Combining Classifiers

m Generic methods of generating and combining multiple
classifiers

e Bagging

® Boosting
m References:
e Duda, Hart & Stork, pg 475-480.
® Hastie, Tibsharini, Friedman, pg 246-256 and Chapter 10.
® Nnttp: }}A"']:':

> Bulletin Board

“Is e a book available on boosting?™
ytacking

D meta-learn™ which classifier does well where

l—l

Error-correcting codes
D 20INg firom binary tormulti-class; problems



Why Combine Classifiers?

m Combine several classifiers to produce a more accurate single classifier
m If C,and C; are correct where C, is wrong, etc, majority vote will do better
than each C; individually
m Suppose
® each C, has error rate p<0.5
® errors of different C; are uncorrelated
m Then Pr(r out of n classifiers are wrong) = B, p'(1-p)™




Bagging

m "Bootstrap aggregation”
m Bootstrap estimation - generate data set by randomly selecting

from training set
e with replacement (some points may repeat)

® repeat B times
® use as estimate the average of individual estimates

m Bagging
® generate B equal size training sets

® each training set
drawn LJJ’JJJIJ’JJ/ with replacement, from the data
ISed to generate a different component classitier f;

-JJJy IJJij Same algorithmi(e.g. decision tree
‘ Dy Voling among compoenent classifiers

) ‘f]IJEJ
m [ eo Breiman, 1996.




Bagging (contd)

m Suppose there are k classes

® Each f(x) predicts 1 of the classes

e Equivalently, f(x)=(0,0, ...,0, 1,0, ..., 0)
m Define f,..(x)= (1/B)>.."f(x)

= (pl(x); EREEY, pk(x))!
pi(x) = proportion of 7. predicting class j at x

m Bagged prediction is
® arg max f...(x)

® always (I)fO‘J,J.)J—‘) for squared-error
® not J‘v«uy classification (071 loss)
® Inl practice usually most effective ifi classiiiers are “unstable™ -

depend sensitiv eJ/ DN tralning, points.
0

WEVEK may lose JJ'J'E':'fo':"fElb]J]'i‘y

a bagged decision treeisinot a single decision tre




Boosting

m Generate the component classifiers so that each does well
where the previous ones do badly
® Train classifier C; using (some part of) the training data

® Train classifier C, so that it performs well on points where C,
performs badly

® Train classifer C; to perform well on data classified badly by C;
and C,, etc.

m Overall classifier C classifies by weighted voting among the
component classitiers C;




AdaBoost

m "Adaptive Boosting™

m Give each training point (x;, y=*1) in D a weight w;(initialized
uniformly)

m Repeat:

® Draw a training set D, at random from D according to the weights
Wi
® Generate classifier C, using training set D,
® Measure error of C, on D
> Increase weights of mis 11 ining points
> Decrease weights of corre JL * fied points
i Overall classific
b Co..(X) = Sign(X, a,C.(X)), where
S the “quality™ of C,,
mEllerminate when C,,..(x) has |ow: error

ation IS G ,Jeterm‘ned

J Ccm J'J'J:‘:J:J'Jf&'




AdaBoost (Details)

m Initialize weights uniformly: w;" = 1/N (N=training set size)
m Repeat for m=1,2, ..., M
® Draw random training set D, from D according to weights w;"
® Train classifier C,, using training set D,,
® Compute err, = Prion [C..(X:) = Vil
> error rate of C,, on (weighted) training points
e Compute a,=0.5 log((1-err..)/err,,)
> 0, = 0 when err,= 0.5
> O, ->00 as err,->0

m*
» W, =

W' ,,w( ,,m)— W m/ Bt /(1-e
oW, =w," /Z,
- Z,= X,w; IS a normalization factor'so that Xw;
B Overall classification IS determinedi by

) Cboo;t(/\{) = S]j”( Jam Jm ,{))

M1




Theory

m |f:
® each component classifier C, is a "weak learner”
> performs better than random chance (err.,<0.5)
m Then:

® the TRAINING SET ERROR of C,....can be made arbitrarily small
as M (the number of boosting rounds) ->«
Proof (see Later)

Probabilistic bounds on the TEST SET ERROR can be obtamed as a
unction of training set error, 0T 1 Ling

rounds, and “complexity™ of t Il

| i _),J/es RISk IS high, It SEVR Ible to continually find

Cn Which performi better than chat

“In theory theory and practice are: tk ctice they ar
different™




Practice

m Use an independent test set to determine stopping point
Boosting performs very well in practice

® Fast

® Boosting decision "stumps™ is competitive with decision trees

® Test set error may continue to fall even after training set error=0

® Does not (usually) overfit

® Sometimes vulnerable to outliers/noise

® Result may be difficult to interpret

1] » L 1l L o
AdaBoost with tree

Breiman, 1996.




History

m Robert Schapire, 1989
® Weak classifier could be boosted
® Yoav Freund, 1995
® Boost by combining many weak classifiers
® Required bound on error rate of weak classifier
m Freund & Schapire, 1996
® AdaBoost - adapts weights based on error rate of weak classifier
| Man extensions since then
posting Decision Irees, Naive Bay
MJf*fOJHSEEOIMMSL
rngrrVLnJJLuerorezﬂJJhrj
.QJdeFMJJ OfJJf.AHC)VJeJ
nding tor mujti- r,J,j Cas

Incing between Boostin

JJJJJ



Proof

m Claim: If err,,<0.5 for all m, then Training Set Error of C,,...->0 as M->w
m Note: y,C.(x) = 1 if x;is correctly classified by C,
= -1 if x; is incorrectly classified by C,,
similarly for C,...{(x) = sign(X,, a.,C..(x))
m Training Set Error of classifer C,...(x) is
€FFioost = | {i:Choost(X:) # ¥} | /N
B C,...((x) =Yy if and only if y.X,a.,C..(x)<O0
if and only if -y:X, a,,C..(x))>0
Ce Choost(Xi) = Y = eXp(-YiZn 0,Cr(X))>1
B hoost < [Zi€ ,,w(~ /MH 0mCrn(X))1/ N
finition, w,"" = w,™ (J)(Ajjumm(())/%
P(-Yi0,.C.(0)) = Z,.W,"" /W,
J\JJ‘J‘/ insert the “sum® into the exponential:
EXP(-Yi2n 0,:Cr(X)) = IL.exp(-Yiam ;m( 9))
IlZ ﬁ/f“’ /
=W, / W, IZ,
Nw;™ I1,Z.,

0
d

=y
—




Proof (continued)

m Thus [Z.exp(-y:Z.a.C.(x))]/N = Zw," " I, Z,
=I1.Z.,
because Z.w;""'=1 (having been normalized by Z,,)
m Nothing has been said so far about the choice of a,,
m Set a,=0.5 log((1-err,)/err,)
m Then w,™ = w;"V(1-err,)/err, if x;is incorrectly classified
w;"Verr../(1-err,) if x;is correctly classified
m To normalize, set Z,= X w."
[err(N(1-err,)/err,) + ‘i err,\err,/(1-err,)]
Wi [Nerr(1-err,) + \err,(1-err,)]
2\err,(1-err.)

ause Yw; =1

_[Z’ :‘_) /_r)(_'jJ—lm um Jm( ))J/J

[J c2
80 S
-

—




Proof (continued)

m Let y,.=0.5-err,> 0 for all m
® 7. is the "edge” of C, over random guessing
m Then 2Verr,(1-err,,) = 2N(0.5-7,.)(0.5+%..)
= \1-4y,’
B SO effypooe < I1,V1-4y,’
< II.(1-2%.) since (1-x)*° = 1-0.5x-....
< II.exp(-2y..) since 1+x < exp(x)
eXP(-2% . )m )
m|f:
® .~ p>0for all m
m Then

~ VY ~ 2\ 2
) \'_/..r.rbgg;j < T)Jé{)(“‘diﬂnly)

= exp(-2My")

whichi tends to zero exponentially fast as; IVI->oo




Why Boosting Works

m "The success of boosting is really not very mysterious.” -
Jerome Friedman, 2000.
m Additive models:
o f(x) = Z..a.b(x;0.)
> Classify using Sign(f(x))
® b = "basis™ function parametrized by 0
® a., are weights

neural networks
> D =iactivation function, ¢ = input-te-hidden; weights
® SUpport vector machnines

> D =ikernel function, appropriately parametrized

) dppropriately’ parametrized




Fitting Additive Models

m To fit f(x) = X,a.b(x;0.), usually a., 0., are found by minimizing a
loss function (e.g. squared error) over the training set
m Forward Stagewise fitting:
e Add new basis functions to the expansion one-by-one
® Do not modify previous terms
m Algorithm:
o f(x)=0
® For m=1 to M:




AdaBoost (Derivation)

m L(y,f(x)) = exp(-yf(x)) exponential loss
m a.,C., = arg min, X exp(-yi(f..(x)+aC(x:)))
= arg min,. % exp(-yi(f...(x:)))exp(-ayC(x:))
= arg min,. X w;" exp(-ay;C(x;))
where w;" = exp(-yi(f...(x:)))
w;" depends on neither a nor C.
m Note: X w;"exp(-ay;C(x;

~ 0N
T)LJ:((J)././J -r.\/_ljjf(J)././]
—t

m

YW +(e-e)x; Wil nd(y=C(xi))
m For a>0, pick C,, = arg min; > w; Ind(y;+C(x))
= dkg min; err,,

=3

~7




AdaBoost (Derivation)
(continued)

m Substitute back:
e yields e“Xw;,"+(e’*-e*)err,
e a function of a only
® arg min, e*X.w; +(e’-e“)err,, can be found
e differentiate, etc - Exercise!
® giving a,=0.5log((1-err,)/err,,
m The model update is: f..(x) = f...(Xx) + a.C..(X)
= eXp(-yil.(Xi)))
eXP(-yi(fm.(X) + a,Cn(X:)))
eXP(=Yi(T-2(x)))exp(-Yia-C. (X))
= W, exp(-a.,y;C(X))

deriving the weignt update ruie.




Exponential Loss

m L.(y,f(x)) = exp(-yf(x)) exponential loss
m L,(y,f(x)) = Ind(yf(x)<0) 0/1 loss
m Ly, f(x)) = (y-f(x))? squared error




Boosting and SVMs

m The margin of (i, yi) IS (ViZn0mCn(X))/ 20 | anm |
= Yi(asC(x))/ || a|
® lies between -1 and 1
e >0 if and only if x;is classified correctly

m Large margins on the training set yield better bounds on
generalization error

m |t can be argued that boosting attempts to (approximately)
maximize the minimum margin
» max, min; yi(asC(x:))/ || a|l

D Same expression as SVIVl, but 1-norm insteadi of: 2-norm




Stacking

m Stacking = "stacked generalization™
m Usually used to combine models |, ..., |, of different types
® e.g. l,=neural network,
® |l.=decision tree,
e |:=Naive Bayes,
o
m Use a "meta-learner” L to learn which classifier is best where
et x be an instance for the component learners
_ 'J‘m]n]nv ]ns'tzmce for L Is of the form
(X)) vens)
J(,{) redicted by classifier l;
0) ;s
J (-H 0.0 IR F1Y 0. ISR 191 0. Nm P 0.9) B

>~ 15(x) = probability x IS In fJ,JSSJ according to classifier: |;




Stacking (continued)

m What should class label for L be?
® actual label from data
> may prefer classifiers that overfit
® use a "hold-out™ data set which is not used to train the |, ..., |,
> wastes data
® use cross-validation
> when x occurs in the test set, use it as a training instance for L
> computationally expensive
m Use simple linear models for L
B Davidi Wolpert, 1992,




Error-correcting Codes

m Using binary classifiers to predict multi-class problem
m Generate one binary classifier C, for each class vs every other

class
class C,C,C;C, class C,;C,C;C,C;C;C,
a 1000 a 111 1111
b 0100 b 000 0111
0010 c 001 1001
d O 1010

C
d 0 00 1
= n«Jr/ classifier C; I)r—*rJ
S: Predictions like "1 0 1

|

-

s like D0 1 1 1 1 1" are c (C; made a




Hamming Distance

m Hamming distance H between codewords = number of single-bit
corrections needed to convert one into the other

e H(1000,0100) = 2
e H(1111111,0000111) =4
m (d-1)/2 single-bit errors can be corrected if d=minumum
Hamming distance between any pair of code-words
® LHS: d=2

> RHS: d=4

> Corrects alll single-bit errors




