Linear Discriminants

X = (X, ..., X¢) = vector of attributes (features)
w = (Wi, ..., Wg) = weight vector
wex =X, °wix,
= wx'
(or wx if the vectors are column vectors, as in Duda, Hart & Stork)
Linear discriminant is a function of the form:
g(x) = wex+w, = 2, wx; +w,
w is normal to the hyperplane H defined by:
H = {x: g(x)=0}
Proof:
X, X in H = we(x;-x;) = g(x:)-Wo-(g(x2)-Wo) = 0

\/\/\/

Hyperplanes

g(x)=d|w]| gx)=1 g(x)=0 gx) =-I

Distance of H from origin
= [wol/||w|

W, is called "bias" (confusing!)
or "threshold weight"

Use g as a classifier: x is classified +1 if g(x)>0 i.e. Z,"wx;> -w,
- 1 if g(x)<0i.e. Z,"wx < -w,

Thus the classifier is Sign(g(x))

Extend from binary case (2 classes) to mulitiple classes later.

\/\/\/ ~

Threshold is an Extra Weight

W, can be incorporated into w by setting x,= |
Then g(x) = wex = X, wx

Example:
d=I, "hyperplane" is just a point separating +ve from -ve points
Embed the points into d=2 space by making their first component |

X1 A

"hyperplane" passes through origin

+ '/,.-f"""'hyperplane"

/4 ? S /4 1 Xo
"hyperplane”

origin origin

\/\/\/

Perceptron

Input is x = (1, x,, ..., Xq)
Weight vector = (Wq, Wi, ..., Wy)
Output is g(x) = wex = X, wx
Classify using Sign(g(x))

Linearly Separable

Given: Training Sample T = {(x, Y1), ..., (X ¥»)}, Where:
each x;is a vector X, = (Xij, ..., Xiq)
eachy, = *|

T is linearly separable if there is a hyperplane separating the +ve points from the
-ve points i.e. there exists w such that

g(x) = wex,> 0 if and only if y, = +1
i.e. yi(wex) > 0 for all i

lin sep not lin sep

\/\/\/

Finding a Weight Vector

Hypothesis Space = all weight vectors (with d+| coordinates)
If w separates +ve from -ve points, so does aw for any a >0.
How do we find a "good" weight vector w!?
Could try "all" w until find one

e.g. try all integer-valued w in order of increasing length.
Better idea

repeatedly change w to correct the points it classifies incorrectly.

g(x) must be decreased +‘\g(x) must be increased

Updating the Weights

If a +ve point X, is incorrectly classified i.e. wex, < 0, then:
INCREASE wex, by:
increasing w; if x,> 0
decreasing w;if x,< 0
If a -ve point X, is incorrectly classified i.e. wex.> 0, then:
DECREASE wex; by:
increasing w; if x,< 0
decreasing w; if x,> 0
For both +ve and -ve points, do:
w «— w + y.Xx if . is incorrectly classified
NOTE: A point x, is classified correctly if and only if
y.(wex) > 0
Notational "trick" used by some texts:
multiply -ve points by -|
can express formulas more simply (without y))

\/\/\/

Perceptron Algorithm

Algorithm:
w=0
Repeat until all points x; are correctly classified
If . is incorrectly classified, do w <—w + yx,
Output w

-——origin -

t—-—— :
|st component of w increases
2nd component of w decreases

\/\/\/ ~

Intuition behind Convergence

+
new wj
NEW W2\ 4 new w is not guaranteed to
be closer to w* than w was,
but will be closer to some
) multiple of w*
. -
" -
* +

Perceptron Convergence Proof

Proposition: If the training set is linearly separable, the perceptron algorithm
converges to a solution vector in a finite number of steps.

Proof
Let w* be some solution vector i.e. y,(w*ex;) > 0 for all i (Eqn I)
w* exists because the sample is linearly separable
aw™ is a solution vector for any a >0.
The update is:
w(k+1) = w(k) + yx, if x, is misclassified
We want to show that:
|w(k+1)-aw*|* < |w(k)-aw*|* -c for some constant ¢>0
We have:
|w(k+1)-aw*|? = [w(k)-aw*+yx. |*= (w(k)-aw*+yx,)e(w(k)-aw*+yx.)
= [w(k)-aw*|* +2(w(k)-aw*)ey x,. + | y.x, |
Since w(k)ey.x. < 0 because x. was misclassified, we have:
|w(k+1)-aw*|? < [w(k)-aw*|* -2ay.(w*ex.)+ yx. |* (Eqn 2)

\/\/\/

Convergence Proof (contd)

Since y.(w¥ex,) > 0 from (Eqn |), our goal is:
pick a so large that -2ay.(w*ex.) + |y |*< -c for some constant ¢>0
Let = max|yx | = max|x |

Y = min,y(w¥ex,) >0 (Neither f nor y depend on k!)
Then:

2ay(wrex,) +lyx, |* < -2ay +f°
Pick a = 'y
Then:

2ay(wrex,) +lyx, | <28+ =-f

and so, from (Eqn 2)

lw(k+1)-aw*|* < |w(k)-aw*|* -5
Since squared distances are never negative, this decrease must eventually stop;
i.e. the update rule "w(k+1) = w(k) + y.x. if x, is misclassified" stops changing w -
at that point w(k) = aw™ for some a and so w(k) separates the training points.
Same proof (different notation!) as in Duda, Hart & Stork, pg 230-232

\/\/\/

Perceptron Algorithm (Details)

Implementing the algorithm in practice:
Need to cycle through examples multiple times
Update w after each cycle, not every example ("batch perceptron")
Learning Rate 7
W «— W + 3y.X,
small # gives slow convergence
large # may cause overshoot
n can be updated each iteration, want # = 17(k)—0 as iteration k—o0
n(k) = n(lk
Decrease 7(k) if performance improves on k™ step

Non Linearly-Separable

Perceptron Algorithm does not converge if training set is not linearly separable
Cannot learn X-OR or any non-linearly separable concept.
Pointed out by Minsky & Papert (1969) - set back research for many years
Linearly Separable training sample # underlying concept is linearly separable

As d, the number of dimensions, increases, random training set is increasingly likely to
be linearly separable

In practice, try get low error if not lin sep.

Heuristics:
Terminate when (length of) w stops fluctuating t B
Average recent w's
Choice of learning rate

X-OR
\/\/\/

Gradient Descent

Suppose | is some function of the weight w which we want to minimize.

Gradient Descent searches iteratively for this minimum by moving from the
current choice of w in the direction of |'s steepest descent:

W —w - nvj(w),
where V| is the vector (0)/ow,, 0)/ow,, ..., O)Iwy)
Terminate when |7v)(w) | is sufficiently small
Example: J(w) = -2y yi(wex)
where the sum is ONLY over the set M of x; misclassified by this hyperplane
yi(wex,) < 0 if x; is misclassified, so J(w)>=0, we would like to minimize .
Since yi(wex)) = yi(wx;+ ... +WeXy),
oJlow, = -Znyx,
V) = -ZnYyX;
and gradient descent becomes:
w — w + 2wy ("batch perceptron”)
Thus Perceptron Algorithm does gradient descent search in weight space.

\/\/\/

Least-Mean-Squared

J(w) = Squared Error(w) = 0.5Z," (y;-(wex))
Since y,-(wex) =y, -(W X+ ... +WsXy),
o)/low. = 0.5Z," 2(y:-(wex)) (X
V)= - (- (W)X
w —w + nZ,"(y:-(Wex))X;
For faster convergence, consider the samples one-by-one:
W W (- (Wex))X
the LMS (or Delta or Widrow-Hoff) learning rule.
same algorithm (different notation!) as Duda, Hart and Stork, pg 246.
basis of backpropagation algorithm for training neural networks.

LMS rule converges asymptotically to the weight vector yielding minimum squared
error whether or not the training sample is linearly separable.

However, minimizing the error does NOT necessarily minimize the number of
misclassified examples.

\/\/\/

Multiple Classes

Suppose there are n classes ¢,, c,

(1) I vs rest
Use | linear discriminant for each class ¢, where points in ¢ are +ve, all points not in
c are -ve.
Need n linear discriminants
Assign ambiguous elements to nearest class
(2) pairwise
Use | linear discriminant for each pair of classes
Need n(n-1)/2 linear discriminants
Assign points to class that gets most votes
Assign ambiguous elements to nearest class
(3) linear machine
Use g(x) = wx+w, for i=1I to n; Assign x to ¢ if g(x)>g(x) for all j#i
Need n linear discriminants
No ambiguous elements

\/\/\/

Multiple classes (1 vs rest)

+|not +

not 0 O

Use n linear discriminants for n classes
Ambiguous region (?) - use distance to nearest class

\/\-/\/

Multiple class (pairwise)

Use n(n-1)/2 linear discriminants for n classes
Ambiguous region (?) - use distance to nearest class

\/\-/\/ ~

Linear Machine

Define n linear discriminants:
g(x) = wx+tw, i=Iton
Note typo in Duda Hart and Stork, pg 218! (g(x) = w'x+w,)
Assign x to class with largest value:
x belongs to ¢ if g(x) > g(x) for all j#i
Divides space into n regions, where each g is largest
Regions are convex and single connected
No ambiguous region
The boundary between any 2 contiguous regions is a hyperplane:
H, = fx: (%) = g(x)} = fx: (W-w)x' +wi-wio =0}
Thus differences between weight vectors are normal to the boundaries
May not have all n(n-1)/2 boundaries
How does the definition of linearly separable generalize to multiple classes? (See

Homework)

Multiple classes (Linear machine)

Use n linear discriminants for n classes
No ambiguous region

\/\/\/

