
FIGURE 2. The circle (1) tangent to the hyperbola (2).

The elementary calculus approach to this problem would
be to substitute y = 15ˇx from (2) into the righthand-side of
(1) to obtain the single-variable function 

f(x) = (x + 3)2 + (5 + 15ˇx)2

that gives the square of the radius of the circle. The Lagrange
multiplier approach sidesteps this elimination process by 
asking for the minimum value of the length-squared objective
function 

F(x, y) = (x + 3)2 + (y + 5)2

subject to the condition that x and y satisfy the constraint
equation

G(x, y) = x y - 15 = 0.

The fact that the circle and hyperbola are contour curves
of the functions F and G, respectively, means that their nor-
mal (gradient) vectors —F and —G must be collinear at the
desired point of tangency. Assuming that —G is nonzero, it
follows that

—F = m—G (3)
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Tutorial

Ladders, Moats, and Lagrange Multipliers

The functions we present here implement the classical method of Lagrange multipliers for solving
constrained optimization problems. The moat problem that we employ to motivate the develop-
ment of these functions generalizes a standard calculus problem, and shows how symbolic algebra
systems expand our horizons in the formulation and analysis of geometric problems. 

A Ladder Problem

A standard elementary calculus problem has a ladder leaning
across a five-foot fence and just touching a high wall three
feet behind the fence. We ask what is the minimum possible
length L of the ladder?

FIGURE 1. A ladder leans against a five-foot fence, just touching a wall that is three
feet behind the fence.

The Pythagorean formula applied to the large right trian-
gle in Figure 1 yields the equation

(x + 3)2 + (y + 5)2 = L2 (1)

that describes a circle with center (-3, -5) and radius L. The
proportionality of base and height for the two smaller right
triangles yields xˇ5 = 3ˇy, that is, the equation 

x y = 15 (2)

of a rectangular hyperbola. Our problem simply asks for the
circle (1) of minimum radius L that intersects the first-quad-
rant branch of the hyperbola (2). From a geometric view-
point, it is apparent that this circle will be tangent to the
hyperbola at their point of intersection (Figure 2). 
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for some constant m, the Lagrange multiplier. The two scalar
components of this vector equation, together with the con-
straint equation, provide a system of three equations to solve
for the three unknowns x, y, and m. 

The Moat Problem

The next problem resembles the ladder problem, but poses a
greater computational and conceptual challenge. It leads to a
constrained optimization example of higher dimension that
would be hard to solve by elementary algebraic techniques. 

FIGURE 3. A moat and two ladders.

Consider two ladders of lengths L1 and L2 leaning across
two walls of given heights H1 and H2 bordering an alligator-
filled moat of given width W (Figure 3). Let’s suppose that
H1 = 10, H2 = 15, and W = 50. The lower ends of the ladders
are placed at distances p and q from the walls, so that their
upper ends meet at a point (x, y) above the water. The two
ladders are supported in place by each other as well as by the
two walls. Let u and v denote the horizontal distances of the
point (x, y) from the two walls. Geometric intuition suggests
the existence of a minimum possible value of the sum L1 + L2
of the lengths of the two ladders. Our problem is to find this
minimal sum. 

From Figure 3 we read off the constraint equations:

u + v - 50 = 0,   (p + u)2 + y2 - L1
2 = 0, 

(q + v)2 + y2 - L2
2 = 0 (4)

(y - 10)p - 10u = 0,   (y - 15)q - 15v = 0. 

The first of these equations simply records the given width of
the moat. The second and third equations are the
Pythagorean relations for the two larger right triangles, while
the last two equations follow from proportionality relations
for the two pairs of similar triangles in Figure 3.

We see that our problem involves the seven variables p, q,
y, u, v, L1, and L2, and we seek to minimize the value of the
objective function

F(p, q, y, u, v, L1, L2) = L1 + L2

subject to the five constraints (4).

The Lagrange Multiplier Approach

The Lagrange multiplier approach involves a natural multi-
variable generalization of Equation (3). (See, for example,
[Edwards 1973, page 113].) Any local extremum of an
“object function” F(x1, x2, ..., xn) of n independent variables

L1
L2

 H1

y
H2

p u v q

subject to the m < n constraints G1(x1, x2, ..., xn) =
0, ..., Gm(x1, x2, ..., xn) = 0, must occur at a point (x1, ..., xn)
where the gradient vector —F of the function F is a linear
combination of the gradient vectors of the constraint func-
tions G1, ..., Gm (assuming that all these functions are con-
tinuously differentiable and that the gradient vectors of the
constraint functions are linearly independent). That is, there
exist Lagrange multipliers m1, m2, ..., mm such that the func-
tion F and the auxiliary function H = m1G1 + ... + mmGm

have the same gradient vector,

—F = —H (5)

(The gradient of a function of n independent variables is the
vector consisting of its partial derivatives with respect to
these variables.) If —G, the gradient of the vector-valued
function G = (G1, G2, ..., Gm) , denotes the matrix with row
vectors —G1, —G2, ..., —Gm, and m = (m1, ..., mm), then —H is
the matrix product m—G. Thus, 

—F = m —G

in perfect analogy with the case m = 1 in (3). The m con-
straint equations, augmented with the n “multiplier equa-
tions” that are the scalar components of the vector equation
in (5), then constitute a system of m + n equations to solve
for the m + n unknowns x1, x2, ..., xn, m1, m2, ..., mm. 

Here, it will be notationally more convenient to deal with
the expressions representing functions than with the defined
functions themselves. In the moat problem, we want to min-
imize the value of the functional expression:

In[1]:= F = L1 + L2;

in terms of the independent variables: 

In[2]:= X = {p, q, y, u, v, L1, L2};

(though F depends explicitly only on L1 and L2) subject to
the condition that each of the following constraint functions
vanishes:

In[3]:= G = { u + v - W,

(p+u)^2 + y^2 - L1^2,

(q+v)^2 + y^2 - L2^2,

(y-H1) p - H1 u,

(y-H2) q - H2 v  };

For the given values of H1, H2, and W:

In[4]:= W = 50; H1 = 10; H2 = 15;

the constraint equations are:

In[5]:= Thread[G == 0]

2          2    2
Out[5]= {-50 + u + v == 0, -L1  + (p + u)  + y  == 0, 

2          2    2
-L2  + (q + v)  + y  == 0, -10 u + p (-10 + y) == 0, 

-15 v + q (-15 + y) == 0}
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Geometrically, the solution set of these equations is a two-
dimensional surface in the seven-dimensional space of the 
variables. 

The multipliers for our problem are given by:

In[6]:= multipliers = Array[mu, Length[G]]

Out[6]= {mu[1], mu[2], mu[3], mu[4], mu[5]}

and the auxiliary function H is defined by:

In[7]:= H = multipliers . G;

We can now set up the system of constraint equations:

In[8]:= constraintEquations = Thread[G == 0];

and the scalar components of Equation (5):

In[9]:= multiplierEquations = Map[(D[F, #] == D[H, #])&, X];

In[10]:= LagrangeEqs = 

Join[constraintEquations, multiplierEquations]  

Out[10]= 2          2    2
{-50 + u + v == 0, -L1  + (p + u)  + y  == 0, 

2          2    2
-L2  + (q + v)  + y  == 0, -10 u + p (-10 + y) == 0, 

-15 v + q (-15 + y) == 0, 

0 == 2 (p + u) mu[2] + (-10 + y) mu[4], 

0 == 2 (q + v) mu[3] + (-15 + y) mu[5], 

0 == 2 y mu[2] + 2 y mu[3] + p mu[4] + q mu[5], 

0 == mu[1] + 2 (p + u) mu[2] - 10 mu[4], 

0 == mu[1] + 2 (q + v) mu[3] - 15 mu[5], 

1 == -2 L1 mu[2], 1 == -2 L2 mu[3]}

Thus, we get a nonlinear system of 12 equations in the 
m + n = 12 unknowns {p, q, y, u, v, L1, L2, mu[1], mu[2],
mu[3], mu[4], mu[5]}. 

To apply FindRoot to solve this problem numerically, we
need a plausible initial guess for the values of the variables.
In a geometric problem such as the moat problem, we need
only look at a figure to gauge the approximate relative values
of the geometric variables. For instance, in Figure 3, the
approximate values: 

In[11]:= X0 = {15, 15, 25, 25, 25, 60, 60};

In[12]:= initialValues = Thread[X -> X0]

Out[12]= {p -> 15, q -> 15, y -> 25, u -> 25, v -> 25, L1 -> 60, 

L2 -> 60}

look fairly reasonable. We must work a bit harder to find ini-
tial estimates for the multipliers. If X0 were actually a solu-
tion, the multipliers would satisfy the following equations:

In[13]:= multiplierEquations /. initialValues // TableForm

Out[13]//TableForm=

0 == 80 mu[2] + 15 mu[4]

0 == 80 mu[3] + 10 mu[5]

0 == 50 mu[2] + 50 mu[3] + 15 mu[4] + 15 mu[5]

0 == mu[1] + 80 mu[2] - 10 mu[4]

0 == mu[1] + 80 mu[3] - 15 mu[5]

1 == -120 mu[2]

1 == -120 mu[3]

This is an over-determined linear system of n equations in 
m < n unknowns, so we “solve” by the method of least
squares, thereby obtaining a “solution” that minimizes the
sum of the squares of the discrepancies in the n equations.
The n ¥ m coefficient matrix is the transpose of the matrix 
—G at the given initial values: 

In[14]:= AT = Outer[D[#1, #2]&, G, X] /. initialValues;

In[15]:= (A = Transpose[AT]) // MatrixForm

Out[15]//MatrixForm=

0      80     0      15     0

0      0      80     0      10

0      50     50     15     15

1      80     0      -10    0

1      0      80     0      -15

0      -120   0      0      0

0      0      -120   0      0

The vector of constants is

In[16]:= b = Map[D[F, #]&, X] /. initialValues

Out[16]= {0, 0, 0, 0, 0, 1, 1}

The hypothesis that the vectors —G1, —G2, ... , —Gm are
linearly independent implies that the m ¥ m matrix ATA is
nonsingular, so we can solve the least squares system
ATA x = AT b to estimate the multipliers (see, for example,
[Edwards and Penney 1988, page 226]):

In[17]:= mu0 = LinearSolve[AT . A, AT . b] // N

Out[17]= {1.00303, -0.00816004, -0.00723893, 0.0330785, 0.0295572}

Now we can assemble our initial guesses into a list of the
form needed by FindRoot.

In[18]:= XPairs = Transpose[{X, X0}];

In[19]:= muPairs = Transpose[{multipliers, mu0}];

In[20]:= allPairs = Join[XPairs, muPairs]

Out[20]= {{p, 15}, {q, 15}, {y, 25}, {u, 25}, {v, 25}, {L1, 60}, 

{L2, 60}, {mu[1], 1.00303}, {mu[2], -0.00816004}, 

{mu[3], -0.00723893}, {mu[4], 0.0330785}, 

{mu[5], 0.0295572}}
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Finally, we have our complete system of equations and
initial guesses:

In[21]:= LagrangeData = Join[{LagrangeEqs}, XPairs, muPairs];

as needed to proceed with a numerical solution:

In[22]:= OptimalValues = Apply[FindRoot, LagrangeData];

The minimum value obtained for F, the sum of the lengths of
the two ladders, is given by:

In[23]:= F /. OptimalValues

Out[23]= 102.715

The optimal values for the variables are:

In[24]:= Take[OptimalValues, Length[X]]

Out[24]= {p -> 17.2361, q -> 13.118, y -> 30.9275, u -> 36.0708, 

v -> 13.9292, L1 -> 61.629, L2 -> 41.086}

The functions LagrangeEquations and LagrangeSolve assemble
the steps carried out above. Given an objective function F, a
list X of independent variables, a list G of constraints, and a
symbol (such as mu) for the multiplier, LagrangeEquations
returns a list of the constraint and multiplier equations:

In[25]:= LagrangeEquations[F_, X_ ,G_, mu_Symbol:mu] := 

Module[{H = Array[mu, Length[G]] . G},

Join[ Thread[G == 0],

Map[(D[F, #] == D[H, #])&, X ] ] ]

The function LagrangeSolve computes the optimal values of
the objective function and the independent variables, given
F, X, G, and an initial guess X0 for the list X: 

In[26]:= LagrangeSolve[F_, X_, X0_, G_] := 

Module[{

AT = Outer[D[#1, #2]&, G, X] /. Thread[X -> X0],

b = Map[D[F, #]&, X] /. Thread[X -> X0],

mu, mu0, optimalValues},

mu0 = N[LinearSolve[AT . Transpose[AT], AT . b]];

optimalValues = 

Apply[FindRoot, 

Join[

{LagrangeEquations[F, X, G, mu]}, 

Transpose[{X, X0}], 

Transpose[{Array[mu, Length[G]], mu0}]]];

{F /. optimalValues, 

Take[optimalValues, Length[X]]} ]

For example, with F, X, X0, and G defined as above for
the moat problem we get:

In[27]:= LagrangeSolve[F, X, X0, G]

Out[27]= {102.715, {p -> 17.2361, q -> 13.118, y -> 30.9275, 

u -> 36.0708, v -> 13.9292, L1 -> 61.629, L2 -> 41.086}}

For the original ladder problem with:

In[28]:= F = (x + 3)^2 + (y + 5)^2;

X =  {x, y};

X0 = {5, 3};

G  = {x y - 15};

we get:

In[32]:= LagrangeSolve[F, X, X0, G]

Out[32]= {125.308, {x -> 4.21716, y -> 3.55689}}

Thus, the shortest ladder that will suffice in Figure 1 has
length

In[33]:= Sqrt[F /. Last[%]]

Out[33]= 11.1941

Problems

There should always be homework! The following five prob-
lems range from the original simple ladder situation to a
more complicated moat situation. 

Problem 1. Use LagrangeMultiplier to solve the ladder prob-
lem again, except now using objective function F = L and
two constraints corresponding to Equations (1) and (2).

Problem 2. Observe that, if H1 = H2, then our moat problem
simply amounts to a ladder problem and its mirror image in
an imaginary wall bisecting the moat. Confirm that with 
W = 50 and H1 = H2 = 15 (say), the solution of this symmet-
ric moat problem agrees with the solution of the corre-
sponding ladder problem.

Problem 3. The figure below shows a moat of width W = 50
having a wall of height H = 15 feet on only one side. Given
L1 = 40, find the minimum possible length L2 of the second
ladder.

Problem 4. In the original moat problem, suppose that the
length L1 = 40 of the first ladder is given in advance. Then
find the minimal length L2 of the second ladder such that the
two ladders will jointly suffice to span the moat in the indi-
cated manner.
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 H

L2

x
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Problem 5. The figure above illustrates a two-moat prob-
lem. Two adjoining moats of given widths W1 and W2 are
bounded by walls of given heights H1, H2, and H3. This pair
of moats-with-walls is to be spanned by three ladders as indi-
cated in the figure. With an appropriate choice of the five
given dimensions, use Lagrange multipliers—perhaps with
11 independent variables and eight constraints, so that a sys-
tem of 19 equations must ultimately be solved—to find the
minimum possible sum L1 + L2 + L3 of their lengths. 

A Programming Problem. The Lagrange multiplier condition
expressed in Equation (5) is merely a first-derivative neces-
sary condition for constrained local extrema. If the initial
guess is not sufficiently close to a desired extremum, the
sequence of Newton’s method iterates produced by FFiinnddRRoooott
may either diverge or converge to a critical point other than

q

 H1

L1

L2

L3

p

H3

W1 W2

H2

the one anticipated. Implement the second-derivative suffi-
cient conditions (in terms of bordered Hessians) given in
[Spring 1985], which may be used to distinguish between
constrained maxima/minima and saddle points. 
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The electronic supplement contains the notebook
Ladders and the package LagrangeMultiplier.m.
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