Homework no. 2

1. Relative entropy is not symmetric: Let the random variable X have three possible outcomes $\{a, b, c\}$. Consider two distributions on this random variable

Symbol	p(x)	q(x)
a	3/4	1/3
b	3/16	1/3
с	1/16	1/3

Calculate H(p), H(q), D(p||q) and D(q||p). Verify that in this case $D(p||q) \neq D(q||p)$.

2. Conditioning Reduces Entropy: We showed in class that conditioning on a random variable Y reduces the entropy of a random variable X:

$$H(X \mid Y) \le H(X).$$

• Either prove or disprove the following statement:

"conditioning on individual values of Y never increases entropy", namely

$$\mathrm{H}(X \mid Y = y) \le \mathrm{H}(X) \forall y \in \mathcal{Y}$$

3. *Relative entropy is cost of miscoding:* In this problem, we explore a fundamental interpretation of the relative entropy.

Let the random variable X have five possible outcomes $\{1, 2, 3, 4, 5\}$. Consider two distributions on this random variable

Symbol	p(x)	q(x)	$C_1(x)$	$C_2(x)$
1	1/2	1/2	0	0
2	1/4	1/8	10	100
3	1/8	1/8	110	101
4	1/16	1/8	1110	110
5	1/16	1/8	1111	111

- (a) Calculate H(p), H(q), D(p||q) and D(q||p).
- (b) The last two columns above represent codes for the random variable. Verify that the average length of C_1 under p is equal to the entropy H(p). Thus C_1 is optimal for p. Verify that C_2 is optimal for q.
- (c) Now assume that we use code C_2 when the distribution is p. What is the average length of the codewords. By how much does it exceed the entropy p?
- (d) What is the loss if we use code C_1 when the distribution is q?
- 4. Proof of Theorem 3.3.1. Let X_1, X_2, \ldots, X_n be i.i.d. $\sim p(x)$. Let $B_{\delta}^{(n)} \subset \mathcal{X}^n$ such that $\Pr(B_{\delta}^{(n)}) > 1 \delta$. Fix $\epsilon < \frac{1}{2}$.
 - (a) Given any two sets A, B such that $\Pr(A) > 1 \epsilon_1$ and $\Pr(B) > 1 \epsilon_2$, show that $\Pr(A \cap B) > 1 \epsilon_1 \epsilon_2$. Hence $\Pr(A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}) \ge 1 \epsilon \delta$.

(b) Justify the steps in the chain of inequalities

$$1 - \epsilon - \delta \leq \Pr(A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)})$$
 (1)

$$= \sum_{A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}} p(x^{n}) \tag{2}$$

$$\leq \sum_{A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}}^{\circ} 2^{-n(H-\epsilon)}$$
(3)

$$= |A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}| 2^{-n(H-\epsilon)}$$

$$\tag{4}$$

$$\leq |B_{\delta}^{(n)}| 2^{-n(H-\epsilon)}.$$
(5)

(c) Complete the proof of the theorem.