
Introduction to NonParametric Methods

1 The setup

Recall that there are 2 ways of describing the joint distribution of the pair
(X, Y )1 Here, we first describe them, then comment on the forms of the Bayes
Decision Rule and of the Bayes Risk.

1. Let Y ∼ Bern(π1)
2;

Let X be conditionally distributed according to fY (x) given Y .

2. Let X ∼ f(X);
Let Y be conditionally distributed as Bern(η(x)) given Y .

Setup no 1 can be interpreted as follows:

• Spin a biased coin with probability of heads = π1, if the toss yields
heads, let Y be of class 1, otherwise of class 2;

• If Y = 1 sample X from f1(x), otherwise from f2(x).

Setup no 2 can be interpreted as follows:

• First, sample X from f(x).

• Pick a biased coin, having probability of heads equal to η(X), flip the
coin, and if it yields heads, let Y = 1, otherwise let Y = 0.

Note that in setup no 2 we select the class label Y by selecting a biased coin
from an infinite collection, using the observation X.

Setup no 2 is probably less natural than setup no 1, however it has the
remarkable advantage of relying directly on the posterior probability of class
1, η(X), which is hidden in setup no 1, and must be obtained using Bayes
Rule. The form of the Bayes Decision Rule for the fist setup is

1Recall that X is the observation and Y is the corresponding class label.
2We use the notation Bern(p) to denote the Bernoulli distribution on a binary random

variable Y , namely Pr {Y = 1} = p, Pr {Y = 0} = 1 − p.
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• Decide Ŷ = 1 if π1f1(X) > π0f0(X)3

• Decide Ŷ = 0 otherwise.

The form of the Bayes Decision Rule for the second setup is very appealing:

• Decide Ŷ = 1 if η(x) > 1/2

• Decide Ŷ = 0 otherwise.

The reason why this is intuitively appealing is that it does not involve the
distribution of X. Of course, the two forms are equivalent, in the sense that
they produce exactly the same decision regions.

The form of the Bayes Risk expressed in the first setup is4

R∗ =

∫
X

min {π0f0(x), π1f1(x)} dx,

while in the second setup is

R∗ =

∫
X

min {η(x), 1 − η(x)}f(x) dx, (1)

2 Classifiers based on the second setup

A large family of classifiers estimate directly η(x) rather than estimating the
class conditional distributions and the priors, and applying the Bayes Rule
to estimate η(x).

Estimating η(x) is a tricky business, and can have drawbacks: in particular,
note that for classification we are really interested in estimating well η(x)
where its values are close to 1/2, while our estimates in regions where η(x) ∼
1 or η(x) ∼ 0 need not be particularly accurate (to convince yourself of this,
look at Equation 1).

At the same time, an algorithm that produces a good estimate η̂(x) of η(x)
yields good classification performance. More specifically, we can bound the
error rate of a classifier g(x) that produces the estimate η̂(x), and decides
Ŷ = g(X) = 1 if η̂(X) > 1/2 and Ŷ = g(X) = 0 otherwise, in terms of the
expected absolute difference between η̂(X) and η(X).

Theorem The risk R of the classifier g(x) satisfies

R ≤ R∗ + 2

∫
X

|η(x) − η̂(x)| f(x) dx (2)

3Here π0 is the prior probability of class 0 and π0 + π1 = 1.
4Recall that X is the feature space.
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Proof Write the conditional probability of error of g(·) given X = x as
min {η(x), 1 − η(x)} + ∆�(x). There are 4 cases:

η(x) η̂(x) ∆�(x) bound on ∆�(x) comment
> 1/2 > 1/2 0 2

(
η(x) − η̂(x)

)
trivial

> 1/2 ≤ 1/2 2η(x) − 1 2
(
η(x) − η̂(x)

)
see below

≤ 1/2 > 1/2 1 − 2η(x) 2
(
η̂(x) − η(x)

)
see below

≤ 1/2 ≤ 1/2 0 2
(
η̂(x) − η(x)

)
trivial

Let’s address first the case η(x) > 1/2, η̂(x) < 1/2. Here we make the wrong
decision and the conditional probability of error given X = x is η(x), while
is it 1 − η(x) for the Bayes Decision Rule. The additional loss is therefore
∆�(x) = 2η(x) − 1 = 2(η(x) − 1/2). Since, by assumption, η̂(x) < 1/2,
clearly ∆�(x) < 2

(
η(x) − η̂(x)

)
. A similar argument applies to the other

case.

Note that Equation 2 ensures that, if η̂(X) converges to η(X) in the L1 sense
as the training set grows to infinity, then the risk of the rule generated by our
classifier converges to the Bayes Risk. This is a powerful tool. In particular,
if we can show convergence irrespective of the distribution of (X, Y ), then
we can prove Universal Consistency of the classification rule.

Def. A classification rule gn(·)5 is Universally Consistent if the risk Rn

converges to R∗ as the training set grows to ∞, for every distribution of the
labeled samples (X, Y ).

3 The (cubic) Histogram Rule

The histogram rule estimates η̂(x) as follows

• Partition feature space into hypercubes A1, . . . , Am, . . ., of the same
side hn.

• Within each hypercube Aj: for each x ∈ Aj let η̂(x) be the ratio of the
number of samples of class 1 in Aj to the number of all samples in Aj .

The classifier therefore assigns a label to each hypercube using majority vote;
ties are broken by assigning the label 0.

Formally, let A(X) be hypercube where X falls; then the cubic histogram
rule is:

5Recall that a classification rule is a sequence of classifiers (i.e., hypothesis spaces and
algorithms to learn hypotheses from the data) indexed by the training set size n.
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• Decide 0 if
∑n

i=1 Yi1{Xi∈A(X)} ≤
∑n

i=1 (1 − Yi)1{Xi∈A(X)}

• Decide 1 otherwise.

3.1 Questions

• What is good about this method?

– It is conceptually simple (visualize).

– Gives rise to universally consistent rule.

– We can easily prove theorems.

• What is bad about this method?

– It suffers A LOT from the curse-of-dimensionality.

– It usually is a poor performer in practice.

3.2 Universal Consistency of the Histogram Rule

A fundamental property of this seemingly simple rule is the following:

Theorem If hn → 0 and nhd
n → ∞, the histogram rule is universally

consistent.

To prove this, we use a more general result: Consider generic rule g
′
n(x)

that divides the feature space into disjoint regions, or partitions, Ai and uses
majority vote within each region. First, some notation

• diam{A} = supx,z ‖x − z‖, corresponds to our intuitive notion of di-
ameter, extended to nonclosed sets.

• A(x) denote the region containing x.

• N(x) =
∑n

i=1 1{Xi∈A(x)} is the number of training samples falling in the
partition that contains x

Here is the main result:

Theorem The rule g
′
n(x) is universally consistent if

• diam{A(X)} → 0 in probability.

• N(X) → ∞ in probability.
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This theorem states that if the probability that X falls in a region A, having
vanishingly small diameter, and containing a number of training samples that
grows to infinity, converges to 1 as the training set size goes to infinity, then
g

′
n(x) is universally consistent.

Proof We need some notation. Recall that η(x) = Pr {Y = 1 | X = x}.
This quantity in general is not a constant within a region A(x). The cubic
histogram rule approximates η(x) = Pr {Y = 1 | X = x} within A(x) by a
constant, which we denote by η̂n(x), which is equal to

η̂n(x) = N(x)−1
∑

i

Yi1{Xi∈A(x)} (3)

if N(x) > 0 and is equal to 0 otherwise. η̂n(x) is really an estimator of the
probability that a sample X has label 1 given that X falls within A(x); this
probability is denoted by η̃(x) and is equal to

η̃(x) = EX [Pr {Y = 1 | X ∈ A(x)}] =

∫
A(x)

η(x
′
)f(x

′
) dx

′∫
A(x)

f(x′) dx′ , (4)

where x
′

is the dummy variable for integration, and f(x) is the density of X.

We now bound |η̂n (X) − η (X)| in terms of η̃(X):

E [|η̂n (X) − η (X)|] ≤ E [|η̂n (X) − η̃ (X)|] + E [|η̃ (X) − η (X)|] (5)

where the inequality follows from the triangle inequality applied to the ab-
solute value.

3.2.1 Bound on E [|η̂n (X) − η̃ (X)|]

Note that N(x)η̂n(x) is ∼ Bin (N(x), η̃(x)) 6. We will distinguish between
the cases where N(x) = 0 and N(x) > 0.

Now, by definition, X falls in A(X). Look at the indicators 1{Xi∈A(X)}: these
are equal to 1 if Xi ∈ same region as X, and to 0 otherwise. Condition on
X and on the indicators:

E

[
|η̂n (X) − η̃ (X)| X, 1{Xi∈A(X)}, i = 1, . . . , n

]

≤ E

[∣∣∣∣Bin (N(X), η̃(X))

N(X)
− η̃ (X)

∣∣∣∣ 1{N(X)>0} X, 1{X1∈A(X)}, i = 1, . . . , n

]
+ 1{N(X)=0} (6)

6We use Bin (n, p) to denote the distribution of a binomial random variable with pa-
rameters n and p: this is the number of heads in n independent coin tosses of biased coins
having probability of heads equal to p.
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where the inequality follows from the facts that, when N(X) = 0, η̂ (X) =
0 and E

[
η̃ (X) | X, 1{Xi∈A(X)}, i = 1, . . . , n

] ≤ 1. Note: the thick | is the
conditioning sign, the thin ones indicate absolute value.

Now, recall the Cauchy-Schwartz inequality: if E [U2] <∞, E [V 2] <∞,

E [|UV |] ≤
√
E [U2]E [V 2]

In our case, V = 1{N(X)>0} (which can be moved in and out of the expected
value), while U is the term inside the absolute value in Equation 6. Let’s
concentrate on V , and observe that the expected value of the first addend of
V is equal to the second one;

E

[
Bin (N(X), η̃(X))

N(X)
X, 1{Xi∈A(X)}, i = 1, . . . , n

]
= η̃ (X)

Hence E [U2] is the variance of the ratio, namely

E

[(
Bin (N(X), η̃(X))

N(X)
− η̃ (X)

)2

X, 1{Xi∈A(X)}, i = 1, . . . , n

]

= var

(
Bin (N(X), η̃(X))

N(X)
X, 1{Xi∈A(X)}, i = 1, . . . , n

)

Recall that the variance of a Binomial(n, p) random variable is np(1 − p).
Also, trivially, if x = 0 or 1, then x2 = x, and therefore

E
[(

1{N(X)>0}
)2

X, 1{Xi∈A(X)}, i = 1, . . . , n
]

= 1{N(X)>0},

since, given the set of indicators, we know whether N(X) = 0 or > 0, and
the expected value of a constant is a constant. From these considerations
and the Cauchy-Schwartz inequality, it follows that

E

[∣∣∣∣B (N(X), η̃(X))

N(X)
− η̃ (X)

∣∣∣∣ 1{N(X)>0} X, 1{Xi∈A(X)}, i = 1, . . . , n

]

≤ E

[√
η̃ (X) [1 − η̃ (X)]

N(X)
1{N(X)>0} X, 1{Xi∈A(X)}, i = 1, . . . , n

]
(7)

Note now the following:

• if p ∈ [0, 1], then
√
p(1 − p) ≤ 1/2.

• Taking expectation with respect to X of 1{N(X)=0}, one obtains Pr {N(X) = 0}.
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Hence, from the following considerations applied Equation 7, by taking the
expectation with respect to X and 1{Xi∈A(X)} of Equation 6, one obtains

E [|η̂n (X) − η̃ (X)|] ≤ E

[
1

2
√
N(X)

1{N(X)>0}

]
+ Pr {N(X) = 0}

≤ 1

2
Pr {N(X) ≤ k} +

1

2
√
k

+ Pr {N(X) = 0} (8)

where Inequality 8 follows from

E

[
1√
N(X)

1{N(X)>0}

]
=

n∑
i=1

1√
i
Pr {N(X) = i}

=
k∑

i=1

1√
i
Pr {N(X) = i} +

n∑
i=k+1

1√
i
Pr {N(X) = i}

≤
k∑

i=1

Pr {N(X) = i} +
n∑

i=k+1

1√
i
Pr {N(X) = i}

= Pr {N(X) ≤ k} +
n∑

i=k+1

1√
i
Pr {N(X) = i}

≤ Pr {N(X) ≤ k} +
1√
k

n∑
i=k+1

Pr {N(X) = i}

= Pr {N(X) ≤ k} +
1√
k

Pr {N(X) > k}

≤ Pr {N(X) ≤ k} +
1√
k

But, by assumption, for every k > 0 Pr {N(X) > k} → 1, so the first and
third terms of Equation 8 are arbitrarily small (say > ε/4 for any chosen ε)
for large enough n, and the second term can be made small by choosing k
sufficiently large (again, say > ε/4).

3.2.2 Bound on E [|η̃ (X) − η (X)|]

In the previous subsection, we had the remarkable advantage of dealing with
piecewise constant functions ( η̂(X) and η̃(X)). Here we are dealing with
η(X), which is a potentially very “unsmooth” function (it need not be con-
tinuous, for example, and it could be discontinuous everywhere.....).

A standard approach in these cases is to find a nicely behaved function that
approximates η(X) to a desired degree, apply the triangle inequality to the
absolute value, and spend most of our effort dealing with it.

Claim: we can find a function ηε(x) with the following properties:
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• it is [01]−valued,

• vanishes off a set C,

• it is uniformly continuous on C

• it satisfies E [| η(X) − ηε(X) |] ≤ ε/6.

The interested reader is referred to Devroye, Györfi, and Lugosi’s book for
details on why we can actually find such function.

Define η̃ε as its expectation (as above), more specifically, let

η̃ε(x) = E [ηε(X) | X ∈ A(x)]

Again, we apply the triangle inequality; Since now we have four functions (
η (X), η̃ (X), ηε(X), and η̃ε(X)), the triangle inequality yields 3 terms

E [|η̃ (X) − η (X)|] ≤ E [|η̃ (X) − η̃ε (X)|] + E [|η̃ε (X) − ηε (X)|]
+E [|ηε (X) − η (X)|] = I + II + III

Now: III < ε/6 by construction.

To bound II:

• recall what uniform continuity means: for every ε, δ(ε) such that if
diam{A(X)} ≤ δ(ε), then

sup
x1,x2∈A(X)

|ηε(x1) − ηε(x2)| ≤ ε/6,

irrespective of where A(X) is7. Since the range of ηε(x) is limited by
≤ ε/12 (the 12 will come handy later) in A(X), a fortiori its expected
deviation from its mean within A(X) is bounded by ε/6, hence II < ε.

• Also note that: II ≤ 1, irrespective of A(X)

Hence:

II ≤ ε

12
Pr {diam{A(X)} ≤ δ(ε)} + 1 · Pr {diam{A(X)} > δ(ε)}

≤ ε

12
+ Pr {diam{A(X)} > δ(ε)}

≤ ε

6

7Provided that its diameter is < δ(ε)
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for n large enough, since by assumption diam{A(X)} → 0 in probability.
Finally:

III = E

[∣∣∣∣ηε (X) − η (X)

∣∣∣∣
]

=
∑

i

Pr {X ∈ Ai}E
[∣∣∣∣ηε (X) − η (X)

∣∣∣∣ X ∈ Ai

]

We now rely on a fundamental inequality: Theorem Jensen’s Inequality
If f is an integrable, convex function,

E [f(X)] ≥ f(E [X])

Note that the absolute value is a convex function. Note also that

E [|η̃ (X) − η̃ε (X)|] =
∑

i

Pr {X ∈ Ai}

·
∣∣∣∣E [Pr {Y = 1 | X ∈ A(x)}] −E [ηε(X) | X ∈ A(x)]

∣∣∣∣
hence I ≤ III < ε/6 by Jensen’s and the convexity of |·|. Adding all the
results we conclude that the LHS of Equation 6 is less than ε

For the histogram rule: the diameter of the cell is
√
dhn: by assumption → 0

Lemma For the histogram rule, the probability that N(X) < M
goes to zero.
(No proof, this is somewhat complex. The basic idea of the proof is the following:
put large ball around origin, divide the cells into cells intersecting the ball and
cells not intersecting the ball. Bound probability that N(X) > M for all nonin-
tersecting cells with 1, and therefore the contribution of all nonintersecting cells
is less than the probability that X falls outside the ball; this probability can be
made arbitrarily small by selecting a large enough ball.

For intersecting cells, count them (their number goes to ∞ as 1/hd
n). Divide them

into cells with probability < 2M/n and into cells with probability ≥ 2M/n (with
respect to the law of X).

Bound the sum over the first cells (with small probability) by the overall number
of intersecting cells times their probability (this yields nhd

n in the denominator).
For the remaining ones, the expected number of counts is nµ(A), so they have a
lot of points. The probability that the observed number of counts minus nµ(A)
is ≤ M − nµ(A) is bounded using Chebycheff inequality, (the variance is n ∗
[nµ(A)][n(1 − µ(A))]))
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4 Kernel Rules

A problem with histogram rule is the fact that all points within a cell have
the same “voting power” irrespective of where X falls within the cell. To
deal with this problem, we could use a moving window, rather than a fixed
partition of the space: for example, we could use a sphere of radius r centered
at X.

This looks better, but still points near the edge of the window count as much
as points near the center.

SOLUTION: Filter !

Let K(x) be a “kernel function” (we will define what we actually mean later).
At each x compute 8

η̂n(x) =

∑n
i=1 1{Yi==1}K(Xi − x)∑n

i=1K(Xi − x)
,

called the Nadaraya-Watson kernel-weighted average.

In what follows, we use the notation Kh(x) = h−1K(x/h). The parameter h
controls the width (and height) of the kernel. Larger values of h correspond to
a wider, more spread version of the kernel, while small values of h correspond
to concentrated kernels

4.1 Selecting kernels

A “good” kernel is a function that gives rise to universally consistent rules.

Def. Regular Kernel A regular kernel is a kernel satisfying the following
condition:

• it is nonnegative

• it is bounded

• it is integrable with respect to the Lebesgue measure

• it is uniformly continuous

Theorem Universal Consistency If

• K is regular;

8The denominator is really
∑n

i=1 1{Yi==1}K(Xi − x) +
∑n

i=1 1{Yi==0}K(Xi − x)
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• h→ 0

• nhd → ∞ as n→ ∞

then for EVERY P (X, Y ), for every ε > 0, ∃nε > 0 s.t., ∀n > nε

Pr {Rn − R∗ > ε} ≤ 2e−nε2/32ρ

where ρ > 0 depends on K and d only 9.

4.2 Examples of Kernels

We concentrate the attention to d-dimensional symmetric kernels derived
from 1−dimensional kernels: if K(x) is a 1−d kernel, CdK(‖x‖) is a d−Dim,
symmetric kernel, Cd: normalizing constant.

• Rect. Window: K(x) = 1{|x|≤1}

• Triangular: K(x) = 1{|x|≤1}(1 − |x|)
• Epanechnikov: K(x) = 3

4
1{|x|≤1}(1 − x2)

• Tri-cube: K(x) = 1{|x|≤1}(1 − x3)3 flatter on top

• Gaussian: K(x) = exp(−x2/2)/
√

2π: ∞ support

• Bell: K(x) = 1{|x|≤1}exp(−1/(1− x)2): infinitely differentiable + com-
pact support.

4.2.1 Which one is better?

Hard to tell. However,
• Smoother k’s produce smoother η̂
• Compactly supported k’s computationally cheaper
• In practice, it makes little difference

4.3 So what is the important parameter?

The choice of the parameter λ. How do we select λ? In class we saw an
example demonstrating that it is really hard to gauge from visual inspection
of the data what a good choice of λ is. So? We propose here two approaches

Test set method

9The Borel Cantelli Lemma assures that the probability that Rn −R∗ > ε
infinitely often is zero.
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• Divide data in training set+test set.

• Select a “candidate range” for λ (a good range is in general related
to the average distance between training points: you want a range so
that for each λ in the range, for most values of x, the kernel utilizes
a reasonable number of training points. This can be estimated by
centering the kernel at each of the training points, and counting how
many other training points receive a weight larger than some threshold
ε);

• Divide the range of “candidate” λ into k val’s λ1 . . . λk;

• For each λi, compute error rate on test set;

• Select the best λi.

This algorithm is simple. It could be improved as follows:

Cross-Validation

• Randomly split data into M groups of same size.

• Divide range of “candidate” λ into k val’s λ1 . . . λk.

• For j = 1, . . . ,M , let ith group be test set, and the rest of the data as
training set

• Repeat the test set procedure using the training and test data described
in the previous step; remember the error rates.

• Select λi with minimum Average error.

4.4 Weighted Regression

We briefly describe another interesting related method. The weighted regres-
sion works only in low-dimensional spaces, and is a method for improving
the estimate of η(x).

Recall the MSE procedure described in class. Note that it was equivalent
to fitting a line to the data that best approximates the labels. Again, let
vectors be row vectors.

Now, unlike the MSE procedure that finds w∗ minimizing
∑

i (Yi − wXT
i )2,

at each x we compute w∗(x) minimizing∑
i

K(Xi − x)
(
Yi − w(x)XT

i

)2
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In matrix form: arrange the Xi in the rows of a matrix, add a first column
with all 1’s; call the matrix B Let W (x) be the N ×N diagonal matrix, with
ith element equal to Kλ(x,Xi). Then

η̂(x) = [1 x]
(
BTW (x0)B

)−1
BTW (x)Y =

N∑
i=1

li(x)Yi
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