Homework Set no. 8

1. Convexity and Binary Channels.

(a) Prove that $I(X ; Y)$ is a convex function of $p(y \mid x)$ for fixed $p(x)$. You may use the fact that $D(p \| q)$ is convex in the pair (p, q).
(b) For this part you may assume the result of the previous part. Consider the channel shown in Figure 1. Assume $P(X=0)=\lambda$ where $0<\lambda<1$. Show that replacing both p and q

Figure 1: Binary (but not necessarily symmetric) channel.
with $\frac{p+q}{2}$ will either lower the mutual information or leave it alone. This new channel has a certain symmetry, but it is not generally the standard binary symmetric channel.
(c) (1 pt) For fixed λ, compute the mutual information for the reduced-mutual-information channel you created in the previous part.
(d) 1 pt Argue that for fixed p, one choice of q that certainly minimizes $I(X ; Y)$ is $q=p$.
2. Maximum number of configurations with assigned minimum distance Consider a binary code (i.e., the alphabet is $\{o, 1\}$ of length n. An important question in coding is to determine the maximum number of configurations (codewords) having minimum pairwise distance d. Call this number $A(n, d)$. This is a difficult problem, but it is easy to come up with bounds and equalities. Among these equalities, two are of interest and are not too difficult to prove.

- Show that $A(n, d) \leq 2 A(n-1, d)$;
- Show that $A(n+1,2 s)=A(n, 2 s-1)$;

Note: though it is not too difficult to come up with the answers, the problem requires a bit of thought. Writing up an example might give you an insight of what a proof might be.
3. Ternary Channel Consider the ternary channel (i.e., where both inputs and outputs are ternary) defined by the conditional probability matrix

$$
P_{i, j}=P(Y=i \mid X=j)=\left[\begin{array}{ccc}
2 / 3 & 0 & 1 / 3 \\
0 & 1 & 0 \\
1 / 3 & 0 & 2 / 3
\end{array}\right] .
$$

Compute the capacity of this channel.
4. Differential entropy (EIT 9.1). Evaluate the differential entropy $h(X)=-\int f \ln f$ for the following:
(a) The exponential density, $f(x)=\lambda e^{-\lambda x}, x \geq 0$.
(b) The Laplace density, $f(x)=\frac{1}{2} \lambda e^{-\lambda|x|}$.
(c) The sum of X_{1} and X_{2}, where X_{1} and X_{2} are independent normal random variables with means μ_{i} and variances $\sigma_{i}^{2}, i=1,2$.

Hint: this is essentially a mechanical problem.

