SVM Material

SVM material in books for this class:

- Brief discussion in Duda, Hort & Stork, pg 262-264.
 - Read Problems 29-33, pg 275-277.
- Not mentioned in Devroye or Mitchell.
- Hastie, Tibshirani & Friedman, Section 4.5 and Chapter 12.
- Additional References:
 - Burges "A Tutorial on Support Vector Machines for Pattern Recognition", 1998 - http://svm.research.bell-labs.com/SVMrefs.html
 - Cristianini, Shawe-Taylor "An Introduction to Support Vector Machines", 2000.
 - Introductory chapters in
 - Scholkopf et al (eds) "Advances in Kernel Methods"
 - Smola et al (eds) "Advances in Large Margin Classifiers"

What an SVM does

Input:

• Training set {(*x_i*, *y_i*)} containing *r* labelled examples

- $\succ X_i \in X \subset \mathcal{H}^d, X_i = (X_{i1}, X_{i2}, \ldots, X_{id})$
- ► *y_i* = +1 or -1

 For more than 2 classes, use methods discussed before, e.g. binary classifier for each pair of classes, or each class vs all others, etc.

Output:

 A classifier given by sign(f(x)), where f is chosen to yield the "best" classifier in some sense.

Linearly Separable Data

- Classifiers are hyperplanes separating positive from negative examples.
- "Best" hyperplane is the one with maximum *MARGIN*, i.e. maximum DISTANCE FROM THE CLOSEST EXAMPLE.
- Solving the lin-sep case will allow the non-lin-sep case to be solved "easily".

Why Max Margin?

- Intuition: Classification is less sensitive to exact location of training point - Lower Variance
- Theory: Generalization error of hyperplane can be bounded (probabilistically) by an expression depending on 1/margin²
- **Theorem**
 - Let:
 - D be a distribution on X × {-1,1}
 - R be the radius of a ball containing the support of D
 - r random examples be drawn from D
 - h be a separating hyperplane with margin > γ
 - > err(h) = Pr_D(h(x)≠y}
 - Then, for any $\delta > 0$,
 - If r is "sufficiently large"
 - \rightarrow depending on R and γ , but not on d=dimension of X
 - > Pr{err(h) < O((1/r)((R^2/γ^2)+log(1/ δ)) } > 1- δ

Hyperplanes

Points x on hyperplane h satisfy w.x+b = 0

• *w* is normal to the hyperplane

• $\mathbf{W} \cdot \mathbf{X} = \Sigma_1^{d} \mathbf{W}_i \mathbf{X}_i$

Distance of x_i from h is $dist = y_i(w \cdot x_i + b) / ||w||$

• because x_i satisfies w•x+b = ? = |dist|||w||

• /b / / || w || = distance of h from origin

Max Margin Hyperplane

Margin of h = distance to closest example = min_i y_i(w•x_i+b)/||w||

Max Margin hyperplane:
 max_{w,b} min_i y_i(w•x_i+b)/ ||w||

Approach 1: Fix denominator, maximize numerator:

- $\max_{w,b} \min_{i} y_i(w \cdot x_i + b)$ such that ||w|| = 1
- Constrained max of complex nonlinear function difficult

Approach 2: Fix numerator, MINIMIZE denominator:

- $\min_{w,b} \|w\|$ such that $\min_{i} y_{i}(w \cdot x_{i}+b)=1$
 - Equivalent to:

 $-\min_{w,b} \|w\|^2 = w \cdot w = \Sigma_1^d w_i^2 \text{ such that } y_i (w \cdot x_i + b) \ge 1 \forall i$

-Quadratic optimization with linear constraints

Examples

X₂

 X_4

Solution

■ The solution to $\min_{w,b} ||w||^2 = w \cdot w = \Sigma_1^n w_i^2$ such that $y_i(w \cdot x_i + b) \ge 1$ occurs at $w = \Sigma_1' \alpha_i y_i x_i$

 $\bullet a_i \geq 0$

• $\Sigma_1' \alpha_i y_i = 0$ i.e. $\Sigma_{+ve} \alpha_i = \Sigma_{-ve} \alpha_i$

o ai[yi(w•xi+b)-1]=0 (Karush-Kuhn-Tucker conditions)

• $a_i > 0 \Rightarrow y_i(w \cdot x_i + b) = 1$ i.e. $a_i = 0$ for inactive constraints

- x_i is a "support vector" MEANS $a_i > 0$

-All support vectors are "on the margin"

- CONVERSE IS FALSE

b can be recovered from any active constraint *y_i(w_• x_i+b)=1* The solution is (usually) Sparse - number of support vectors is small
 Why is the solution of this form?

Perceptron

Convex Hull

Lagrangian (primal/dual)

Perceptron

Finds hyperplane for linearly separable data:

- *w=0*
- Repeat
 - for each training point (x_i, y_i)
 - if x_i is incorrectly classified do w=w+y_ix_i
- Converges to SOME separating hyperplane
 - o not max margin
- **•** Maintains *w* of the form $w = \sum_{i=1}^{n} a_{i} y_{i} x_{i}$
 - a_i reflects how often a point was updated its 'difficulty'
- Can be made to converge to max margin hyperplane
 pick worst-classified point at each iteration
 Computationally too expensive

Convex Hull

Normal vector of max margin hyperplane joins closest pair of points in Convex hull of positive and negative training points

 $w = x^{+} - x^{-} = \Sigma_{+ve} s_{i}x_{i} - \Sigma_{-ve} t_{i}x_{i}, \text{ where } \Sigma s_{i} = \Sigma t_{i} = 1$ $= \Sigma_{1}^{r} \alpha_{i}y_{i}x_{i}, \text{ and } \Sigma_{+ve} \alpha_{i} = \Sigma_{-ve} \alpha_{i}, \text{ i.e. } \Sigma_{1}^{r} \alpha_{i}y_{i} = 0$

Lagrangian (primal/dual)

Primal Problem: Min_{w,b} w w such that $y_i(w \cdot x_i + b) \ge 1$ $\Box L(w, b, a) = \frac{1}{2}(w \cdot w) - \sum_{i}^{r} a_{i} [y_{i}(w \cdot x_{i} + b) - 1], a_{i} \ge 0$ • Min L as a function of w,b • Max L as a function of α - Constraints satisfied $\Rightarrow L \leq \frac{1}{2}(W, W)$ • $\partial L / \partial w = w - \Sigma_1' \alpha_i y_i x_i = 0$ when $w = \Sigma_1' \alpha_i y_i x_i$ • $\partial L/\partial b = \Sigma_1^r \alpha_i \mathbf{y}_i = \mathbf{0}$ **Substitute into L:** $-L(\alpha) = \frac{1}{2} (\Sigma_1^r \alpha_i \mathbf{y}_i \mathbf{x}_i) \cdot (\Sigma_1^r \alpha_i \mathbf{y}_i \mathbf{x}_i) - \Sigma_1^r \alpha_i [\mathbf{y}_i (\Sigma_1^r \alpha_i \mathbf{y}_i \mathbf{x}_i) \cdot \mathbf{x}_i + b) - 1]$ $= \frac{1}{2} \sum_{i}^{r} \sum_{i}^{r} \alpha_{i} \alpha_{j} \mathbf{y}_{i} \mathbf{y}_{j} (\mathbf{x}_{i}, \mathbf{x}_{j}) - \sum_{i}^{r} \sum_{i}^{r} \alpha_{i} \alpha_{i} \mathbf{y}_{i} \mathbf{y}_{i} (\mathbf{x}_{i}, \mathbf{x}_{j}) + \sum_{i}^{r} \alpha_{i} \alpha_{i} \mathbf{y}_{i} \mathbf{y}_{i} (\mathbf{x}_{i}, \mathbf{x}_{i}) + \sum_{i}^{r} \alpha_{i} \alpha_{i} \mathbf{y}_{i} \mathbf{y$ $= \Sigma_1^r \alpha_i - \frac{1}{2} \Sigma_1^r \Sigma_1^r \alpha_i \alpha_i \mathbf{y}_i \mathbf{y}_i (\mathbf{x}_i \cdot \mathbf{x}_i)$ **Dual** Problem:

 $\blacksquare \operatorname{Max}_{a} \Sigma_{1}^{r} a_{i} - \frac{1}{2} \Sigma_{1}^{r} \Sigma_{1}^{r} a_{i} a_{j} y_{j} y_{j} (x_{i} \cdot x_{j}) \text{ such that } a_{i} \geq 0, \ \Sigma_{1}^{r} a_{i} y_{i} = 0$

Data dot products only!

Dual Problem is usually easier to solve \blacksquare the constraints $a_i \ge 0$, $\Sigma_1' a_i y_i = 0$ are simpler Usually solved iteratively: start with constraints satisfied oincrease objective function while maintaining constraints **I** Note that in $\Sigma_1' a_i - \frac{1}{2} \Sigma_1' \Sigma_1' a_i a_i y_i y_i (x_i \cdot x_i)$ THE TRAINING DATA ONLY APPEAR AS DOT PRODUCTS $= W = \Sigma_1' a_i Y_i X_i \Rightarrow W = \Sigma_1' \Sigma_1' a_i a_i Y_i Y_i (X_i \cdot X_i)$ • The max margin hyperplane for linearly separable data is of the form $b(x) = w \cdot x + b = (\Sigma_1' a_i y_i x_i) \cdot x + b = \Sigma_1' a_i y_i (x_i \cdot x) + b$

Non-Linearly Separable Data

If training data is not linearly-separable:

- map into a space *F* so that training data becomes linearly-separable
- find max margin hyperplane in F
- this gives (non-hyperplane) decision surface in X

Define $\phi: X \to \Re^2$ by $\phi(x) = \phi((x_1, x_2)) = (x_1^2, x_2^2)$. Hyperplane in $\phi(X)$ is $ax_1^2 + bx_2^2 + c = 0$ Max margin hyperplane in $\phi(X)$ gives separating ellipse in X.

The ϕ mapping

Different choices for \u03c6 correspond to different families of decision surfaces in the original space X

- Such a ϕ can always be found (homework)
- F can be very high-dimensional
- ϕ need not be continuous, 1-1 ...
- Surface in X that corresponds to the max margin hyperplane in F

≉

- Surface that would be obtained by "maximizing the margin" in X.
- The family being searched in X is changed by just changing the mapping \u00f8
 - However in practice explicitly computing ϕ is difficult

Using ϕ Implicitly

Lin-Sep: $\blacksquare \operatorname{Max}_{a} \Sigma_{1}^{r} a_{i} - \frac{1}{2} \Sigma_{1}^{r} \Sigma_{1}^{r} a_{i} a_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) \text{ such that } a_{i} \geq 0, \ \Sigma_{1}^{r} a_{i} y_{i} = 0$ Non-Lin-Sep: • Find $\phi: X \rightarrow F$ -so that $\{(\phi(x_i), y_i)\}$ is linearly separable: • Max_a $\Sigma_1^r a_i - \frac{1}{2} \Sigma_1^r \Sigma_1^r a_i a_j y_j (\phi(x_i), \phi(x_j))$ such that $a_i \ge 0$, $\Sigma_1^r a_i y_j = 0$ **□** Suppose *K* is a "kernel" function, • i.e. $K(x, x') = \phi(x) \cdot \phi(x')$ for some ϕ Then the max margin hyperplane in F is found by: • Max_a $\Sigma_1' a_i - \frac{1}{2} \Sigma_1' \Sigma_1' a_i a_i y_i y_i K(x_i, x_i)$ such that $a_i \ge 0$, $\Sigma_1' a_i y_i = 0$ The resulting decision surface is of the form $f(x) = \sum_{i} a_{i} y_{i} K(x_{i}, x) + b$ Compare with max margin hyperplane: $\rightarrow h(x) = \sum_{i} a_{i} y_{i}(x_{i} \circ x) + b$

SVM: Main Ideas

- Max margin
 - min ∥*₩*∥
 - constrained optimization
- Lin-sep case:
 - solve equivalent "dual" problem (1950s)
 - training data only appear as dot products
- General case:
 - map into high-dim space
 - replace dot products by kernel values (Aizerman, 1964)
- These ideas all existed independently before SVMs
- Putting them together
 - Vapnik, Guyon, Boser, 1992.

What an SVM does

Input:

- Training set $\{(x_i, y_i)\}_1^r$
 - $\succ X_i \in X \subset \Re^d$
 - ► *y_i* = +1 or -1
- Kernel function *K:X*×*X*→ℜ
- Output:
 - A classifier given by *sign(f(x))*
 - ► f is of the form $f(x) = \sum_{i=1}^{n} a_i y_i K(x_i, x) + b$, $a_i \ge 0$ for all i
 - f corresponds to the max margin hyperplane in the space implicitly defined by K
 - → a_i are computed
 - by solving $\operatorname{Max}_{a} \Sigma_{1}' a_{i} \frac{1}{2} \Sigma_{1}' \Sigma_{1}' a_{i} a_{j} y_{j} Y_{j} K(x_{i}, x_{j})$ such that $a_{i} \geq 0, \Sigma_{1}' a_{i} y_{j} = 0$
- How do we pick K?
- How do we solve the constrained optimization?

Kernels

"Kernel" has many meanings/uses:

- Linear maps
- Integral Operators
- Operating Systems
- •••
- "Kernel" of a nut
 - core, seed
 - o central/essential part
 - base on which everything else is built
- If you know what happens in the kernel, you know "everything"

Polynomial Kernels

■ How to find K such that $K(x,x') = \phi(x) \cdot \phi(x')$ for some ϕ ? ■ Examples:

• $K(x,x') = x \cdot x'$ - original data is linearly separable • $K(x,x') = (x \cdot x')^2 = (x_1 x'_1 + x_2 x'_2)^2$

 $= x_1^2 x_1'^2 + 2 x_1 x_2 x_1' x_2' + x_2^2 x_2'^2$

 $= \phi(x) \cdot \phi(x') ?$

- $\phi(x) = \phi(x_1, x_2) = (x_1^2, \sqrt{2x_1x_2}, x_2^2)$ works • $\phi(x) = \phi(x_1, x_2) = (x_1^2, x_1x_2, x_1x_2, x_2^2)$ also works
- $\psi(x) = \psi(x_1, x_2) = (x_1, x_1x_2, x_1x_2, x_2)$ also work
- $K(x,x') = ((x \cdot x') + 1)^2$ = $(x \cdot x')^2 + 2(x \cdot x') + 1$ • $\phi(x) = \phi(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, 1)$

K(x,x') = (x⋅x')^k corresponds to using all terms of degree k
 K(x,x') = ((x⋅x')+1)^k corresponds to using all terms of degree ≤k i.e. polynomials of degree k.

Radial Basis Functions

How do we know it is a valid kernel?

-rather than try find ϕ

-use theory to build kernels from simpler kernels.

Characterisation of Kernels

Proposition:

- If X is finite, $K:X \times X \rightarrow \Re$ is a kernel if and only if
 - K is symmetric
 - $K(x_i, x_j)_1^n$ is positive semi-definite
 - *z*ⁱKz ≥0 for all *z*
 - ♦ all eigenvalues of $K \ge 0$
- Proof:
 - Suppose K is symmetric and positive semi-definite
 - Write K=V⁻¹DV
 - **D**=diag(λ_i), where $\lambda_i \ge 0$
 - > V orthogonal, v_t is the t^{th} column of V.
 - Define $\phi: X \to \Re^n$ by $\phi(x_i) = (\sqrt{\lambda_i} V_{ii})_1^n$
 - Then $\phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j) = \sum_{i=1}^{n} \lambda_i \mathbf{v}_{ti} \mathbf{v}_{tj}$

$$= (V^{-1}DV)_{i}$$
$$= K(x_{i}, x_{j})$$

• Conversely, if *K* is a kernel with a negative eigenvalue λ_s and corresponding eigenvector v_s , then $z = \sum_{i=1}^{n} v_{si} \phi(x_i)$ has norm $\lambda_s < 0$

Constructing Kernels

Mercer's Theorem:

- •K is a kernel if and only if
 - *K* is symmetric
 - $K(x_i, x_j)_1$ is positive semi-definite for every finite subset of X.
- Use this to prove that
 - sums of kernels are kernels
 - opositive scalar products of kernels are kernels
 - •.... (homework)

• a polyomial with positive coefficients applied to a kernel gives a kernel

Imits of kernels are kernels

<mark>.</mark>...

•therefore exp(-||(x-x)'||/c) is a kernel

Solving the Optimization

"Primal" problem: $\operatorname{Min}_{a} \Sigma_{1}^{\prime} \Sigma_{1}^{\prime} a_{i} a_{i} y_{i} y_{i} K(x_{i}, x_{i}) \text{ such that } y_{i} (\Sigma_{1}^{\prime} a_{i} y_{i} K(x_{i}, x_{i})) + b) \geq 1$ **Dual** problem: $\operatorname{Max}_{a} \Sigma_{1}^{\prime} a_{i} - \frac{1}{2} \Sigma_{1}^{\prime} \Sigma_{1}^{\prime} a_{i} a_{j} y_{i} y_{j} K(x_{i}, x_{j}) \text{ such that } a_{i} \geq 0, \Sigma_{1}^{\prime} a_{i} y_{i} = 0$ Iterative Methods are used • start with constraints satisfied • increase dual objective function while maintaining constraints No local optima **Terminate when:** objective function stops increasing - unreliable **KKT** conditions satisfied **\square** Running time usually ~ $O(dr^2)$ • Size of $K(x_i, x_i)$ is $O(r^2)$ - do not want K sparse oproblem may need to be decomposed into "chunks"

Soft Margins

May not want + and -points completely separated

- o noisy data
- avoid overfitting
- Allow hypothesis to make some errors on the training set in order to avoid more complex hypothesese.

Soft Margins: 1-Norm

 $\blacksquare \operatorname{Min}_{\xi,w,b} w \cdot w + C \Sigma_1^r \xi_i^r \text{ such that } y_i(w \cdot x_i + b) \ge 1 \cdot \xi_i, \xi_i \ge 0$

- $\circ \xi_i$ are "slack variables"
 - \mathbf{x}_i is misclassified $\Leftrightarrow \xi_i > 1$
- C modulates the trade-off between:
 - -simplicity of the decision surface
 - -number of misclassified training points.
 - -regularization

Good value of C determined empirically, e.g. by cross-validation

Dual problem:

• Max_a $\Sigma_1' a_i - \frac{1}{2} \Sigma_1' \Sigma_1' a_i a_j y_j y_j K(x_i, x_j)$ such that $C \ge a_i \ge 0$, $\Sigma_1' a_i y_i = 0$

- "Box" constraint on the *a*_i
- $\circ \xi_i > 0 \Rightarrow a_i = C$

Soft Margins: 2-Norm

Min_{ξ,w,b} w.w+CΣ₁^rξ_i² such that y_i(w.x_i+b) ≥ 1-ξ_i
 ξ_i≥0 constraint not needed
 Role of C as before
 Dual Problem:
 Max_aΣ₁^ra_i - ¹/₂Σ₁^rΣ₁^ra_i a_iy_iy_i(K(x_i,x_i) + (1/C)δ_{ij}) such that a_i≥0, Σ₁^ra_i y_i=0
 -δ_{ij}=1 if i=j, 0 otherwise
 - Change of kernel
 - add 1/C to all diagonal elements

SVM Resources

Downloadable Software:

- svmlight
 - C code available at http://ais.gmd.de/~thorsten/svm_light/
- weka (Waikato Environment for Knowledge Analysis)
 - Java code available at http://www.cs.waikato.ac.nz/~ml/weka/
- SVMTorch
 - SVM for regression problems
 - http://www.ai.mit.edu/projects/jmlr/papers/volume1/collobert01a/html/
- ••••
- Applet: http://svm.research.bell-labs.com/
- General: http://www.kernel-machines.org/
- History: http://www.kyb.tuebingen.mpg.de/bu/people/bs/svm.html
- Applications: http://www.clopinet.com/isabelle/Projects/SVM/applist.html

SVMs: Pros and Cons

Kernel Function

- No other parameter-fiddling needed
- Allows incorporation of prior knowledge
- How to choose?
- Classification Accuracy usually good
- **Convergence**
 - No local minima
 - Often slow in practice
- Theoretical Foundations
 - Structured research framework
 - Practical applications are much messier
- Sparseness
 - Only support vectors needed for solution
 - Many data points may be support vectors