Linear Discriminants

- $x=\left(x_{1}, \ldots, x_{d}\right)=$ vector of attributes (features)
$-w=\left(w_{1}, \ldots, w_{d}\right)=$ weight vector
-w•x $=\Sigma_{1}{ }^{d} w_{i} x_{i}$
$=w x^{t}$
(or $w^{t} x$ if the vectors are column vectors, as in Duda, Hart \& Stork)
- Linear discriminant is a function of the form:
$-g(x)=w \cdot x+w_{0}=\Sigma_{1}{ }^{d} w_{i} x_{i}+w_{0}$
- w is normal to the hyperplane H defined by:
$-H=\{x: g(x)=0\}$
- Proof:
- x_{1}, x_{2} in $H \Rightarrow w \cdot\left(x_{1}-x_{2}\right)=g\left(x_{1}\right)-w_{0}-\left(g\left(x_{2}\right)-w_{0}\right)=0$

Hyperplanes

- Use g as a classifier: x is classified $+I$ if $g(x)>0$ i.e. $\Sigma_{1}{ }^{d} w_{i} x_{i}>-w_{0}$

$$
-1 \text { if } g(x)<0 \text { i.e. } \Sigma_{1}{ }^{d} w_{i} x_{i}<-w_{0}
$$

- Thus the classifier is $\operatorname{Sign}(g(x))$
- Extend from binary case (2 classes) to mulitiple classes later.

Threshold is an Extra Weight

$-w_{0}$ can be incorporated into w by setting $x_{0}=1$
-Then $g(x)=w \cdot x=\Sigma_{0}{ }^{d} w_{i} x_{i}$

- Example:
$-\mathrm{d}=\mathrm{I}$, "hyperplane" is just a point separating +ve from -ve points
-Embed the points into $\mathrm{d}=2$ space by making their first component I
- "hyperplane" passes through origin

Perceptron

- Input is $x=\left(1, x_{1}, \ldots, x_{d}\right)$
- Weight vector $=\left(w_{0}, w_{1}, \ldots, w_{d}\right)$
- Output is $g(x)=w \bullet x=\sum_{0}{ }^{d} w_{i} x_{i}$
- Classify using $\operatorname{Sign}(\mathrm{g}(\mathrm{x}))$

Linearly Separable

- Given: Training Sample $T=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, where:
- each x_{i} is a vector $x_{i}=\left(x_{i}, \ldots, x_{i d}\right)$
- each $y_{i}= \pm I$
- T is linearly separable if there is a hyperplane separating the +ve points from the -ve points i.e. there exists w such that
$-g\left(x_{i}\right)=w \cdot x_{i}>0$ if and only if $y_{i}=+1$
- i.e. $y_{i}\left(w \circ x_{i}\right)>0$ for all i

lin sep not lin sep

Finding a Weight Vector

- Hypothesis Space $=$ all weight vectors (with $\mathrm{d}+\mathrm{I}$ coordinates)
- If w separates +ve from -ve points, so does $a \mathrm{w}$ for any $a>0$.
- How do we find a "good" weight vector w ?
- Could try "all" w until find one
- e.g. try all integer-valued w in order of increasing length.
- Better idea
- repeatedly change w to correct the points it classifies incorrectly.

Updating the Weights

- If a +ve point x_{r} is incorrectly classified i.e. $w \cdot x_{r}<0$, then:
- INCREASE w•x x_{r} by:
- increasing w_{i} if $x_{\mathrm{ri}}>0$
- decreasing w_{i} if $x_{r i}<0$
- If a -ve point X_{r} is incorrectly classified i.e. w $\bullet x_{r}>0$, then:
- DECREASE w• $x_{f} b y$:
- increasing W_{i} if $x_{\mathrm{ri}}<0$
- decreasing w_{i} if $X_{r i}>0$
- For both + ve and -ve points, do:
$-w \leftarrow w+y_{r} x_{r}$ if x_{r} is incorrectly classified
- NOTE: A point x_{r} is classified correctly if and only if
$-y_{r}\left(w^{\prime} x_{r}\right)>0$
- Notational "trick" used by some texts:
- multiply -ve points by -I
- can express formulas more simply (without y_{i})

Perceptron Algorithm

- Algorithm:
$-w=0$
- Repeat until all points x_{i} are correctly classified
- If x_{r} is incorrectly classified, do $w \leftarrow w+y_{r} x_{r}$
- Output w

Intuition behind Convergence

Perceptron Convergence Proof

- Proposition: If the training set is linearly separable, the perceptron algorithm converges to a solution vector in a finite number of steps.
Proof
- Let w^{*} be some solution vector i.e. $y_{i}\left(w^{*} \bullet x_{i}\right)>0$ for all $i(E q n I)$
$-w^{*}$ exists because the sample is linearly separable
$-a \mathrm{w}^{*}$ is a solution vector for any $a>0$.
- The update is:
$-w(k+l)=w(k)+y_{r} x_{r}$ if x_{r} is misclassified
- We want to show that:
$-\left|w(k+1)-a w^{*}\right|^{2} \leq\left|w(k)-a w^{*}\right|^{2}-c$ for some constant $c>0$
- We have:

$$
\begin{aligned}
-\left|w(k+1)-a w^{*}\right|^{2}=\left|w(k)-a w^{*}+y_{r} x_{r}\right|^{2} & =\left(w(k)-a w^{*}+y_{r} x_{r}\right) \cdot\left(w(k)-a w^{*}+y_{r} x_{r}\right) \\
& =\left|w(k)-a w^{*}\right|^{2}+2\left(w(k)-a w^{*}\right) \cdot y_{r} x_{r}+\left|y_{r} x_{r}\right|^{2}
\end{aligned}
$$

- Since $w(k) \cdot y_{r} x_{r}<0$ because x_{r} was misclassified, we have:
$-\left|w(k+I)-a w^{*}\right|^{2} \leq\left|w(k)-a w^{*}\right|^{2}-2 a y_{r}\left(w^{*} \cdot x_{r}\right)+\left|y_{r} x_{r}\right|^{2}$ (Eqn 2)

Convergence Proof (contd)

- Since $y_{r}\left(w^{*} \bullet x_{r}\right)>0$ from (Eqn I), our goal is: pick a so large that $-2 a y_{r}\left(w^{*} \bullet x_{r}\right)+\left|y_{r} x_{r}\right|^{2}<-c$ for some constant $c>0$
Let $\beta=\max _{\mathrm{i}}\left|\mathrm{y}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right|=\max _{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}\right|$

$$
\left.\gamma=\min _{\mathrm{i}} \mathrm{y}_{\mathrm{r}}\left(\mathrm{w}^{*} \bullet \mathbf{x}_{\mathrm{r}}\right)>0 \quad \text { (Neither } \beta \text { nor } \gamma \text { depend on } \mathrm{k}!\right)
$$

- Then:
$--2 a y_{r}\left(w^{*} \bullet x_{r}\right)+\left|y_{r} x_{r}\right|^{2}<-2 a \gamma+\beta^{2}$
- Pick $a=\beta^{2} / \gamma$
- Then:

$$
\begin{aligned}
& --2 a y_{r}\left(w^{*} \cdot x_{r}\right)+\left|y_{r} x_{r}\right|^{2}<-2 \beta^{2}+\beta^{2}=-\beta^{2} \\
& \quad \text { and so, from (Eqn 2) } \\
& -\left|\mathrm{w}(\mathrm{k}+\mathrm{I})-a \mathrm{w}^{*}\right|^{2} \leq\left|\mathrm{w}(\mathrm{k})-a \mathrm{w}^{*}\right|^{2}-\beta^{2}
\end{aligned}
$$

- Since squared distances are never negative, this decrease must eventually stop; i.e. the update rule $" w(k+I)=w(k)+y_{r} x_{r}$ if x_{r} is misclassified" stops changing $w-$ at that point $\mathrm{w}(\mathrm{k})=a \mathrm{w}^{*}$ for some α and so $\mathrm{w}(\mathrm{k})$ separates the training points.
- Same proof (different notation!) as in Duda, Hart \& Stork, pg 230-232

Perceptron Algorithm (Details)

- Implementing the algorithm in practice:
- Need to cycle through examples multiple times
- Update w after each cycle, not every example ("batch perceptron")
- Learning Rate η
- $\mathbf{w} \leftarrow \mathrm{w}+\eta \mathrm{y}_{\mathrm{r}} \mathrm{X}_{\mathrm{r}}$
- small η gives slow convergence
- large η may cause overshoot
- η can be updated each iteration, want $\eta=\eta(\mathrm{k}) \rightarrow 0$ as iteration $\mathrm{k} \rightarrow \infty$
- $\eta(\mathrm{k})=\eta(\mathrm{I}) / \mathrm{k}$
- Decrease $\eta(\mathrm{k})$ if performance improves on $\mathrm{k}^{\text {th }}$ step

Non Linearly-Separable

- Perceptron Algorithm does not converge if training set is not linearly separable
- Cannot learn X-OR or any non-linearly separable concept.
- Pointed out by Minsky \& Papert (1969) - set back research for many years
- Linearly Separable training sample \Rightarrow underlying concept is linearly separable
- As d, the number of dimensions, increases, random training set is increasingly likely to be linearly separable
- In practice, try get low error if not lin sep.
- Heuristics:
- Terminate when (length of) w stops fluctuating
- Average recent w's
- Choice of learning rate

Gradient Descent

- Suppose J is some function of the weight w which we want to minimize.
- Gradient Descent searches iteratively for this minimum by moving from the current choice of w in the direction of J's steepest descent:
$-\mathrm{w} \leftarrow \mathrm{w}-\eta \nabla \mathrm{J}(\mathrm{w})$,
- where $\nabla \mathrm{J}$ is the vector $\left(\partial \mathrm{J} / \partial \mathrm{w}_{0}, \partial \mathrm{~J} / \partial \mathrm{w}_{\mathrm{l}}, \ldots, \partial \mathrm{J} / \mathrm{w}_{\mathrm{d}}\right)$
- Terminate when $|\eta \nabla \mathrm{J}(\mathrm{w})|$ is sufficiently small
- Example: $J(w)=-\Sigma_{m} y_{1}\left(w \cdot x_{1}\right)$
- where the sum is ONLY over the set M of x_{i} misclassified by this hyperplane
$-y_{i}\left(w \cdot x_{i}\right)<0$ if x_{i} is misclassified, so $J(w)>=0$, we would like to minimize J.
- Since $y_{i}\left(w \bullet x_{i}\right)=y_{i}\left(w_{l} x_{i l}+\ldots+w_{d} x_{i d}\right)$,
$\partial \mathrm{J} / \partial \mathrm{w}_{\mathrm{r}}=-\Sigma_{\mathrm{M}} \mathrm{y}_{\mathrm{i}} \mathrm{x}_{\mathrm{ir}}$
$\nabla \mathrm{J}=-\Sigma_{\mathrm{M}} \mathrm{y}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$
and gradient descent becomes:
$w \leftarrow w+\eta \Sigma_{m} y_{i_{i}} \mathbf{x}_{\mathrm{i}}$ ("batch perceptron")
- Thus Perceptron Algorithm does gradient descent search in weight space.

Least-Mean-Squared

$-J(w)=$ Squared $\operatorname{Error}(w)=0.5 \Sigma_{1}{ }^{n}\left(y_{i}-\left(w \cdot x_{i}\right)\right)^{2}$

- Since $y_{i}-\left(w_{0} x_{i}\right)=y_{i}-\left(w_{1} x_{i 1}+\ldots+w_{d} x_{i d}\right)$,

$$
\begin{aligned}
& \partial / \partial w_{r}=0.5 \Sigma_{1}^{n} 2\left(y_{i}-\left(w \cdot x_{i}\right)\right)\left(-x_{i}\right) \\
& \left.\nabla J=-\Sigma_{1}^{n}\left(y_{i}-\left(w \cdot x_{i}\right)\right) x_{i}\right) \\
& w \leftarrow w+\eta \Sigma_{1}^{n}\left(y_{i}-\left(w \cdot x_{i}\right)\right) x_{i}
\end{aligned}
$$

- For faster convergence, consider the samples one-by-one:
$w \leftarrow w+\eta\left(\mathbf{y}_{\mathrm{i}}-\left(\mathrm{w}^{\mathrm{w}} \mathrm{x}_{\mathrm{i}}\right)\right) \mathrm{x}_{\mathrm{i}}$
-the LMS (or Delta or Widrow-Hoff) learning rule.
- same algorithm (different notation!) as Duda, Hart and Stork, pg 246.
- basis of backpropagation algorithm for training neural networks.
- LMS rule converges asymptotically to the weight vector yielding minimum squared error whether or not the training sample is linearly separable.
- However, minimizing the error does NOT necessarily minimize the number of misclassified examples.

Multiple Classes

- Suppose there are n classes $c_{1}, \ldots ., c_{n}$
- (I) I vs rest
-Use I linear discriminant for each class c_{i}, where points in c_{i} are $+v e$, all points not in c_{i} are -ve.
- Need n linear discriminants
- Assign ambiguous elements to nearest class
- (2) pairwise
- Use I linear discriminant for each pair of classes
- Need $n(n-I) / 2$ linear discriminants
- Assign points to class that gets most votes
- Assign ambiguous elements to nearest class
- (3) linear machine
- Use $g_{i}(x)=w_{i} x^{t}+w_{i 0}$ for $i=I$ to n; Assign x to c_{i} if $g_{i}(x)>g_{i}(x)$ for all $j \neq i$
- Need n linear discriminants
- No ambiguous elements

Multiple classes (I vs rest)

Use n linear discriminants for n classes
Ambiguous region (?) - use distance to nearest class

Multiple class (pairwise)

Use $n(n-1) / 2$ linear discriminants for n classes Ambiguous region (?) - use distance to nearest class

Linear Machine

- Define n linear discriminants:
$-g_{i}(x)=w_{i} x^{t}+w_{i o} \quad i=1$ to n
- Note typo in Duda Hart and Stork, pg 2I8! (g $\left.(x)=w^{t} x_{i}+w_{i 0}\right)$
- Assign x to class with largest value:
$-x$ belongs to c_{i} if $g_{i}(x)>g_{i}(x)$ for all $j \neq i$
- Divides space into n regions, where each g_{i} is largest
- Regions are convex and single connected
- No ambiguous region
- The boundary between any 2 contiguous regions is a hyperplane:
$-\mathrm{H}_{\mathrm{ij}}=\left\{\mathrm{x}: \mathrm{g}_{\mathrm{i}}(\mathrm{x})=\mathrm{g}_{\mathrm{i}}(\mathrm{x})\right\}=\left\{\mathrm{x}:\left(\mathrm{w}_{\mathrm{i}}-\mathrm{w}_{\mathrm{i}}\right) \mathrm{x}^{\mathrm{t}}+\mathrm{w}_{\mathrm{i} 0}-\mathrm{w}_{\mathrm{j} 0}=0\right\}$
- Thus differences between weight vectors are normal to the boundaries
- May not have all $n(n-1) / 2$ boundaries
- How does the definition of linearly separable generalize to multiple classes? (See Homework)

Multiple classes (Linear machine)

Use n linear discriminants for n classes
No ambiguous region

