G 2 � ) F
S
G 2 �.

�

Here F
c is the complement of F in 
 (also denoted as F ), i.e., the set of all elements

of 
 that do not belong to F . Note that from the three properties it follows that an

algebra is closed under intersection, and therefore it is closed (stable) under �nitely many

set operations.

Note The term �eld is often used instead of algebra.

De�nition Measurable sets If set A belongs to �, it is said to be ��measurable.

�

De�nition: �-algebra. A collection F of subsets of 
 is a �-algebraif

� F is an algebra on 
;

� if Fn is a countable collection of sets, n = 1; 2; : : :, such that Fn 2 
 for all n, thenS
n
Fn 2 F.

�


 can be identi�ed with the set of real numbers. Not knowing a priori what the circuit is, we cannot bound

the maximum value of the voltage, so we will say that any real number is a possible outcome. However, the

result of the experiment will not be a letter of the English alphabet, and no letter is a possible outcome of

the experiment.
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Thus, a �-algebra is closed with respect to a countably many set operations 2.

What is the intuition behind a �-algebra? If 
 represents the collection of possible outcomes

of an experiment, a subset of 
 is called an event. Then, a �-algebra represents the collection

of all possible, interesting events from the viewpoint of a given experiment.

Example Let the experiment be a coin toss (where we blow on the coin if it stands up

straight!). The set 
 will contain two elements: H and T . The �-algebra on 
 will contain

the following four sets: ;, fHg, fTg, fH; Tg, where ; is the empty set.

How does one create a �-algebra? Often one can start from a collection of events, as we

did in the above example.

De�nition The �-algebra generated by a collection C of subsets of 
 is the smallest

�-algebra on 
 containing the collection C3.

�

Example Let the experiment be an in�nite repetition of coin tosses, which is the simplest

example of a source generating in�nite sequences of symbols. In Information Theory we love

in�nite sequences, since we use them to prove many of our main results. Now, there are

uncountably many in�nite sequences of H and T in 
. We will de�ne a �-algebra on 


by considering the following sets: f! j !i = Hg and f! j !i = Tg for i = 1; 2; : : :. So, for

example, the �rst of these sets is the collection of sequences that start with H, the 4th is

the the collection of sequences that have a T in the 2nd position etc. From these sets we

can derive numerous other sets, by applying a �nite or countable number of set operation

(union, intersection, complement). For instance, the intersection of the 1st and 3rd sets

de�ned above correspond to the collection of sequences that start with HH. By adding the

empty set and 
 to the recipe, we get a nice �-algebra.

Example Often one in the literature encounters the terms Borel �-algebra, and Borel

set. The Borel �-algebra on 
 is often denoted as B(
).

If 
 is a topological space, the Borel �-algebra on 
 is the �-algebra generated by the family

of open subsets of 
.

For instance, every subset of IR that we commonly use is a Borel set, One cannot construct

non-Borel sets 2 IR without the of the of the axiom of choice.

Good News! While the above mechanisms are needed in general, for most applica-

tions we can prove theorems for much simpler structures, and the properties carry over to

�-algebras. In general, all we need is a family of sets that is closed under complement and

�nite intersection (called a �-system).

Example More repeated coin tosses: instead of working with the complex �-algebra de-

�ned above, we will be able to deal with the generating collection (containing f! j !i = Hg

2If 
 has �nite cardinality, then there is no di�erence between an algebra and a �-algebra. However, if 


is in�nite, the sets in a �-algebra can be signi�cantly more complex than the sets in an algebra.
3The �-algebra generated by C is the intersection of all the �-algebras containing C.
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and f! j !i = Tg for i = 1; 2; : : :) and the �nite intersection of its components!

2.2 Probability Spaces

Having de�ned the sure event and �-algebras, we now put them together.

De�nition Measurable Space A pair (
;F) where 
 is a set and F is a �-algebra, is called

a measurable space. An element of F (i.e., an event) is called a F-measurable subset

of 
.

�

Recall that when dealing with experiments, we are not interested in individual outcomes,

but rather in collections of outcomes. It is on such collections that we will de�ne probability.

The �rst step is to consider a non-negative set function on an algebra �, i.e., a function from

the elements of � to the non-negative real numbers.

De�nition A set function f is additive if

� f(;) = 0,

� f(F
S
G) = f(F ) + F (G); 8F;GjF

T
G = ;.

.

De�nition A set function f is countably additive if

� it is additive

� if fSng is a sequence of sets in �, and
S

n
Sn 2 � (Note: � is an algebra, not a

�-algebra!), such that the sets Sn are disjoint, then

f(
[
n

Sn) =
X
n

f(Sn):

Combining a measurable space and a measure, we obtain: De�nition: Measure Space. A

measure space is a triple (
;F; f), where (
;F) is a measurable space and f is a countably

additive non-negative set function on F 4.

�

4De�nition Given a measurable space (
;F; f), the measure f is �nite if f(
) <1.

De�nition Given a measurable space (
;F; f), the measure f is �-�nite if there is a sequence

fSngof subsets of 
 such that f(Sn) <1 and
S

n
Sn = 
.

Note Non����nite measures are a mess! But we do not have to care about them in our course.
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And now: De�nition: Probability Measure. A probability measure (�nally !) is a

���nite measure P that satis�es

P(
) = 1:

�

Putting together a measurable space and a probability measure, we get:

De�nition: Probability Space. A probability space or probability triple is a measure

space (
;F;P)where the measure � is a probability measure.

�

De�nition A property that holds on a set S of elements of 
 satisfying P(S) = 1 is said

to hold P�almost everywhere or almost everywhere or P�almost surely or almost

surely. Almost everywhere is abbreviated as a.e., and almost surely is abbreviated as a.s..

A synonim often encountered in the literature is with probability 1, abbreviated as w.p.

1.

2.3 Summary

When modeling an experiment where uncertainty exists, one uses a probability space (
;F;P).

� 
 is a set called the sample space.

� Any element ! 2 
 is called a sample point

� The �-algebraF is a family of sets called events. Therefore, and event is an F�measurable

set.

� The probability P is a probability measure.

For a given experiment, we can think of a map between 
 and the set of possible outcomes,

where each ! 2 
 correspond to only one outcome. In general, this mapping could be a

many-to-one. For instance, in a coin 
ip, 
 could be the set of all con�gurations of the coin

when it is released (= position, speed and angular speed), and of all the molecules that can

in
uence the outcome. Clearly 
 is a rather large set, while the set of possible outcomes is

very small. Many ! map to head, and the remaining to tail. Or, to make things simpler, we

can just think of 
 as the collection fH; Tg.

3 Elementary Probability Refresher

We can now put behind us the complexity of the notions outlined in the previous section,

and recall few notions from elementary probability. These results are stated without proof.
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3.1 Basic properties of probability

Let A and B be sets. Then the following properties hold.

� 0 � P(A) � 1

� P(A) = 1� P(Ac), where Ac) is the complement of A;

� P(;) = 0;

� A � B implies P(A) � P(B);

� If A1; : : : ; An, with n �nite, are disjoint, then P (
S

n

i=1
Ai) =

P
n

i=1
P(Ai).

� If A1; A2; : : : is a countable sequence of disjoint sets, P (
S
1

i=1
Ai) =

P
1

i=1
P(Ai).

Theorem Inclusion/Exclusion Principle. For any pair of events A and B,

P(A
[

B) = P(A) + P(B) � P(A
\

B):

�

Theorem Union of Events Bound. For any pair of events A and B,

P(A
[

B) � P(A) + P(B):

Note that the union of event bound is a corollary of the Inclusion/Exclusion principle.

�

De�nition: Conditional Probability.. Given a probability space (
;F;P), let A and

B be two events in F. Assume that we know that B occurs. The probability that A occurs

given that it is known that B occurs is called the conditional probability of A given B and

is de�ned by

P(A j B) =
P(A

T
B)

P(B)
:

�

Example Consider a fair die, the conditional probability that an outcome X is odd given

that it is less than four is P(f1; 3g)=P(f1; 2; 3g) = 2=3.

Note Recall that two events are said to be independent if the probability of their intersec-

tion is the product of their individual probabilities. Under the assumption that P(B) > 0,

it follows immediately that P(A j B) = P(A) if and only if A and B are independent.

From the de�nition of conditional probability, we immediately obtain:
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Theorem - Multiplication law. Let A and B be events with P(B) > 0. Then

P(A
\

B) = P(A j B)P(B):

�

The following is a very useful theorem, which is a consequence of the multiplication law.

Bayes Theorem. Given two events A and B,

P(A j B) = P(B j A)
P(A)

P(B)
:

�

Total Probability Theorem

Let A1; A2; : : : be a sequence (possibly in�nite) of disjoint events (i.e., for each i; j, with

i 6= j, Ai

T
Bj = �), such that

S
1

i=1
Ai = 
. Then, for every measurable event B,

P(B) = P(

1[
i=1

(B
\

Ai) =

1X
i=1

P(B j Ai)P (Ai):

De�nition: Independence. Given a probability space (
;F;P), two events A and B

2 F are independent if

P(A
\

B) = P(A)P(B):

�

Thus, two events are called independent if the probability that they both occur is the

product of the probabilities that each of them occurs. The de�nition can be extended to N

events, but the extension is not trivial !

De�nition Given a probability space (
;F;P), N events Ai 2 F, i = 1; : : : ; N are

independent if for every n � 2, every collection of di�erent indices i1; : : : ; in with 1 � ij � N ,

P

 
n\

j=1

Aij

!
=

nY
j=1

P
�
Aij

�
:

�

De�nition A fair coin is a coin for which P(Head) = P(Tail) = 1=2.

De�nition A fair die is a die for which P(X = i) = 1=6 for i = 1; : : : ; n.
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Example Consider tossing a fair die, call O the outcome. Let A be the event fO is oddg

and B be the event fO is less than 3g. As the die is fair, P(A) = 1=2 and P(B) = 1=3. Note

that A
T
B = fX = 1g, thus P(A

T
B) = 1=6 = P(A)P(B). Then the events A and B are

independent.

Some Properties and Non-properties of independence of events

� Independence is symmetric: the statements \A and B are independent", \A is inde-

pendent of B", and \B is independent of A" are equivalent.

� A strange case. An event A having zero probability is

{ independent of every other event;

{ independent of the sure event;

{ independent of itself.

� Independence does not mean mutual exclusion! If A and B are events with non-zero

probability, and are mutually exclusive, i.e., if A occurs, then B does not occur and vice

versa, then A and B are not independent. In fact if A
T
B = ;, then P(A

T
B) = 0;

but, by assumption, P(A) > 0 and P(B) > 0, thus P(A)P(B) > 0. For example, when

tossing a die, the events foutcome is oddg and foutcome is eveng are not independent.

� Do not think of independence (or dependence) in terms of causality, as it is misleading.

Think in terms of probability.

4 Random Variables

De�nition A function h : S ! IR is ��measurable function if its inverse maps Borel

sets of the Real line into elements of the algebra �.

An important case is when � is itself the Borel �-algebra.

Lemma Sums and products of measurable functions are measurable functions.

De�nition If (
;F;P)is a probability space, we call random variable any F�measurable

function.

�

Example Let 
 describe the tossing of two dice. The sum of the values is a random variable. So

is the di�erence, the maximum and the minimum.

ATTENTION the maximum and minimum of an in�nite collection of random variables need not

be measurable, and therefore need not be a random variable. The in�mum, liminf and limsup are

always random variables, and so is the lim, if it exists.
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Example Consider again the example of in�nite coin tosses. We de�ne F as the �-

algebra generated by the sets f! : !n =Wg for W 2 fH; Tg and all n 2 N . Then, one can

easily show that the following are random variables:

� Xn(!) = 1 if !n = H; = 0 otherwise :

� Yn(!) =
P

n

i=1
1(!i = H), i.e., the number of Heads in the �rst n coin tosses.

� Zn(!) = 1 if Yn(!) is odd, = 0 otherwise.

4.1 Distributions and Laws

Let (
;F;P)be a probability space carrying a random variable X. Then the inverse mapping

X
�1 is a correspondence between Borel sets B and sets S 2 F. The probability measure P

assigns a value between 0 and 1 to each set S.

De�nition We de�ne the Law LX of X as

LX = P ÆX
�1
:

Thus, the law of X assigns to each Borel set the probability under P of its preimage. The

law of Zn assigns probability to the events: ;, f0g, f1g and f0; 1g. The probability of ; is

trivially equal to 0, and the probability of f0; 1g is trivially 1. The law LZn
assigns to the

event f0g the probability of its preimage, which is the set of all sequences of coin tosses with

even number of heads in the �rst n trials, and to the event f1g the probability of the set of

all sequences having odd number of heads in the �rst n trials. The \magic" of probability is

now becoming increasingly clear.

GOOD NEWS ! This is the end of the \new material". What comes next is just

review material from elementary probability !

De�nition: Cumulative Distribution Function. The function FX(x) = LXf(�1; x]g

is called the (cumulative) distribution function of X.

�

Thus, the distribution function of X evaluated at x is the probability that X is less than

or equal to x, which is the measure under P of the preimage of the set (�1; x].

Example Consider tossing a die, and let X be the number on the upper face. The

distribution function of X is equal to 0 for every x < 1, is equal to the probability of the

preimage of fX = 1g for x 2 [1; 2), to the probability of the preimage of fX 2 f1; 2gg for

x 2 [2; 3) etc. etc. If the die is fair, then the distribution function of X is equal to zero for

x < 1, to 1=6 for x 2 [1; 2), to 2=6 for x 2 [2; 3) to 1=2 for x 2 [3; 4) to 2=3 for x 2 [4; 5) to

5=6 for x 2 [5; 6) to 1 for x � 6.

Properties of the distribution function
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� FX 2 [0; 1];

� FX(x) is monotonically non-decreasing in x, i.e., for all pairs x1, x2 with x1 < x2 it

satis�es FX(x1) � FX(x2);

� FX(x) is right continuous (continuous from the right), i.e., lim�!0+ F (x + �) = F (x);

� limx!�1 FX(x) = 0;

� limx!+1 FX(x) = 1.

De�nition: Probability Mass Function. Let a random variable X have a law that

puts probability one on a �nite or countable subset of the real line X = fx1; x2; : : :g (for

instance, the integers) and zero probability on the rest of the real line. This random variable

is called discrete. With probability one X will take a value that lies in X. The function

PX(�) = P (X = xi) for i = 1; : : : is called the probability mass function of X.

De�nition: Probability Density Function. Let FX be absolutely continous with

respect to the Lebesgue measure on the real line5. Then FX is di�erentiable everywhere. Let

fX(�) be its derivative. The function fX(�) is called the probability density function of X,

or, more simply, the density of X.

�

4.2 Independent Random Variables

De�nition Let (
;F;P) be a probability space, on which two random variables X and

Y are de�ned, with laws LX and LY . X and Y are independent if, for every pair of Borel

sets A and B, P(X 2 A;Y 2 B) = LX(A)LY (B). That is, the probability that X takes

value in A and Y takes value in B is equal to the product of the probability that X takes

value in A and of the probability that Y takes value in B.

�

Note Good news ! We can restrict the attention to simple sets ! The following theorem

simpli�es life enormously ! (the proof requires some additional machinery, and therefore is

omitted.)

Theorem Two random variables X and Y de�ned on (
;F;P), having distribution func-

tions FX(�) and FY (�) are independent if and only if, for every x and y,

P(X � x;Y � y) = P(X � x)P(Y � y):

�

5This means that there are no sets of Lebesgue measure zero that have non-zero probability under the

law of X .
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Thus, we can concentrate the attention on the probabilities of very simple sets ! We can

also de�ne independence of n random variables:

Theorem N random variables X1; : : : ; XN de�ned on (
;F;P) are independent if and

only if, for every n � N , every collection of di�erent indices i1; : : : ; in, and every collection

of real numbers x1; : : : ; xn,

P(Xi1
� x1; : : : ;Xin

� xn) = P(Xi1
� x1) : : :P(Xin

� xn):

�

Note The theorem can be restated in a \recursive" fashion as follows: N random variables

X1; : : : ; XN de�ned on (
;F;P) are independent if and only if the following two conditions

hold:

� for every collection of N real numbers x1; : : : ; xn, P(X1 � x1; : : : ;XN � xN ) =Q
N

i=1
P(Xi � xi),

� (if N > 2) every subcollection of fX1; : : : ; XNg containing N � 1 di�erent Xi's, is

composed of independent random variables.

De�nition The random variables X1; X2; : : : (forming a countable sequence) are indepen-

dent if any �nite size subset of the sequence is composed of independent random variables.

�

De�nition: Independent and Identically Distributed Random Variables. Inde-

pendent random varibles X1; : : : ; XN having the same law are said to be Independent and

Identically Distributed (iid).

�

5 Multiple random variables

In the course we will often deal with groups of random variables, which we will assume to be

de�ned on a common probability space. We extend the de�nitions of the previous section to

a pair of random variables. The extension to a �nite number of random variables is trivial.

De�nition: Joint Distribution. Let X and Y be two real-valued random variables.

Their joint (cumulative) distribution (function) FX;Y (x; y) is de�ned as

FX;Y (x; y) = P (X � x; Y � y) = P (fX � xg

\
fY � yg):

�
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De�nition: Joint Density. The joint density of a pair of variables X and Y with joint

distribution FX;Y (x; y)Again, we must require that F be absolutely continuous with respect

to the Lebesgue measure. is the function

fX;Y (x; y) =
d
2

d~x d~y
FX;Y (~x; ~y)

����
x;y

;

(where ~x and ~y are di�erentiation dummy variables).

�

De�nition: Marginal. Consider two random variables X and Y , with joint density

fX;Y (x; y). The marginal distribution of X is

fX(x) =

Z
IR

fX;Y (x; y) dy

and similarly we de�ne the marginal of Y , fY (y).

�

Note Knowing both marginals is NOT equivalent to knowing the joint distribution.

De�nition: Conditional Density. Given two random variables X and Y , with joint

density fX;Y (x; y), the conditional density of X given that Y = y is

fX(x j y) =
fX;Y (x; y)

fY (y)
:

Thus, the conditional density of X given Y is a random function (note the di�erence from

above, here we did not specify Y = y!) given by fX(x j Y ) = fX;Y (x; Y )=fY (Y ):

Extension of Theorems

We extend the following theorems to densities and PMF's. In particular, we use the density

notation.

� Bayes Theorem

fX(x j y) = fY (y j x)
fX(x)

fY (y)
:

� Total Probability Theorem

fX(x) =

Z
fX(x j y)fY (y) dy:
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De�nition: Independence. Two random variables X and Y de�ned on a probability

space (
;F;P)are independent if

fX;Y (x; y) = fX(x)fY (y);

i.e., if the joint density is the product of the marginals.

�

Note If the joint density is the product of the marginals, and R is the Borel �-algebra over

the reals, then for every A 2 R, B 2 R,

P (X 2 A; Y 2 B) = P (X 2 A) P (Y 2 B)

6 Expectation

Continuous random variable

Let X be a random variable with density fX(�). We de�ne the expectation or expected

value (or mean ) of X as

E(X) =

Z
IR

x fX(x)dx

if it exists, where the integral is meant to be a Lebesgue integral (actually, Lebesgue/Stjelties

integral).

�

Note The Riemann Integral will not cut it here !

Note The integral MUST NEVER be interpreted as a principal value integral !!!!!

Discrete Random Variable

Let X be a random variable with probability mass function PX(�). We de�ne the expecta-

tion of X as

E(X) =

1X
i=1

xi PX(xi);

if
P
1

i=1
jxij PX(xi) exists, and is unde�ned otherwise. Note that summation is just a partic-

ular type of integration.

De�nition: Expectation of a function of a random variable. Let g(�) be a function,

andX a random variable with law LX . Then g(X) is a random variable too. The expectation
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of g(�) with respect to LX is the expectation of g(X), can be written in one of the following

ways

ELX (g(X)); ELX (g(�)); EFX
(g(X)); EFX

(g(�)); EfX
(g(X))EfX

(g(�)); EX(g(X)); EX(g(�))

and is de�ned as

EX(g(�)) =

Z
IR

g(x)fX(x)dx

if X has density fX(�)
6, and as

EX(g(�)) =

1X
i=1

g(xi)PX(xi);

if X has probability mass function PX(�).

�

De�nition: Moments. The kth moment of a random variable X with density fX(�) is

de�ned as

E(Xk) =

Z
IR

x
k
fX(x)dx;

if the integral exists, and is unde�ned otherwise.

The kth moment of a random variable X with probability mass function P (X) is de�ned as

E(Xk) =
X
i=1;:::

x
k

i
P (xi);

if the sum exists, i.e., if
P

i=1;:::

��xk
i

��P (xi) is �nite, and is unde�ned otherwise.

�

De�nition: Central Moments. The kth central moment of a random variable X with

density fX(�) and having expectation E(X) is de�ned as

E(Xk) =

Z
IR

[x� E(x)]kfX(x)dx;

if the integral exists, and is unde�ned otherwise.

The kth moment of a random variable X with probability mass function P (X) is de�ned as

E(Xk) =
X
i=1;:::

[x� E(x)]kP (xi);

if the sum exists, and is unde�ned otherwise.

�

Example The 2nd central moment of a random variable is called variance, the 3rd central

moment is called skewness.

6To be exact, if fX(�) is the density of X with respect to the Lebesgue measure, we must require that

h(�) be a Lebesgue-measurable function.
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7 Some Counting Theorems

Let's have an urn, containing n balls each with a di�erent symbol. Sampling with re-

placement consists of repeatedly extracting a ball from the urn, noting the symbol, putting

the ball back in the urn, and shaking the urn. Let X = �1; : : : ; �n be the set of n di�erent

symbols written on the balls, and let � be the outcome of a sampling operation. We will

model sampling with replacement using the following assumptions:

� P(� = �i) = 1=n,

� sampling operations are independent.

As a consequence, all the possible outcomes of k subsequent sampling with replacement

operations have the same probability.

Lemma The number of di�erent ordered outcomes of k sampling with replacement oper-

ations from an urn containing n elements is nk.

Sampling without replacement consist of extracting a ball from an urn, noting the

symbol, and setting the ball aside. We will assume that the probability distribution modeling

the selection of a ball is uniform. We will also assume that all the possible sequences of balls

resulting from k subsequent sampling without replacement operations are equiprobable.

Lemma The number of di�erent ordered outcomes of k sampling without replacement

operations from an urn containing n items is equal to n � (n � 1) � : : : � (n � k + 1), i.e.

n!=(n� k)!.

Lemma The number of di�erent ordering of n elements is n!.

Lemma The number of di�erent unordered outcomes of k sampling without replacement

operations from an urn containing n items is

C(n; k) =

�
n

k

�
=

n!

k!(n� k)!
:
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