Homework Set no. 8

1. Convexity and Binary Channels.

- (a) Prove that I(X;Y) is a convex function of p(y|x) for fixed p(x). You may use the fact that D(p||q) is convex in the pair (p,q).
- (b) For this part you may assume the result of the previous part. Consider the channel shown in Figure 1. Assume $P(X=0)=\lambda$ where $0<\lambda<1$. Show that replacing both p and q

Figure 1: Binary (but not necessarily symmetric) channel.

with $\frac{p+q}{2}$ will either lower the mutual information or leave it alone. This new channel has a certain symmetry, but it is *not* generally the standard binary symmetric channel.

- (c) (1 pt) For fixed λ , compute the mutual information for the reduced-mutual-information channel you created in the previous part.
- (d) 1 pt Argue that for fixed p, one choice of q that certainly minimizes I(X;Y) is q=p.
- 2. Maximum number of configurations with assigned minimum distance Consider a binary code (i.e., the alphabet is $\{o,1\}$ of length n. An important question in coding is to determine the maximum number of configurations (codewords) having minimum pairwise distance d. Call this number A(n,d). This is a difficult problem, but it is easy to come up with bounds and equalities. Among these equalities, two are of interest and are not too difficult to prove.
 - Show that $A(n,d) \leq 2A(n-1,d)$;
 - Show that A(n+1,2s) = A(n,2s-1);

Note: though it is not too difficult to come up with the answers, the problem requires a bit of thought. Writing up an example might give you an insight of what a proof might be.

3. **Ternary Channel** Consider the ternary channel (i.e., where both inputs and outputs are ternary) defined by the conditional probability matrix

$$P_{i,j} = P(Y = i \mid X = j) = \begin{bmatrix} 2/3 & 0 & 1/3 \\ 0 & 1 & 0 \\ 1/3 & 0 & 2/3 \end{bmatrix}.$$

Compute the capacity of this channel.

- 4. **Differential entropy (EIT 9.1).** Evaluate the differential entropy $h(X) = -\int f \ln f$ for the following:
 - (a) The exponential density, $f(x) = \lambda e^{-\lambda x}$, $x \ge 0$.
 - (b) The Laplace density, $f(x) = \frac{1}{2}\lambda e^{-\lambda|x|}$.
 - (c) The sum of X_1 and X_2 , where X_1 and X_2 are independent normal random variables with means μ_i and variances σ_i^2 , i = 1, 2.

Hint: this is essentially a mechanical problem.