
x = (xx = (x11, ..., x, ..., xdd) = vector of attributes (features)) = vector of attributes (features)
w = (ww = (w11, ..., w, ..., wdd) =) = weightweight vector vector
ww**x x ==✟✟✟✟✟✟✟✟11

ddwwiixxi i
 = = wxwxt t

 (or (or wwttx if the vectors are column vectors, as in x if the vectors are column vectors, as in Duda, Hart & Stork)Duda, Hart & Stork)

Linear discriminantLinear discriminant is a function of the form: is a function of the form:
 g(x) = g(x) = ww**x+wx+w0 0 == ✟✟✟✟✟✟✟✟11

d d wwiixxi i +w+w00

w is normal to the w is normal to the hyperplanehyperplane H defined by: H defined by:
H = {x: g(x)=0} H = {x: g(x)=0}

Proof: Proof:
xx11, x, x22 in H in H e e ww**(x(x11-x-x22) = g(x) = g(x11)-w)-w00-(g(x-(g(x22)-w)-w00) = 0) = 0

Linear DiscriminantsLinear Discriminants

Distance of H from origin
 = |w0|/ywy

HyperplanesHyperplanes

w0 is called "bias" (confusing!)
or "threshold weight"

Use g as a classifier: x is classified +1 if g(x)>0 i.e. ✟✟✟✟1
d wixi > -w0

 - 1 if g(x)<0 i.e. ✟✟✟✟1
d wixi < -w0

Thus the classifier is Sign(g(x))
Extend from binary case (2 classes) to mulitiple classes later.

w

g(x) = 1

x

g(x)= 0g(x)= dyyyywyyyy g(x) = -1

d

ww00 can be incorporated into w by setting xcan be incorporated into w by setting x00=1=1
Then g(x) = wThen g(x) = w**x = x = ✟✟00

d d wwiixxii

Example: Example:
d=1, "hyperplane" is just a point separating +ve from -ve pointsd=1, "hyperplane" is just a point separating +ve from -ve points
Embed the points into d=2 space by making their first component 1Embed the points into d=2 space by making their first component 1
"hyperplane" passes through origin"hyperplane" passes through origin

Threshold is an Extra WeightThreshold is an Extra Weight

+-

origin
"hyperplane"

+

-

origin

"hyperplane"

1x1

x1

x0

PerceptronPerceptron
Input is x = (1, xInput is x = (1, x11, ..., x, ..., xdd))
Weight vector = (wWeight vector = (w00, w, w11, ..., w, ..., wdd))
Output is g(x) = wOutput is g(x) = w**x = x = ✟✟00

d d wwiixxii

Classify using Sign(g(x))Classify using Sign(g(x))

x0=1 x1 xd. . .

✟✟✟✟0
dwixi

. . .
w0 w1

wd

g(x)

Linearly SeparableLinearly Separable
Given: Training Sample T = {(xGiven: Training Sample T = {(x11, y, y11), ..., (x), ..., (xnn, y, ynn)}, where:)}, where:

 each xeach xii is a vector xis a vector xii = (x= (xi1i1, ..., x, ..., xidid))
 each y each yii = = !!11

T is T is linearly separablelinearly separable if there is a hyperplane separating the +ve points from the if there is a hyperplane separating the +ve points from the
-ve points i.e. there exists w such that-ve points i.e. there exists w such that

g(xg(xii) = w) = w**xxii > 0 if and only if y> 0 if and only if yii = +1= +1
i.e. yi.e. yii(w(w**xxii) > 0 for all i) > 0 for all i

+

+

-
+

-

+

-

-

+

-lin sep not lin sep

Finding a Weight VectorFinding a Weight Vector
Hypothesis Space = all weight vectors (with d+1 coordinates)Hypothesis Space = all weight vectors (with d+1 coordinates)
If w separates +ve from -ve points, so does If w separates +ve from -ve points, so does ✍✍w for any w for any ✍ ✍ >0.>0.
How do we find a "good" weight vector w?How do we find a "good" weight vector w?
Could try "all" w until find one Could try "all" w until find one

e.g. try all integer-valued w in order of increasing length.e.g. try all integer-valued w in order of increasing length.
Better idea Better idea

repeatedly change w to correct the points it classifies incorrectly.repeatedly change w to correct the points it classifies incorrectly.

+

+
-

+

-

g(x) must be increasedg(x) must be decreased

-

w

Updating the WeightsUpdating the Weights
If a +ve point xIf a +ve point xrr is incorrectly classified i.e. is incorrectly classified i.e. ww**xxrr < 0, then:< 0, then:

 INCREASE INCREASE ww**xxrr by:by:
increasing wincreasing wii if xif xri ri > 0> 0
decreasing wdecreasing wii if xif xri ri < 0< 0

If a -ve point xIf a -ve point xrr is incorrectly classified i.e. is incorrectly classified i.e. ww**xxr r > 0, then:> 0, then:
 DECREASE DECREASE ww**xxf f by:by:

increasing wincreasing wii if xif xri ri < < 00
decreasing wdecreasing wii if xif xri ri > 0> 0

For both +ve and -ve points, do: For both +ve and -ve points, do:
w w r r w + yw + yrrxxr r if xif xrr is incorrectly classifiedis incorrectly classified

NOTE: A point xNOTE: A point xr r is is classified correctlyclassified correctly if and only if if and only if
yyrr(w(w**xxrr) > 0) > 0

Notational "trick" used by some texts: Notational "trick" used by some texts:
multiply -ve points by -1multiply -ve points by -1
can express formulas more simply (without ycan express formulas more simply (without yii))

Perceptron AlgorithmPerceptron Algorithm

Algorithm:Algorithm:
w=0w=0
Repeat until all points xRepeat until all points xii are correctly classifiedare correctly classified

If xIf xrr is incorrectly classified, do w is incorrectly classified, do w r r w + yw + yrrxxrr

Output wOutput w

+

+
-

+

-
-

w

1st component of w increases
2nd component of w decreases

origin

+

+
-

+

-
-

w

w*

Intuition behind ConvergenceIntuition behind Convergence

+

+
-

+

-
-

new w1

new w2 new w is not guaranteed to
be closer to w* than w was,
but will be closer to some
multiple of w*

Perceptron Convergence ProofPerceptron Convergence Proof
Proposition: If the training set is linearly separable, the perceptron algorithm Proposition: If the training set is linearly separable, the perceptron algorithm
converges to a solution vector in a finite number of steps.converges to a solution vector in a finite number of steps.

ProofProof
Let w* be some solution vector i.e. Let w* be some solution vector i.e. yyii(w*(w***xxii) > 0 for all i) > 0 for all i (Eqn 1)(Eqn 1)

w* exists because the sample is linearly separablew* exists because the sample is linearly separable
✍✍w* is a solution vector for any w* is a solution vector for any ✍ ✍ >0>0..

The update is:The update is:
 w(k+1) = w(k) + y w(k+1) = w(k) + yrrxxr r if xif xrr is misclassifiedis misclassified

We want to show that: We want to show that:
|w(k+1)-|w(k+1)-✍✍w*|w*|22 [[|w(k)-|w(k)-✍✍w*|w*|22 -c for some constant c>0-c for some constant c>0

We have:We have:
|w(k+1)-|w(k+1)-✍✍w*|w*|22 = |w(k)-= |w(k)-✍✍w*+yw*+yrrxxrr||

2 2 = (w(k)-= (w(k)-✍✍w*+yw*+yrrxxr r))**(w(k)-(w(k)-✍✍w*+yw*+yrrxxrr))
 = |w(k)- = |w(k)-✍✍w*|w*|22 +2(w(k)-+2(w(k)-✍✍w*)w*)**yyrrxxr r +|y+|yrrxxr r ||22

 Since w(k) Since w(k)**yyrrxxr r < 0 because x< 0 because xrr was misclassified, we have:was misclassified, we have:
|w(k+1)-|w(k+1)-✍✍w*|w*|22 [[|w(k)-|w(k)-✍✍w*|w*|22 -2-2✍✍yyrr(w*(w***xxr r)+|y)+|yrrxxr r ||

2 2 (Eqn 2)(Eqn 2)

Convergence Proof (contd)Convergence Proof (contd)
Since ySince yrr(w*(w***xxrr) > 0 from (Eqn 1), our goal is:) > 0 from (Eqn 1), our goal is:

 pick pick ✍✍ so large that -2so large that -2✍✍yyrr(w*(w***xxr r) +|y) +|yrrxxr r ||
2 2 < -c for some constant c>0< -c for some constant c>0

Let Let ✎✎ = max= maxii|y|yiixxi i |= max|= maxii|x|xi i ||
 ✏ ✏ = min= minii yyrr(w*(w***xxr r) > 0 (Neither) > 0 (Neither ✎✎ nor nor ✏ ✏ depend on k!)depend on k!)

Then:Then:
 -2 -2✍✍yyrr(w*(w***xxr r) +|y) +|yrrxxr r ||

2 2 < -2< -2✍✏✍✏ ++✎✎
22

Pick Pick ✍ ✍ == ✎✎
22//✏ ✏

Then:Then:
 -2 -2✍✍yyrr(w*(w***xxr r) +|y) +|yrrxxr r ||

2 2 < -2< -2✎✎
2 2 ++

✎✎
2 2 = -= -✎✎2 2

 and so, from (Eqn 2) and so, from (Eqn 2)
|w(k+1)-|w(k+1)-✍✍w*|w*|22 [[|w(k)-|w(k)-✍✍w*|w*|22 --✎✎22

Since squared distances are never negative, this decrease must eventually stop;Since squared distances are never negative, this decrease must eventually stop;
 i.e. the update rule "w(k+1) = w(k) + y i.e. the update rule "w(k+1) = w(k) + yrrxxr r if xif xrr is misclassified" stops changing w -is misclassified" stops changing w -
 at that point w(k) = at that point w(k) = ✍✍w* for some w* for some ✍ ✍ and so w(k) separates the training points.and so w(k) separates the training points.

Same proof (different notation!) as in Duda, Hart & Stork, pg 230-232Same proof (different notation!) as in Duda, Hart & Stork, pg 230-232

Perceptron Algorithm (Details)Perceptron Algorithm (Details)

Implementing the algorithm in practice:Implementing the algorithm in practice:
Need to cycle through examples multiple timesNeed to cycle through examples multiple times
Update w after each cycle, not every example ("batch perceptron")Update w after each cycle, not every example ("batch perceptron")
Learning Rate Learning Rate ✔✔

w w r r w + w + ✔✔yyrrxxrr

small small ✔✔ gives slow convergencegives slow convergence
large large ✔ ✔ may cause overshootmay cause overshoot
✔ ✔ can be updated each iteration, can be updated each iteration, want want ✔ ✔ = = ✔✔(k)(k)dd0 as iteration k0 as iteration kd∞d∞

✔✔(k) = (k) = ✔✔(1)/k(1)/k
Decrease Decrease ✔✔(k) if performance improves on k(k) if performance improves on kthth stepstep

Perceptron Algorithm does not converge if training set is not linearly separablePerceptron Algorithm does not converge if training set is not linearly separable
Cannot learn X-OR or any non-linearly separable concept.Cannot learn X-OR or any non-linearly separable concept.
Pointed out by Minsky & Papert (1969) - set back research for many yearsPointed out by Minsky & Papert (1969) - set back research for many years

Linearly Separable training sample Linearly Separable training sample ^̂ underlying concept is linearly separableunderlying concept is linearly separable
As d, the number of dimensions, increases, random training set is increasingly likely to As d, the number of dimensions, increases, random training set is increasingly likely to
be linearly separablebe linearly separable

In practice, try get low error if not lin sep.In practice, try get low error if not lin sep.
Heuristics:Heuristics:

Terminate when (length of) w stops fluctuatingTerminate when (length of) w stops fluctuating
Average recent w'sAverage recent w's
Choice of learning rateChoice of learning rate

Non Linearly-SeparableNon Linearly-Separable

+

+-

-

X-OR

Gradient DescentGradient Descent
Suppose J is some function of the weight w which we want to minimize.Suppose J is some function of the weight w which we want to minimize.
Gradient Descent searches iteratively for this minimum by moving from the Gradient Descent searches iteratively for this minimum by moving from the
current choice of w in the direction of J's current choice of w in the direction of J's steepest descentsteepest descent::

 w w r r w - w - ✔✔==J(w),J(w),
 where where ==J is the vector (J is the vector (ØØJ/J/ØØww00, , ØØJ/J/ØØww11, ..., , ..., ØØJ/wJ/wdd))

 Terminate when Terminate when ||✔✔==J(w)| is sufficiently smallJ(w)| is sufficiently small

Example: Example: J(w) = -J(w) = -✟✟MM yyii(w(w**xxii))
where the sum is ONLY over the set M of xwhere the sum is ONLY over the set M of xii misclassified by this hyperplanemisclassified by this hyperplane

 yyii(w(w**xxii) < 0 if) < 0 if xxi i is misclassified, so J(w)>=0, we would like to minimize J.is misclassified, so J(w)>=0, we would like to minimize J.

Since Since yyii(w(w**xxii) =) = yyii(w(w11xxi1i1+ ... +w+ ... +wddxxidid),),
ØØJ/J/ØØwwr r = = --✟✟✟✟✟✟✟✟M M yyiixxir ir

==J J = = --✟✟✟✟✟✟✟✟M M yyiixxii

and gradient descent becomes:and gradient descent becomes:

ww r r w + w + ✔✔✟✟✟✟✟✟✟✟MMyyiixxi i ("batch perceptron")("batch perceptron")
Thus Perceptron Algorithm does Thus Perceptron Algorithm does gradient descent search in weight spacegradient descent search in weight space..

J(w) = Squared Error(w) = 0.5J(w) = Squared Error(w) = 0.5✟✟✟✟✟✟✟✟11
nn (y(yi i -(w-(w**xxii))))

22
Since Since yyi i -(w-(w**xxii) =) = yyii -(w-(w11xxi1i1+ ... +w+ ... +wddxxidid),),
ØØJ/J/ØØwwr r = 0.5= 0.5✟✟✟✟✟✟✟✟11

n n 22(y(yi i -(w-(w**xxii))(-x))(-xirir))

==J J = = --✟✟11
nn
 (y(yi i -(w-(w**xxii))x))xii

w w r r w + w + ✔✔✟✟✟✟✟✟✟✟11
nn((yyi i -(w-(w**xxii))x))xii

For faster convergence, consider the samples one-by-one:For faster convergence, consider the samples one-by-one:
w w r r w + w + ✔✔(y(yi i -(w-(w**xxii))x))xi i

the LMS (or Delta or Widrow-Hoff) learning rule.the LMS (or Delta or Widrow-Hoff) learning rule.
same algorithm (different notation!) as Duda, Hart and Stork, pg 246.same algorithm (different notation!) as Duda, Hart and Stork, pg 246.
basis of backpropagation algorithm for training neural networks.basis of backpropagation algorithm for training neural networks.

LMS rule converges asymptotically to the weight vector yielding minimum squared LMS rule converges asymptotically to the weight vector yielding minimum squared
error whether or not the training sample is linearly separable.error whether or not the training sample is linearly separable.
However, minimizing the error does NOT necessarily minimize the number of However, minimizing the error does NOT necessarily minimize the number of
misclassified examples.misclassified examples.

Least-Mean-SquaredLeast-Mean-Squared

Multiple ClassesMultiple Classes
Suppose there are n classes cSuppose there are n classes c11,, c,, cnn

(1) 1 vs rest(1) 1 vs rest
Use 1 linear discriminant for each class cUse 1 linear discriminant for each class cii, where points in c, where points in cii are +ve, all points not in are +ve, all points not in
ccii are -ve.are -ve.
Need n linear discriminantsNeed n linear discriminants
Assign ambiguous elements to nearest classAssign ambiguous elements to nearest class

(2) pairwise(2) pairwise
Use 1 linear discriminant for each pair of classesUse 1 linear discriminant for each pair of classes
Need n(n-1)/2 linear discriminantsNeed n(n-1)/2 linear discriminants
Assign points to class that gets most votesAssign points to class that gets most votes
Assign ambiguous elements to nearest classAssign ambiguous elements to nearest class

(3) linear machine(3) linear machine
Use gUse gii(x) = (x) = wwiixx

tt+w+wi0 i0 for i=1 to n; Assign x to cfor i=1 to n; Assign x to cii if gif gii(x)>g(x)>gjj(x) for all j(x) for all jggii
Need n linear discriminantsNeed n linear discriminants
No ambiguous elementsNo ambiguous elements

Multiple classes (1 vs rest)Multiple classes (1 vs rest)

Use n linear discriminants for n classes
Ambiguous region (?) - use distance to nearest class

-
-

-

o

o

o

-

?

+

+

+

+

+ not +

onot o

-
not -

Multiple class (pairwise)Multiple class (pairwise)

Use n(n-1)/2 linear discriminants for n classes
Ambiguous region (?) - use distance to nearest class

-
-

-

o

o

o

-

+

+

+

+

- + -+o o

?

Linear Machine Linear Machine

Define n linear discriminants:Define n linear discriminants:
ggii(x) =(x) = wwiixx

tt+w+wi0 i0 i=1 to n i=1 to n
Note typo in Duda Hart and Stork, pg 218! (gNote typo in Duda Hart and Stork, pg 218! (gii(x) = w(x) = wttxxii+w+wi0i0))

Assign x to class with largest value:Assign x to class with largest value:
x belongs to cx belongs to cii if gif gii(x) > g(x) > gjj(x) for all j(x) for all jggii

Divides space into n regions, where each gDivides space into n regions, where each gi i is largestis largest
Regions are convex and single connectedRegions are convex and single connected
No ambiguous regionNo ambiguous region

The boundary between any 2 contiguous regions is a hyperplane:The boundary between any 2 contiguous regions is a hyperplane:
HHijij = {x: g= {x: gii(x) = g(x) = gjj(x)} = {x: (w(x)} = {x: (wii-w-wjj)x)x

tt +w+wi0i0-w-wj0j0 =0}=0}
Thus differences between weight vectors are normal to the boundariesThus differences between weight vectors are normal to the boundaries
May not have all n(n-1)/2 boundariesMay not have all n(n-1)/2 boundaries

How does the definition of linearly separable generalize to multiple classes? (See How does the definition of linearly separable generalize to multiple classes? (See
Homework)Homework)

Multiple classes (Linear machine)Multiple classes (Linear machine)

-
-

-

o

o

o

-

+

+

+

+
H+-

H+o

H-o

Use n linear discriminants for n classes
No ambiguous region

