Homework Set no. 10

1. Geometric interpretation of channel capacity. Consider a channel $\{\mathcal{X}, p(y \mid x), \mathcal{Y}\}$, and assume that the channel input alphabet and output alphabet are of size m, e.g., let $X=y=$ $\{1,2, \ldots, m\}$. We can write the probability transition function of the channel as a matrix:

$$
p(y \mid x)=\left[\begin{array}{c}
\mathbf{r}_{1} \tag{1}\\
\mathbf{r}_{2} \\
\vdots \\
\mathbf{r}_{m}
\end{array}\right]
$$

where \mathbf{r}_{i} is the i-th row of the probability transistion matrix, i.e, $\mathbf{r}_{i}=(p(y=1 \mid x=i), p(y=2 \mid x=$ $i), \ldots, p(y=m \mid x=i)$). Consider an input distribution $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ for the channel, and let $\mathbf{q}=\left(q_{1}, q_{2}, \ldots, q_{m}\right)$ be the corresponding output distribution, i.e., $\mathbf{q}=\sum_{i} p_{i} \mathbf{r}_{i}$.
(a) Show that for this channel

$$
\begin{equation*}
\sum_{i} p_{i} D\left(\mathbf{r}_{i} \| \mathbf{q}\right) \leq C \tag{2}
\end{equation*}
$$

(b) Let \mathbf{q}^{\prime} be another distribution on y. Show that

$$
\begin{equation*}
\sum_{i} p_{i} D\left(\mathbf{r}_{i} \| \mathbf{q}\right) \leq \sum_{i} p_{i} D\left(\mathbf{r}_{i} \| \mathbf{q}^{\prime}\right) \tag{3}
\end{equation*}
$$

Use this to argue

$$
\begin{equation*}
C=\max _{\mathbf{p}} \sum_{i} p_{i} D\left(\mathbf{r}_{i} \| \mathbf{q}\right)=\max _{\mathbf{p}} \min _{\mathbf{q}^{\prime}} \sum_{i} p_{i} D\left(\mathbf{r}_{i} \| \mathbf{q}^{\prime}\right) \tag{4}
\end{equation*}
$$

and that for any distribution \mathbf{q}^{\prime},

$$
\begin{equation*}
C \leq \max _{i} D\left(\mathbf{r}_{i} \| \mathbf{q}^{\prime}\right) . \tag{5}
\end{equation*}
$$

(c) Combining the first two parts, we have

$$
\begin{equation*}
\sum_{i} p_{i} D\left(\mathbf{r}_{i} \| \mathbf{q}\right) \leq C \leq \min _{\mathbf{q}^{\prime}} \max _{i} D\left(\mathbf{r}_{i} \| \mathbf{q}^{\prime}\right) \tag{6}
\end{equation*}
$$

Now justify the following argument:

$$
\begin{equation*}
\max _{\mathbf{p}} \min _{\mathbf{q}^{\prime}} \sum_{i} p_{i} D\left(\mathbf{r}_{i} \| \mathbf{q}^{\prime}\right) \geq \min _{\mathbf{q}^{\prime}} \max _{i} D\left(\mathbf{r}_{i} \| \mathbf{q}^{\prime}\right) \tag{7}
\end{equation*}
$$

(This is a very general result that max $\min \geq \min \max$, and can be argued from first principles.)

Combining the previous two equations, we have

$$
\begin{equation*}
\max _{\mathbf{p}} \sum_{i} p_{i} D\left(\mathbf{r}_{i} \| \mathbf{q}\right)=C=\min _{\mathbf{q}^{\prime}} \max _{i} D\left(\mathbf{r}_{i} \| \mathbf{q}^{\prime}\right) \tag{8}
\end{equation*}
$$

A simple geometric interpretaion of this result is as follows: C is the minimum "radius" of a circle contains all the rows \mathbf{r}_{i} of the channel transition matrix, where the all distances are measured with relative entropy. The center of this circle is located at \mathbf{q}^{\prime} which minimizes the right hand side of (8).
(Note: this is a laborious problem, and needs some care)

2. 4-ary Hamming distortion.

A random variable X uniformly takes on values $\{0,1,2,3\}$. The distortion function is the usual Hamming distortion.

$$
d(x, \hat{x})=\begin{array}{ll}
0 & \text { if } x=\hat{x} \tag{9}\\
1 & \text { if } x \neq \hat{x}
\end{array}
$$

Compute the rate distortion function $R(D)$ by finding a lower bound on $I(x ; \hat{x})$ and showing this lower bound to be achievable. Hint: Fano's inequality.
3. Properties of optimal rate distortion code. A good (R, D) rate distortion code with $R \approx R(D)$ puts severe constraints on the relationship of the source X^{n} and the representations \hat{X}^{n}. Examine the chain of inequalities $(13.58-13.70)$ considering the conditions for equality and interpret as properties of a good code. For example, equality in (13.59) implies that X^{n} is a deterministic function of X^{n}.

4. Ternary source with erasure distortion.

Consider X uniformly distributed over the three inputs $\{1,2,3\}$, and let the distortion measure be given by the matrix

$$
d(x, \hat{x})=\left[\begin{array}{cccc}
0 & \infty & \infty & 1 \tag{10}\\
\infty & 0 & \infty & 1 \\
\infty & \infty & 0 & 1
\end{array}\right]
$$

(a) (7 pts) Calculate the rate distortion function for this source.
(b) (3 pts) Suggest a simple scheme to achieve any value of the rate distortion function for this source.

