Proof of Cesaro Means

In order to show that our alternative definition of entropy rate:

H'(X) = lim H<Xn X, ,an)

n—oo
is equivalent to the canonical definition
1
H(X) = lim —H(Xq,..., X,)
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when the stochastic process is stationary, we used the following theorem
Theorem Cesaro Means:

Let a, — a, let b, =n"'>"" | a;, then

lim b,, = a.
n—oo

Proof Recall the meaning of lim, ., b, = a:
For every § > 0 there exists a ng such that, for every n > ngyelta, ||b, —al| < 0.

Now, since lim,,_,, a,, = a, we know that Ve, In, such that Vn > n, |a,—al| <
€.

Choose § = 2e.

Fix, €, determine n, let n >> n,., and look at b, — a.
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Now divide the sum on the right hand side into two parts: the first is the
sum over the indexes between 1 and n., the second is the over the remaining

terms
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We are now going to bound the two sums (1) and (2).

First we bound (1)
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and, if we pick n satisfying
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Now we bound (2) using a similar trick
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where Inequality 5 is a consequence of how we selected n..

We have therefore shown that, if we fix §, let € = §/2, determine n., there
exists a ng = — maxjs1% 74l cich that, for all n > ng, |b, — a| < d;
In other words, we have shown that lim,, .., b, = a.




