
Combining ClassifiersCombining Classifiers

Generic methods of generating and combining multiple Generic methods of generating and combining multiple 
classifiersclassifiers

BaggingBagging
BoostingBoosting

References:References:
Duda, Hart & Stork, pg 475-480.Duda, Hart & Stork, pg 475-480.
Hastie, Tibsharini, Friedman, pg 246-256 and Chapter 10.Hastie, Tibsharini, Friedman, pg 246-256 and Chapter 10.
http://www.boosting.org/http://www.boosting.org/

Bulletin Board Bulletin Board 
"Is there a book available on boosting?""Is there a book available on boosting?"

StackingStacking
"meta-learn" which classifier does well where"meta-learn" which classifier does well where

Error-correcting codesError-correcting codes
going from binary to multi-class problemsgoing from binary to multi-class problems



Why Combine  Classifiers?Why Combine  Classifiers?

Combine several classifiers to produce a more accurate single classifierCombine several classifiers to produce a more accurate single classifier
If CIf C22 and Cand C33 are correct where Care correct where C11 is wrong, etc, majority vote will do better is wrong, etc, majority vote will do better 
than each Cthan each Cii individuallyindividually
SupposeSuppose

each Ceach Cii has error rate p<0.5has error rate p<0.5
errors of different Cerrors of different Cii are uncorrelatedare uncorrelated

Then Pr(r out of n classifiers are wrong) = Then Pr(r out of n classifiers are wrong) = nnBBrr pprr(1-p)(1-p)n-rn-r

r=Number of classifers

Prob 
of error Pr(majority of n classifiers are wrong)

= right-half of binomial distribution
is small if:
   n is large
   p is small

n1 2



BaggingBagging

"Bootstrap aggregation""Bootstrap aggregation"
Bootstrap estimation - generate data set by randomly selecting Bootstrap estimation - generate data set by randomly selecting 
from training setfrom training set

with replacement (some points may repeat)with replacement (some points may repeat)
repeat repeat BB times times
use as estimate the average of individual estimatesuse as estimate the average of individual estimates

Bagging Bagging 
generate generate BB  equal size training sets   equal size training sets 
each training seteach training set

is drawn randomly, with replacement, from the datais drawn randomly, with replacement, from the data
is used to generate a different component classifier is used to generate a different component classifier ffii

usually using same algorithm (e.g. decision tree)usually using same algorithm (e.g. decision tree)

final classifier decides by voting among component classifiersfinal classifier decides by voting among component classifiers

Leo Breiman, 1996.Leo Breiman, 1996.



Bagging (contd)Bagging (contd)

Suppose there are k classesSuppose there are k classes
Each Each ffii((x)x) predicts 1 of the classes predicts 1 of the classes
Equivalently, Equivalently, ffii(x)(x) = (0, 0, ..., 0, 1, 0, ..., 0) = (0, 0, ..., 0, 1, 0, ..., 0)

Define Define ffbagbag(x)(x) =  = (1/B)(1/B)✟✟✟✟✟✟✟✟i=1i=1
BBffii(x) (x) 

         =          = (p(p11(x), ...., p(x), ...., pkk(x))(x)),,
                          ppjj(x)(x) = proportion of  = proportion of ffii  predicting class j at predicting class j at xx

Bagged prediction isBagged prediction is
arg maxarg maxkk  ffbagbag(x)(x)

Reduces varianceReduces variance
always (provable) for squared-erroralways (provable) for squared-error
not always for classification (0/1 loss)not always for classification (0/1 loss)
In practice usually most effective if classifiers are "unstable" - In practice usually most effective if classifiers are "unstable" - 
depend sensitively on training points.depend sensitively on training points.

However may lose interpretabilityHowever may lose interpretability
a bagged decision tree is not a single decision treea bagged decision tree is not a single decision tree



BoostingBoosting

Generate the component classifiers so that each does well Generate the component classifiers so that each does well 
where the previous ones do badlywhere the previous ones do badly

Train classifier CTrain classifier C11 using (some part of) the training datausing (some part of) the training data
Train classifier CTrain classifier C22 so that it performs well on points where Cso that it performs well on points where C11  
performs badlyperforms badly
Train classifer CTrain classifer C33 to perform well on data classified badly by Cto perform well on data classified badly by C11  
and Cand C22, etc., etc.

Overall classifier C classifies by weighted voting among the Overall classifier C classifies by weighted voting among the 
component classifiers Ccomponent classifiers Cii

The same algorithm is used to generate each CThe same algorithm is used to generate each Ci i - only the data - only the data 
used for training changesused for training changes



AdaBoostAdaBoost

"Adaptive Boosting""Adaptive Boosting"
Give each training point (xGive each training point (xii, y, yii==!!!!!!!!11) in D a weight w) in D a weight wi i (initialized (initialized 
uniformly)uniformly)
Repeat:Repeat:

Draw a training set DDraw a training set Dmm at random from D according to the weights at random from D according to the weights 
wwii

Generate classifier CGenerate classifier Cmm using training set Dusing training set Dmm

Measure error of CMeasure error of Cm m on Don D
Increase weights of misclassified training pointsIncrease weights of misclassified training points
Decrease weights of correctly classified pointsDecrease weights of correctly classified points

Overall classification is determined byOverall classification is determined by
CCboostboost(x) = Sign((x) = Sign(✟✟✟✟✟✟✟✟m m ✍✍✍✍✍✍✍✍mmCCmm(x)), where(x)), where
✍✍✍✍✍✍✍✍mm        measures the "quality" of Cmeasures the "quality" of Cmm  

Terminate when CTerminate when Cboostboost(x) has low error(x) has low error



AdaBoost (Details)AdaBoost (Details)

Initialize weights uniformly: wInitialize weights uniformly: wii
11 = 1/N (N=training set size)= 1/N (N=training set size)

Repeat for m=1,2, ..., MRepeat for m=1,2, ..., M
Draw random training set DDraw random training set Dmm from D according to weights wfrom D according to weights wii

mm

Train classifier CTrain classifier Cmm using training set Dusing training set Dmm

Compute errCompute errmm = Pr= Pri~Dmi~Dm [C[Cmm(x(xii)) ! ! ! ! ! ! ! ! yyii]]
error rate of Cerror rate of Cmm on (weighted) on (weighted) training pointstraining points

Compute Compute ✍✍✍✍✍✍✍✍m m =0.5 log((1-err=0.5 log((1-errmm)/err)/errmm))
✍✍✍✍✍✍✍✍m m = 0 when = 0 when errerrm m = 0.5= 0.5
✍✍✍✍✍✍✍✍m m ->->∞∞∞∞∞∞∞∞ as as errerrm m ->0->0

wwii
m*m*  ==        wwii

mmexp(exp(✍✍✍✍✍✍✍✍mm))   = w = wii
mm

ªªªªªªªª(1-err(1-errmm)/err)/errm  m  if xif xii is incorrectly classifiedis incorrectly classified

             w             wii
mmexp(-exp(-✍✍✍✍✍✍✍✍mm))  = w= wii

mm
ªªªªªªªªerrerrmm/(1-err/(1-errmm) if x) if xii is is correctly classified correctly classified 

wwii
m+1 m+1 = = wwii

m*m*/Z/Zmm

ZZm m = = ✟✟✟✟✟✟✟✟i i wwii
m* m* is a normalization factor so that  is a normalization factor so that  ✟✟✟✟✟✟✟✟iiwwii

m+1m+1 =1=1

Overall classification is determined byOverall classification is determined by
CCboostboost(x) = Sign((x) = Sign(✟✟✟✟✟✟✟✟m m ✍✍✍✍✍✍✍✍mmCCmm(x))(x))



TheoryTheory

If: If: 
each component classifier Ceach component classifier Cmm is a "weak learner"is a "weak learner"

performs better than random chance (errperforms better than random chance (errmm<0.5)<0.5)

Then:Then:
the TRAINING SET ERROR of Cthe TRAINING SET ERROR of Cboost boost can be made arbitrarily small can be made arbitrarily small 
as M (the number of boosting rounds) ->as M (the number of boosting rounds) ->∞∞∞∞∞∞∞∞

Proof (see Later)Proof (see Later)
Probabilistic bounds on the TEST SET ERROR can be obtained as a Probabilistic bounds on the TEST SET ERROR can be obtained as a 
function of training set error, sample size, number of boosting function of training set error, sample size, number of boosting 
rounds, and "complexity" of the classifiers Crounds, and "complexity" of the classifiers Cmm

If Bayes Risk is high, it may become impossible to continually find If Bayes Risk is high, it may become impossible to continually find 
CCmm which perform better than chance.which perform better than chance.
"In theory theory and practice are the same, but in practice they are "In theory theory and practice are the same, but in practice they are 
different"different"



PracticePractice

Use an independent test set to determine stopping pointUse an independent test set to determine stopping point
Boosting performs very well in practiceBoosting performs very well in practice

FastFast
Boosting decision "stumps" is competitive with decision treesBoosting decision "stumps" is competitive with decision trees
Test set error may continue to fall even after training set error=0Test set error may continue to fall even after training set error=0
Does not (usually) overfitDoes not (usually) overfit
Sometimes vulnerable to outliers/noiseSometimes vulnerable to outliers/noise
Result may be difficult to interpretResult may be difficult to interpret

"AdaBoost with trees is the best off-the-shelf classifier in the world" - "AdaBoost with trees is the best off-the-shelf classifier in the world" - 
Breiman, 1996.Breiman, 1996.

test set error

training set error



HistoryHistory

Robert Schapire, 1989Robert Schapire, 1989
Weak classifier could be boostedWeak classifier could be boosted

Yoav Freund, 1995Yoav Freund, 1995
Boost by combining many weak classifiers Boost by combining many weak classifiers 
Required bound on error rate of weak classifierRequired bound on error rate of weak classifier

Freund & Schapire, 1996Freund & Schapire, 1996
AdaBoost - adapts weights based on error rate of weak classifierAdaBoost - adapts weights based on error rate of weak classifier

Many extensions since thenMany extensions since then
Boosting Decision Trees, Naive Bayes, ...Boosting Decision Trees, Naive Bayes, ...
More robust to noiseMore robust to noise
Improving interpretability of boosted classifierImproving interpretability of boosted classifier
Incorporating prior knowledgeIncorporating prior knowledge
Extending to multi-class caseExtending to multi-class case
"Balancing between Boosting and Bagging using Bumping""Balancing between Boosting and Bagging using Bumping"
..........



ProofProof

Claim: If errClaim: If errmm<0.5 for all m, then Training Set Error of C<0.5 for all m, then Training Set Error of Cboostboost ->0 ->0 as M->as M->∞∞∞∞∞∞∞∞

Note: yNote: yiiCCmm(x(xii) = 1 if x) = 1 if xii is correctly classified by Cis correctly classified by Cmm

                       = -1                        = -1 if xif xii is incorrectly classified by Cis incorrectly classified by Cmm,,
        similarly for C        similarly for Cboostboost(x) = sign((x) = sign(✟✟✟✟✟✟✟✟m m ✍✍✍✍✍✍✍✍mmCCmm(x))(x))

Training Set Error of classifer CTraining Set Error of classifer Cboostboost(x) is (x) is 
        err        errboostboost =|{i:C=|{i:Cboostboost(x(xii) ) !!!!!!!! yyii}|/N}|/N

CCboostboost(x(xii) ) !!!!!!!! yyi i   if and only if  yif and only if  yii✟✟✟✟✟✟✟✟m m ✍✍✍✍✍✍✍✍mmCCmm(x)<0(x)<0
                     if and only if                      if and only if -y-yii✟✟✟✟✟✟✟✟m m ✍✍✍✍✍✍✍✍mmCCmm(x))>0(x))>0

Hence CHence Cboostboost(x(xii) ) !!!!!!!! yyi i   eeeeeeee exp(-yexp(-yii✟✟✟✟✟✟✟✟m m ✍✍✍✍✍✍✍✍mmCCmm(x))>1(x))>1
      so  err      so  errboostboost  << 

  

 

 

  

 [[✟✟✟✟✟✟✟✟iiexp(-yexp(-yii✟✟✟✟✟✟✟✟m m ✍✍✍✍✍✍✍✍mmCCmm(x))]/N(x))]/N
By definition, wBy definition, wii

m+1m+1  ==        wwii
mmexp(exp(-y-yii✍✍✍✍✍✍✍✍mmCCmm(x)(x)))  /Z/Zmm

So exp(So exp(-y-yii✍✍✍✍✍✍✍✍mmCCmm(x)(x)) = Z) = Zmmwwii
m+1m+1/w/wii

mm

Now insert the "sum" into the exponential:Now insert the "sum" into the exponential:
                exp(-y        exp(-yii✟✟✟✟✟✟✟✟m m ✍✍✍✍✍✍✍✍mmCCmm(x))(x))        == ✝✝✝✝✝✝✝✝mmexp(-yexp(-yii✍✍✍✍✍✍✍✍mmCCmm(x))(x))
                                    =                                      =  ✝✝✝✝✝✝✝✝mmZZmmwwii

m+1m+1/w/wii
mm

                                    =                                     = wwii
M+1M+1/w/wii

11  ✝✝✝✝✝✝✝✝mmZZm m   
                                    = Nw                                    = Nwii

M+1M+1  ✝✝✝✝✝✝✝✝mmZZm m 



ProofProof (continued) (continued)

Thus Thus [[✟✟✟✟✟✟✟✟iiexp(-yexp(-yii✟✟✟✟✟✟✟✟m m ✍✍✍✍✍✍✍✍mmCCmm(x))]/N = (x))]/N = ✟✟✟✟✟✟✟✟iiwwii
M+1M+1  ✝✝✝✝✝✝✝✝mmZZm m   

                                               =                                                = ✝✝✝✝✝✝✝✝mmZZmm

                        because                         because ✟✟✟✟✟✟✟✟iiwwii
M+1M+1=1 (having been normalized by Z=1 (having been normalized by ZMM))

Nothing has been said so far about the choice of Nothing has been said so far about the choice of ✍✍✍✍✍✍✍✍mm

Set Set ✍✍✍✍✍✍✍✍m m =0.5 log((1-err=0.5 log((1-errmm)/err)/errmm))
Then wThen wii

m*m* ==        wwii
mm
ªªªªªªªª(1-err(1-errmm)/err)/errm  m  if xif xii is incorrectly classifiedis incorrectly classified

                                    wwii
mm

ªªªªªªªªerrerrmm/(1-err/(1-errmm)   if x)   if xii is correctly classified is correctly classified 
To normalize, set ZTo normalize, set Zmm = = ✟✟✟✟✟✟✟✟i i wwii

m*m*  
                                   =                                    = ✟✟✟✟✟✟✟✟i i wwii

mm[err[errmm((ªªªªªªªª(1-err(1-errmm)/err)/errmm) + (1-err) + (1-errmm))ªªªªªªªªerrerrmm/(1-err/(1-errmm)])]

                                   =                                    = ✟✟✟✟✟✟✟✟i i wwii
mm[[ªªªªªªªªerrerrmm(1-err(1-errmm) + ) + ªªªªªªªªerrerrmm(1-err(1-errmm)])]

                                   = 2                                   = 2ªªªªªªªªerrerrmm(1-err(1-errmm))
              because               because ✟✟✟✟✟✟✟✟iiwwii

mm=1=1
So errSo errboost boost < < [[✟✟✟✟✟✟✟✟iiexp(-yexp(-yii✟✟✟✟✟✟✟✟m m ✍✍✍✍✍✍✍✍mmCCmm(x))]/N(x))]/N                == ✝✝✝✝✝✝✝✝mmZZm m = = ✝✝✝✝✝✝✝✝mm22ªªªªªªªªerrerrmm(1-err(1-errmm))

NOTE: D, H & S, pg 479, says NOTE: D, H & S, pg 479, says errerrboost  boost  = = ✝✝✝✝✝✝✝✝mm22ªªªªªªªªerrerrmm(1-err(1-errmm))



ProofProof (continued) (continued)

Let Let ✏✏✏✏✏✏✏✏mm = 0.5 - err= 0.5 - errmm > 0 for all m> 0 for all m
✏✏✏✏✏✏✏✏m m is the "edge" of Cis the "edge" of Cmm over random guessingover random guessing

Then 2Then 2ªªªªªªªªerrerrmm(1-err(1-errmm) = ) = 22ªªªªªªªª(0.5-(0.5-✏✏✏✏✏✏✏✏mm)(0.5+)(0.5+✏✏✏✏✏✏✏✏mm))

                                                                                                                                                                                                        = = ªªªªªªªª1-41-4✏✏✏✏✏✏✏✏mm
22

 So err So errboostboost < < ✝✝✝✝✝✝✝✝mmªªªªªªªª1-41-4✏✏✏✏✏✏✏✏mm
22

                  <                   < ✝✝✝✝✝✝✝✝mm((1-21-2✏✏✏✏✏✏✏✏mm
22)         since (1-x))         since (1-x)0.50.5 = 1-0.5x-....= 1-0.5x-....

                  <                   < ✝✝✝✝✝✝✝✝mmexp(exp(-2-2✏✏✏✏✏✏✏✏mm
22)      since 1+x < exp(x))      since 1+x < exp(x)

                  = exp(-2                  = exp(-2✟✟✟✟✟✟✟✟mm✏✏✏✏✏✏✏✏mm
22))

If:If:
✏✏✏✏✏✏✏✏m m > > ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ >0 for all m>0 for all m

ThenThen
errerrboostboost < exp(-2< exp(-2✟✟✟✟✟✟✟✟mm✏✏✏✏✏✏✏✏

22) ) 
              = exp(-2M              = exp(-2M✏✏✏✏✏✏✏✏

22) ) 
   which tends to zero exponentially fast as M->   which tends to zero exponentially fast as M->∞∞∞∞∞∞∞∞



Why Boosting WorksWhy Boosting Works

"The success of boosting is really not very mysterious." - "The success of boosting is really not very mysterious." - 
Jerome Friedman, 2000.Jerome Friedman, 2000.
Additive models:Additive models:

f(x) = f(x) = ✟✟✟✟✟✟✟✟mm✍✍✍✍✍✍✍✍mmb(x;b(x;✕✕✕✕✕✕✕✕mm))
Classify using Sign(f(x))Classify using Sign(f(x))

b = "basis" function parametrized by b = "basis" function parametrized by ✕✕✕✕✕✕✕✕
✍✍✍✍✍✍✍✍m m are weightsare weights

Examples:Examples:
neural networksneural networks

b = activation function, b = activation function, ✕  ✕  ✕  ✕  ✕  ✕  ✕  ✕  = input-to-hidden weights= input-to-hidden weights
support vector machinessupport vector machines

b = kernel function, appropriately parametrizedb = kernel function, appropriately parametrized
boostingboosting

b = weak classifier, appropriately parametrizedb = weak classifier, appropriately parametrized



Fitting Additive Models Fitting Additive Models 

To fit f(x) = To fit f(x) = ✟✟✟✟✟✟✟✟mm✍✍✍✍✍✍✍✍mmb(x;b(x;✕✕✕✕✕✕✕✕mm), ), usually usually ✍✍✍✍✍✍✍✍mm,,  ✕✕✕✕✕✕✕✕mm are found by minimizing a are found by minimizing a 
loss function (e.g. squared error) over the training setloss function (e.g. squared error) over the training set
Forward Stagewise fitting:Forward Stagewise fitting:

Add new basis functions to the expansion one-by-oneAdd new basis functions to the expansion one-by-one
Do not modify previous termsDo not modify previous terms

Algorithm:Algorithm:
ff00(x) = 0(x) = 0
For m=1 to M:For m=1 to M:

Find Find ✍✍✍✍✍✍✍✍mm, , ✕✕✕✕✕✕✕✕m m by minby min✍✍✍✍✍✍✍✍,,✕✕✕✕✕✕✕✕  ✟✟✟✟✟✟✟✟i i L(yL(yii,f,fm-1m-1(x)+(x)+✍✍✍✍✍✍✍✍b(xb(xii;;✕✕✕✕✕✕✕✕))))
Set fSet fmm(x) = f(x) = fm-1m-1(x) + (x) + ✍✍✍✍✍✍✍✍mmb(x;b(x;✕✕✕✕✕✕✕✕mm))

AdaBoost is Forward Stagewise fitting applied to the weak AdaBoost is Forward Stagewise fitting applied to the weak 
classifier with an EXPONENTIAL loss functionclassifier with an EXPONENTIAL loss function



AdaBoost (Derivation)AdaBoost (Derivation)

L(y,f(x)) = exp(-yf(x))L(y,f(x)) = exp(-yf(x)) exponential lossexponential loss
✍✍✍✍✍✍✍✍mm,C,Cm m = arg min= arg min

✍✍✍✍✍✍✍✍,c,c  ✟✟✟✟✟✟✟✟i i exp(-yexp(-yii(f(fm-1m-1(x(xii)+)+✍✍✍✍✍✍✍✍C(xC(xii))))))
            = arg min            = arg min

✍✍✍✍✍✍✍✍,c,c  ✟✟✟✟✟✟✟✟i i exp(-yexp(-yii(f(fm-1m-1(x(xii)))exp(-)))exp(-✍✍✍✍✍✍✍✍yyiiC(xC(xii))))
            = arg min            = arg min

✍✍✍✍✍✍✍✍,c,c  ✟✟✟✟✟✟✟✟i i wwii
mmexp(-exp(-✍✍✍✍✍✍✍✍yyiiC(xC(xii))))

    where w    where wii
m m = exp(-y= exp(-yii(f(fm-1m-1(x(xii))) ))) 

               w               wii
mm depends on neither depends on neither ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ nor C.nor C.

Note:Note: ✟✟✟✟✟✟✟✟i i wwii
mmexp(-exp(-✍✍✍✍✍✍✍✍yyiiC(xC(xii)) )) 

            = e            = e--✍✍✍✍✍✍✍✍
✟✟✟✟✟✟✟✟yi=C(xi) yi=C(xi) wwii

mm+e+e✍✍✍✍✍✍✍✍

✟✟✟✟✟✟✟✟yiyi!!!!!!!!C(xi) C(xi) wwii
mm

            = e            = e--✍✍✍✍✍✍✍✍
✟✟✟✟✟✟✟✟iiwwii

mm+(e+(e✍✍✍✍✍✍✍✍-e-e--✍✍✍✍✍✍✍✍))✟✟✟✟✟✟✟✟i i wwii
mmInd(Ind(yyii!!!!!!!!C(xC(xii))))

For For ✍✍✍✍✍✍✍✍>0, pick C>0, pick Cmm = arg min= arg minCC  ✟✟✟✟✟✟✟✟i i wwii
mmInd(Ind(yyii!!!!!!!!C(xC(xii)) )) 

                             = arg min                             = arg minCC errerrmm



AdaBoost (Derivation)AdaBoost (Derivation)  
(continued)(continued)

Substitute back:Substitute back:
yields eyields e--✍✍✍✍✍✍✍✍

✟✟✟✟✟✟✟✟iiwwii
mm+(e+(e✍✍✍✍✍✍✍✍-e-e--✍✍✍✍✍✍✍✍)err)errmm

a function of a function of ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ onlyonly
arg minarg min✍✍✍✍✍✍✍✍    ee

--✍✍✍✍✍✍✍✍
✟✟✟✟✟✟✟✟iiwwii

mm+(e+(e✍✍✍✍✍✍✍✍-e-e--✍✍✍✍✍✍✍✍)err)errm m can be found can be found 
differentiate, etc - Exercise!differentiate, etc - Exercise!

givinggiving ✍✍✍✍✍✍✍✍m m =0.5log((1-err=0.5log((1-errmm)/err)/errm m 

The model update is: fThe model update is: fmm(x) = f(x) = fm-1m-1(x) + (x) + ✍✍✍✍✍✍✍✍mmCCmm(x(xii))
wwii

m+1 m+1 = exp(-y= exp(-yii(f(fmm(x(xii))) ))) 
       = exp(-y       = exp(-yii(f(fm-1m-1(x(xii) + ) + ✍✍✍✍✍✍✍✍mmCCmm(x(xii))) ))) 
       = exp(-y       = exp(-yii(f(fm-1m-1(x(xii)))exp(-y)))exp(-yii✍✍✍✍✍✍✍✍mmCCmm(x(xii))))
       = w       = wii

mmexp(-exp(-✍✍✍✍✍✍✍✍mmyyiiCCmm(x(xii))))
deriving the weight update rule.deriving the weight update rule.



Exponential LossExponential Loss

LL11(y,f(x)) = exp(-yf(x))      exponential loss(y,f(x)) = exp(-yf(x))      exponential loss
LL22(y,f(x)) = Ind(yf(x)<0)   0/1 loss(y,f(x)) = Ind(yf(x)<0)   0/1 loss
LL33(y,f(x)) = (y-f(x))(y,f(x)) = (y-f(x))22 squared errorsquared error

yf(x) (= unnormalized margin)0

1
L2

1

L1

L3

Exponential loss puts heavy weight on examples with large negative margin
These are difficult, atypical, training points - boosting is sensitive to outliers



Boosting and SVMsBoosting and SVMs

The margin of (xThe margin of (xii, y, yii) is (y) is (yii✟✟✟✟✟✟✟✟mm✍✍✍✍✍✍✍✍mmCCmm(x(xii))/))/✟✟✟✟✟✟✟✟mm||✍✍✍✍✍✍✍✍mm||
                                       = y                                       = yii((✍✍✍✍✍✍✍✍********C(xC(xii))/))/yyyyyyyy✍✍✍✍✍✍✍✍yyyyyyyy

lies between -1 and 1lies between -1 and 1
>0 if and only if x>0 if and only if xi i is classified correctlyis classified correctly

Large margins on the training set yield better bounds on Large margins on the training set yield better bounds on 
generalization errorgeneralization error
It can be argued that boosting attempts to (approximately) It can be argued that boosting attempts to (approximately) 
maximize the minimum marginmaximize the minimum margin

maxmax✍✍✍✍✍✍✍✍        minmini i yyii((✍✍✍✍✍✍✍✍********C(xC(xii))/))/yyyyyyyy✍✍✍✍✍✍✍✍yyyyyyyy

same expression as SVM, but 1-norm instead of 2-normsame expression as SVM, but 1-norm instead of 2-norm



StackingStacking

Stacking = "stacked generalization"Stacking = "stacked generalization"
Usually used to combine models lUsually used to combine models l11, ..., l, ..., lrr of different typesof different types

e.g. le.g. l11=neural network,=neural network,
ll22=decision tree, =decision tree, 
ll33=Naive Bayes,=Naive Bayes,
 ... ...

Use a "meta-learner" L to learn which classifier is best whereUse a "meta-learner" L to learn which classifier is best where
Let x be an instance for the component learnersLet x be an instance for the component learners
Training instance for L is of the formTraining instance for L is of the form

(l(l11(x), ...., l(x), ...., lrr(x)), (x)), 
llii(x) = class predicted by classifier l(x) = class predicted by classifier lii

OROR
(l(l1111(x), ..., l(x), ..., l1k1k(x), ...., l(x), ...., lr1r1(x) ..., l(x) ..., lrkrk(x)),(x)),

llijij(x) = probability x is in class j according to classifier l(x) = probability x is in class j according to classifier lii



StackingStacking (continued) (continued)

What should class label for L be?What should class label for L be?
actual label from dataactual label from data

may prefer classifiers that overfitmay prefer classifiers that overfit
use a "hold-out" data set which is not used to train the luse a "hold-out" data set which is not used to train the l11, ..., l, ..., lrr  

wastes datawastes data
use cross-validation use cross-validation 

when x occurs in the test set, use it as a training instance for Lwhen x occurs in the test set, use it as a training instance for L
computationally expensivecomputationally expensive

Use simple linear models for LUse simple linear models for L
David Wolpert, 1992.David Wolpert, 1992.



Error-correcting CodesError-correcting Codes

Using binary classifiers to predict multi-class problemUsing binary classifiers to predict multi-class problem
Generate one binary classifier CGenerate one binary classifier Cii for each class vs every other for each class vs every other 
classclass

    class    Cclass    C1  1  CC2 2 CC3  3  CC44 class    Cclass    C1  1  CC2 2 CC3  3  CC4  4  CC55 CC6  6  CC77

    a    a 1  0  0  01  0  0  0 aa   1  1  1   1  1  1  1  1  1  1   1  1  1  1
    b    b 0  1  0  00  1  0  0 bb   0  0  0   0  1  1  1  0  0  0   0  1  1  1
    c    c      0  0  1  0     0  0  1  0 cc   0  0  1   1  0  0  1  0  0  1   1  0  0  1

    d    d 0  0  0  10  0  0  1 dd   0  1  0   1  0  1  0  0  1  0   1  0  1  0

Each binary classifier CEach binary classifier Ci i predicts the ipredicts the ithth bit bit 
LHS: Predictions like "1  0  1  0" cannot be "decoded"LHS: Predictions like "1  0  1  0" cannot be "decoded"
RHS: Predictions like "1  0  1  1  1  1  1" are class "a" (CRHS: Predictions like "1  0  1  1  1  1  1" are class "a" (C22 made a made a 
mistake)mistake)



Hamming DistanceHamming Distance

Hamming distance H between codewords = number of single-bit Hamming distance H between codewords = number of single-bit 
corrections needed to convert one into the othercorrections needed to convert one into the other

H(1000,0100) = 2H(1000,0100) = 2
H(1111111,0000111) = 4H(1111111,0000111) = 4

(d-1)/2 single-bit errors can be corrected if d=minumum (d-1)/2 single-bit errors can be corrected if d=minumum 
Hamming distance between any pair of code-words Hamming distance between any pair of code-words 

LHS: d=2LHS: d=2
No error-correctionNo error-correction

RHS: d=4RHS: d=4
Corrects all single-bit errorsCorrects all single-bit errors

Tom Dietterich and Ghulum Bakiri, 1995.Tom Dietterich and Ghulum Bakiri, 1995.


