Homework no. 2

1. Relative entropy is not symmetric: Let the random variable X have three possible outcomes $\{a, b, c\}$. Consider two distributions on this random variable

Symbol	$p(x)$	$q(x)$
a	$3 / 4$	$1 / 3$
b	$3 / 16$	$1 / 3$
c	$1 / 16$	$1 / 3$

Calculate $H(p), H(q), D(p \| q)$ and $D(q \| p)$. Verify that in this case $D(p \| q) \neq D(q \| p)$.
2. Conditioning Reduces Entropy: We showed in class that conditioning on a random variable Y reduces the entropy of a random variable X :

$$
\mathrm{H}(X \mid Y) \leq \mathrm{H}(X)
$$

- Either prove or disprove the following statement:
"conditioning on individual values of Y never increases entropy", namely

$$
\mathrm{H}(X \mid Y=y) \leq \mathrm{H}(X) \forall y \in \mathcal{Y}
$$

3. Relative entropy is cost of miscoding: In this problem, we explore a fundamental interpretation of the relative entropy.
Let the random variable X have five possible outcomes $\{1,2,3,4,5\}$. Consider two distributions on this random variable

Symbol	$p(x)$	$q(x)$	$C_{1}(x)$	$C_{2}(x)$
1	$1 / 2$	$1 / 2$	0	0
2	$1 / 4$	$1 / 8$	10	100
3	$1 / 8$	$1 / 8$	110	101
4	$1 / 16$	$1 / 8$	1110	110
5	$1 / 16$	$1 / 8$	1111	111

(a) Calculate $H(p), H(q), D(p \| q)$ and $D(q \| p)$.
(b) The last two columns above represent codes for the random variable. Verify that the average length of C_{1} under p is equal to the entropy $H(p)$. Thus C_{1} is optimal for p. Verify that C_{2} is optimal for q.
(c) Now assume that we use code C_{2} when the distribution is p. What is the average length of the codewords. By how much does it exceed the entropy p ?
(d) What is the loss if we use code C_{1} when the distribution is q ?
4. Proof of Theorem 3.3.1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. $\sim p(x)$. Let $B_{\delta}^{(n)} \subset \mathcal{X}^{n}$ such that $\operatorname{Pr}\left(B_{\delta}^{(n)}\right)>$ $1-\delta$. Fix $\epsilon<\frac{1}{2}$.
(a) Given any two sets A, B such that $\operatorname{Pr}(A)>1-\epsilon_{1}$ and $\operatorname{Pr}(B)>1-\epsilon_{2}$, show that $\operatorname{Pr}(A \cap B)>$ $1-\epsilon_{1}-\epsilon_{2}$. Hence $\operatorname{Pr}\left(A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}\right) \geq 1-\epsilon-\delta$.
(b) Justify the steps in the chain of inequalities

$$
\begin{align*}
1-\epsilon-\delta & \leq \operatorname{Pr}\left(A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}\right) \tag{1}\\
& =\sum_{A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}} p\left(x^{n}\right) \tag{2}\\
& \leq \sum_{A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}} 2^{-n(H-\epsilon)} \tag{3}\\
& =\left|A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}\right| 2^{-n(H-\epsilon)} \tag{4}\\
& \leq\left|B_{\delta}^{(n)}\right| 2^{-n(H-\epsilon)} . \tag{5}
\end{align*}
$$

(c) Complete the proof of the theorem.

