SVM Material

m SVM material in books for this class:
® Brief discussion in Duda, Hort & Stork, pg 262-264.
> Read Problems 29-33, pg 275-277.
® Not mentioned in Devroye or Mitchell.
® Hastie, Tibshirani & Friedman, Section 4.5 and Chapter 12.
m Additional References:

® Burges - A Tutorial on Support Vector Machines for Pattern
Recognltlon" 1998 - http://svm.research.bell-labs.com/SVMrefs.html

Cristianini, Shawe-Taylc An Introduction to Support Vecta
Machines™, 2000.

® Introductory chapters in
> Scholkopfi et al (eds) - “Advances in Kernel lViethods
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> Smola et al (eds) - “Advances in Large Vargin Classifiers




What an SVM does

m Input:
® Training set {(x;, y)} containing r labelled examples
> X, eX c H, X=(Xiz, Xizy 220y Xi)
> y,= +1 or -1

+ For more than 2 classes, use methods discussed before, e.g. binary
classifier for each pair of classes, or each class vs all others, etc.

m Output:




Linearly Separable Data

m Classifiers are hyperplanes separating positive from negative
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Why Max Margin?

m Intuition: Classification is less sensitive to exact location of
training point - Lower Variance

m Theory: Generalization error of hyperplane can be bounded
(probabilistically) by an expression depending on 1/margin

m Theorem
® Let:
> D be a distribution on X x {-1,1}
> R be the radius of a ball containing the support of D
andom exampiles be drawn from L
sepam"r]nu hyperplane with margin >
Pro(n(x)=y}
1 'nen rany o>0;
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> it s ~'er1~nrJ/ jlarge-
> depending on R'and y, but not on d=dimension ofi X

>~ Prerr(h) < O((A/D)((R/5)*eg(d/00)) ) >



Hyperplanes

m Points x on hyperplane h satisfy w.x+b =0
® w is normal to the hyperplane
o w.x =3 wx;

m Distance of x;from A is dist = y(w.x.+b)/||w/|
e because x; satisfies w.x+b = ? = [dist//w/
e [b///w/ = distance of i from origin




Max Margin Hyperplane

m Margin of h = distance to closest example
= min; y(wex;+b)/|/w/
m Max Margin hyperplane:
® max, , min; y(wex;+b)///w//

Approach 1: Fix denominator, maximize numerator:
® max,, min; y(w-.x;+b) such that | w||=1
® Constrained max of complex nonlinear function - difficult

Approach 2: Fix numerator, MINIMIZE denominator:
emin,, || w| such that min, y(w. x+b)=1

—Equivalent to:
—min,,, | W|’=wew = X' w; such that y(wex,+b)>1 Vi

-Quadratic optimization with linear constraints
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Solution

B
m The solution to min,,, | w||’=wew = 3w, such that y(wex+b)>1
occurs at w=2;ayx;
®eu>0
e, ay =0 i.e. 2., .a=2,.q
® «[y(wex;+b)-1]=0 (Karush-Kuhn-Tucker conditions)
® >0 = y(wex;+b)=1 i.e. =0 for inactive constraints
—x; is a "support vector” MEANS #>0
—All support vectors are “on the margin®
— CONVERSE IS FALSE
® ) can be recovered from any active constraint y(w-xi+0)=1
m Iihe solution i1s (usually) Sparse - number ofi support vectors IS sn

a

m Why Is the solution of this form?

D Eercepiron
» Convex [Aull
8 Lagrangian/ (primal/duail))



Perceptron

m Finds hyperplane for linearly separable data:
e w=0
® Repeat
> for each training point (x,y,)
¢+ if x; is incorrectly classified do w=w+y.x;
m Converges to SOME separating hyperplane
® not max margin
intains w of the form w=2,azyx;
ts how often a point was updated - its “difficulty
D) converge to max margin hyperplane
B pick worst-classified point at each iteration

m Computationally too expensive




Convex Hull

Convex hull of Z =
{Ztz|zinZ 0<=t<=1, 2= 1}



Lagrangian (primal/dual)

T ——
m "Primal™ Problem: Min,, w. w such that y,(w.x+b)>1
W L(w,b,a) = Lo(w.-w) - 3/ a [y(w. x;+b)-1], a>0
® Min L as a function of w,b
® Max L as a function of «

—Constraints satisfied = L < Z5(w. w)
ooL/ow =w -3 aqyx,;=0 when w =23,a yx;
OﬁL/ﬁb =21rdi}/i= 0




Data dot products only!

® Dual Problem is usually easier to solve
m the constraints >0, X, 4 y,=0 are simpler
m Usually solved iteratively:
e start with constraints satisfied
e increase objective function while maintaining constraints
m Note that in 2, - 222, 5 a: ayyi(x-x;)
= THE TRAINING DATA ONLY APPEAR AS DOT PRODUCTS

EJ'J:‘ J'JfIJ'J
8 [1(X) =W XFD)= (27 X)) X+D




Non-Linearly Separable Data

m |[f training data is not linearly-separable:
® map into a space F so that training data becomes linearly-separable
e find max margin hyperplane in F
® this gives (non-hyperplane) decision surface in X




The ¢ mapping

m Different choices for ¢ correspond to different families of
decision surfaces in the original space X

® Such a ¢ can always be found (homework)
® F can be very high-dimensional
® ¢ need not be continuous, 1-1 ...
m Surface in X that corresponds to the max margin hyperplane in F
=+

m Surface that would be obtained by “"maximizing the margin® in X.
E The ramily being searched in X IS changed by just changing the
mapping ¢
® However In practice explicitly computing ¢ Is difficult




Using ¢ Implicitly
.
m Lin-Sep:
B Max, 2, a - 153, 3 a,ayyi(x.-x) such that >0, >/ a y=0
® Non-Lin-Sep:
oFind ¢:X-F
-so that {(¢#(x;), ¥)} is linearly separable:

® MaXaZer,-- ‘Z/ZZJrZerideJ/j(¢(/\’,)c ¢(1\'/)) SUCh that d,-20, Zeri}/i=0
Suppose K is a "kernel™ function,
Y| , ! ( () ! 0
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Compare; withi max:margin nyperplane:
B I(X)=21 YKo X))+,



SVM: Main ldeas

m Max margin

e min || W]
e constrained optimization
m Lin-sep case:
® solve equivalent "dual™ problem (1950s)
e training data only appear as dot products
m General case:




What an SVM does

m [nput:
e Training set {(x, y)}.'
> x;ie X cR°
> y,=+1or -1
® Kernel function A:XxX>R

m Output:
® A classifier given by sign(f(x))
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Kernels

m "Kernel” has many meanings/uses:
® Linear maps
® Integral Operators
® Operating Systems
o ..

m “"Kernel™ of a nut

lel, you know “everything™




Polynomial Kernels

m How to find A such that A(x,x) = ¢(x)-#(x’) for some ¢ ?
m Examples:

® K(x,x)= x.x’ -original data is linearly separable

o K(x,x')= (X-X') = (XiX"1#X:x %)

= X X2 2x.X,X" X" + X X'
= ¢(x)p(x)?

> ¢(X) = ¢(X1; Xz) = (XJZ; VZXJXZ, Xzz) works

» K x)= ((x-x)+1)
= (X-X) + 2(x-x)+1
= (X)) = WXy Xo) = (X5 V2XiXoy Xo ) V2K y VX2, 1)




Radial Basis Functions

m K(xx) = exp(-||(x-x)/c)
e Place Gaussian at certain points
e Classifier is linear combination of Gaussians
— f(x) = 2" a;K(x;, x)+b
e Neural network with Gaussians at the hidden layer
m SVM automatically finds
e humber and location of points x; (support vectors)

m exp(-[[(x-x) [|/c) is an exponential kernel
> How do we know It Is a valid kernel?
—rather than try find ¢
—use theory to build kernels from  simpler kernels.




Characterisation of Kernels

® Proposition:
e If X is finite, K:XxX->% is a kernel if and only if
> K is symmetric
» K(x,x)." is positive semi-definite
s ZKz >0 for all z
¢+ all eigenvalues of K >0
m Proof:
® Suppose K is symmetric and positive semi-definite

> D=diag(/;), where 4:=0
,

~ V orthogonal, v, is the ¢’ column of V.
® Define g: X=>NR" Dy ;/)(‘{«)j "//Jy;'] I
» [lhen (p(,()J(p(,{) _'_)—/'/H/ ViV
=\(V-DV);
= A, %)
o Conversely, It ATIS a kernel with arnegative eigenvalue /. and
corresponding eigenvector v, then z=; v.o(x;))has norm /. <0




Constructing Kernels

m Mercer's Theorem:
oK is a kernel if and only if
® A is symmetric
® A(x,x)." Is positive semi-definite for every finite subset of X.
m Use this to prove that
e sums of kernels are kernels
e positive scalar products of kernels are kernels

®a polyomial with positive coefficients applied to a kernel gives a kernel
®limits of kernels are kernels

‘)JJJ

o therefore exp(-||(x-x) [|/c) is a kernel




Solving the Optimization

m "Primal™ problem:
Min, 2, 2 aayyK(x,x;) such that y,(2, ayK(x,x))+b)>1

m "Dual™ problem:
Max, 2, 'z - 155, 3 a; aiyyK(x, x;) such that >0, 3, a2, y,=0

m |terative Methods are used

e start with constraints satisfied
e increase dual objective function while maintaining constraints

m No local optima

_{fo JJJ:‘LEJ‘J—‘ function stops Increasing - unreliable
KK conditions ﬂsﬂﬁ J
B Running time usua
8 Size of A(x,x;) s G
— do not want K
® problem may nee




Soft Margins

m May not want + and -points completely separated
® noisy data
® avoid overfitting

m Allow hypothesis to make some errors on the training set in order to avoid
more complex hypothesese.




Soft Margins: 1-Norm

m Min.,, w.w+C2;& such that y(w.x+b)>1-&, £>0
e S are "slack variables”
o X; is misclassified & & >1
e C modulates the trade-off between:
—simplicity of the decision surface
—number of misclassified training points.
—regularization
Good value of C determined empiri
B Dual problem:
® Vlax, i a; - 722 2; a; apyyiK(X; X;) suc
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Soft Margins: 2-Norm

m Min.,, w.w+C>;/¢’ such that y(w.x+b) > 1-¢&
e ;>0 constraint not needed
e Role of C as before
m Dual Problem:
o Max, 2, 'z - 155, % a;ayy(K(x. x) + (1/C)o;)
such that >0, > a y,=0
—o0;=1 if i=j, O otherwise
—Change of kernel

—add 1/C to all diagonal elements




SVM Resources

m Downloadable Software:

e svmlight
> C code available at http://ais.gmd.de/~thorsten/svm_light/

® weka (Waikato Environment for Knowledge Analysis)
> Java code available at http://www.cs.waikato.ac.nz/~ml/weka/

e SVMTorch
> SVM for regression problems
> http://www.ai.mit.edu/projects/jmlr/papers/volumel/collobertOla/html/

svm.research.bell-labs.com
)://www.kernel-machines.org/
P/ /WWW.K /,)“, ebingen.mpg.de/bu/people/bs/svm.html
lopinet.com/isabelle/Projects/SVIVI/applist.htmi
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SVMs: Pros and Cons

m Kernel Function
® No other parameter-fiddling needed
® Allows incorporation of prior knowledge
® How to choose?

m Classification Accuracy usually good

m Convergence
® No local minima
® Often slow in pr

dCliCe

B T heoretical Foundations
D Structured research framework
® Practical applications are much messier

— reé L a\ aft af
H Sparseness

® Only support vectorsineeded for solution
:,

® Vlany data points may be support vectors



