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ABSTRACT

Retransmissions represent a primary failure recovery mech-
anism on all layers of communication network architecture.
Similarly, fair sharing, e.g. processor sharing (PS), is a
widely accepted approach to resource allocation among mul-
tiple users. Recent work has shown that retransmissions in
failure-prone, e.g. wireless ad hoc, networks can cause heavy
tails and long delays. In this paper, we discover a new phe-
nomenon showing that PS-based scheduling induces com-
plete instability in the presence of retransmissions, regard-
less of how low the traffic load may be. This phenomenon
occurs even when the job sizes are bounded/fragmented, e.g.
deterministic. Our analytical results are further validated
via simulation experiments. Moreover, our work demon-
strates that scheduling one job at a time, such as first-come-
first-serve, achieves stability and should be preferred in these
systems.
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1. INTRODUCTION
High variability and frequent failures characterize the ma-

jority of large-scale systems, e.g. infrastructure-less wire-
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less networks, cloud/parallel computing systems, etc. The
nature of these systems imposes the employment of failure
recovery mechanisms to guarantee their good performance.
One of the most straightforward and widely used recovery
mechanism is to simply restart all of the interrupted jobs
from the beginning after a failure occurs. In communication
systems, restart mechanisms lie at the core of the network
architecture where retransmissions are used on all protocol
layers to guarantee data delivery in the presence of chan-
nel failures e.g. Automatic Repeat reQuest (ARQ) protocol
[3], contention based ALOHA type protocols in the medium
access control (MAC) layer, end-to-end acknowledgements
in the transport layer, HTTP downloading scheme in the
application layer, and others.

Furthermore, sharing is a primary approach to fair schedul-
ing and efficient management of the available resources. Fair
allocation of the network resources among different users
can be highly beneficial for increasing throughput and uti-
lization. For instance, CDMA is a multiple access method
used in communication networks, where several users can
transmit information simultaneously over a single channel
via sharing the available bandwidth. Another example is
Processor Sharing (PS) scheduling [19] where the capacity
is equally shared between multiple classes of customers. In
Generalized PS (GPS) [14, 15], service allocation is done
according to some fixed weights. The related Discrimina-
tory PS (DPS) [1, 5, 13] is used in computing to model
the Weighted Round Robin (WRR) scheduling, while it is
also used in communications, as a flow level model of het-
erogenous TCP connections. Similarly, fair queuing (FQ)
is a scheduling algorithm where the link capacity is fairly
shared among active network flows; in weighted fair queu-
ing (WFQ), which is the discretized version of GPS, different
scheduling priorities are assigned to each flow.

In general, PS-based scheduling disciplines have been widely
used in modeling computer and communication networks.
Early investigations of PS queues were motivated by appli-
cations in multiuser computer systems [4]. The M/G/1 PS
queue has been studied extensively in the literature [18]. In
the case of the M/M/1 PS system, the conditional Laplace
transform of the waiting time was derived in [4]. The impor-
tance of scheduling in the presence of heavy tails was first
recognized in [2], and later, in [7], the M/G/1 PS queue was
studied assuming subexponential job sizes; see also [7] for
additional references.

In [17], it was proven that, although there are policies
known to optimize the sojourn time tail under a large class
of heavy-tailed job sizes (e.g. PS and SRPT) and there
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are policies known to optimize the sojourn time tail in the
case of light-tailed job sizes, e.g. FCFS, no policies are
known to optimize the sojourn time tail across both light
and heavy-tailed job size distributions. Indeed, such poli-
cies must “learn” the job size distribution in order to op-
timize the sojourn time tail. In the heavy-tailed scenarios,
any scheduling policy that assigns the server exclusively to a
very large job, e.g. FCFS, may induce long delays, in which
case, sharing guarantees better performance.

In this paper, we study the effects of sharing on the system
performance when restarts are employed in the presence of
failures. We revisit the well-studied M/G/1 queue with fail-
ures and restarts and focus on the PS scheduling policy. We
use the following generic model, which was first introduced
in [6] in the application context of computing. The sys-
tem dynamics is described as a process (A, {An}n>1), where
An correspond to the periods when the system is available.
(A, {An}n>1) is a sequence of i.i.d random variables, inde-
pendent of the job sizes. In each period of time that the
system is available, say An, we attempt to execute a job
of random size B. If An > B, we say that the job is suc-
cessfully completed; otherwise, we restart the job from the
beginning in the following period An+1 when the channel is
available.

With regard to retransmissions, it was first recognized in
[6, 16] that restart mechanisms may result in heavy-tailed
(power law) delays even if the job sizes and failure rates are
light-tailed. In [11], it was shown that the power law delays
arise whenever the hazard functions of the data and failure
distributions are proportional. In the practically important
case of bounded data units, a uniform characterization of the
entire body of the retransmission distribution was derived
in [10, 8], which allows for determining the optimal size of
data units/fragments in order to alleviate the power law
effect. Later, these results were extended to the case where
the channel is highly correlated [9], i.e. switches between
states with different characteristics, and was proved that
the delays are insensitive to the channel correlations and
are determined by the ‘best’ channel state.

In this paper, our main contributions are the following.
First, we prove that the M/G/1 PS queue is always unsta-
ble, regardless of how light the load is and how small the job
sizes may be, see Theorems 3.1 and 3.2 in Section 3. This
is a new phenomenon, since, contrary to the conventional
belief, sharing the service even between deterministic jobs
can render the system completely unstable when retransmis-
sions/restarts are employed. The intuition is the following.
If a large number of jobs arrives in a short period of time,
then under the elongated service time distribution induced
by retransmissions, the queue will keep accumulating jobs
that will equally share the capacity, which further exacer-
bates the problem. Every time a failure occurs, the system
resets and the service requirement for each job elongates as
the queue size increases. The expected delay until the sys-
tem clears becomes increasingly long and, consequently, the
queue will continue to grow leading to instability. This result
also applies to the Discriminatory PS (DPS) queue, where
the service is not shared equally but according to some fixed
weights.

We would also like to emphasize that job fragmentation
cannot stabilize the system regardless of how small the frag-
ments are made, since Theorem 3.1 shows instability for
any minimum job size β > 0. In our experimental results,

we make an interesting observation on the system behavior
before it saturates. There exists a transient period, during
which the queue appears as if it were stable. Although it
may occasionally accumulate a substantial number of jobs,
it returns to zero and starts afresh. However, there exists
a time when the queue reaches a critical size after which
the service rate of the jobs reduces so much that neither of
them can depart. Hence, as the queue continues to increase
in size, the system becomes unstable.

Next, in order to gain further insight into the system, we
focus on its transient behavior and study the properties of
the completion time of a finite number of jobs with no future
arrivals. Specifically, we compare two work-conserving poli-
cies: scheduling one job at a time, e.g. FCFS, and PS. Over-
all, we discover that serving one job at a time exhibits uni-
formly better performance than PS; compare Theorems 4.2
and 4.3, respectively. Furthermore, under more technical
assumptions, and for light-tailed job/failure distributions,
we show that PS performs distinctly worse compared to the
heavy-tailed ones.

From an engineering perspective, our results indicate that
traditional approaches in existing systems may be inade-
quate in the presence of failures. This new phenomenon
demonstrates the need of revisiting existing techniques to
large-scale failure-prone systems, where PS-based schedul-
ing may perform poorly. For example, since PS is unstable
even for deterministic jobs, packet fragmentation, which is
widely used in communications, cannot alleviate instabil-
ities. Indeed, fragmentation can only postpone the time
when the instability occurs, but cannot eliminate the phe-
nomenon; see Example 1 in Section 5. Therefore, serving
one job at a time, e.g. FCFS, is highly advisable in such
systems.

The paper is organized as follows. In Section 2, we in-
troduce the model along with the necessary definitions and
notation. Next, in Section 3, we present our main results on
the M/G/1 queue. Later, in Section 4, we analyze a static
system under two different scheduling policies, e.g. serving
the jobs one at a time and PS. Last, Section 5 presents our
simulation experiments that validate our main theoretical
findings, while Section 6 concludes the paper.

2. DEFINITIONS AND NOTATION
First, we provide the necessary definitions and notation

assuming that the jobs are served individually. Consider a
generic job of random size B requesting service in a failure-
prone system. Without loss of generality, we assume that
the system is of unit capacity. Its dynamics is described as
a process (A, {An}n>1) of availability periods, where at the
end of each period An, the system experiences a failure, as
shown in Figure 1.

A1 A2 A3

t

Figure 1: System with failures.
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At each period of time that the system becomes available,
say An, we attempt to process a generic job of size B. If
An > B, we say that the job is completed successfully; oth-
erwise, we wait until the next period An+1 when the channel
is available and restart the job. A sketch of the model de-
picting the system is drawn in Figure 2.

B
Failure-prone

channel
{An}

An > B

resend no

Figure 2: Jobs executed in system with failures.

Definition 2.1 The number of restarts for a generic job of
size B is defined as

N , inf{n : An > B}.

We are interested in computing the total service time S
until B is successfully completed, which is formally defined
as follows.

Definition 2.2 The service time is the total time until a
generic job of size B is successfully completed and is denoted
as

S ,

N−1∑

i=1

Ai +B.

We denote the complementary cumulative distribution func-
tions for A and B, respectively, as

Ḡ(x) , P(A > x) and F̄ (x) , P(B > x).

Throughout the paper, we assume that the functions Ḡ(x)
and F̄ (x) are absolutely continuous for all x > 0. We also use
the following standard notation. For any two real functions
f(x) and g(x) and fixed x0 ∈ R ∪ {∞}, we say f(x) ∼ g(x)
as x → x0, to denote limx→x0 f(x)/g(x) = 1.

3. M/G/1 QUEUE WITH RESTARTS
In this section, we discuss the stability of the M/G/1

queue under two scheduling disciplines: First Come First
Serve (FCFS) and Processor Sharing (PS). In the following
subsection, we derive the necessary and sufficient condition
for the system to be stable when the jobs are processed one
at a time and in the order they arrive in the system. Next,
in subsection 3.2, we show in Theorems 3.1 and 3.2 that the
M/G/1 PS queue is unstable.

3.1 First Come First Serve Queue
In the FCFS discipline, each job is processed one at a

time and therefore the expected service time for a single job
is given from Definition 2.2 as

E[S] = E

[
N−1∑

i=1

Ai +B

]

.

Note that N , inf{n : An > B} is a well defined stopping
time for the process (A, {An}n>1), and thus the expected
service time follows from Wald’s identity as

E[S] = E

[
N∑

i=1

Ai − AN +B

]

= E[N ]E[A]− E[AN ] + E[B].

Now, assuming that the availability periods A are exponen-
tially distributed with rate µ (Poisson failures), the expected
service time is given by

E[S] = E[N ]E[A]− (E[A] + E[B]) + E[B]

= (E[N ]− 1)E[A], (3.1)

since E[AN ] = E [E[A|A > B]] = E[A+B] = E[A]+E[B], due
to the memoryless property of the exponential distribution.

The necessary and sufficient condition for the stability of
the M/G/1 FCFS queue is

λE[S] < 1.

Now, let the jobs be fixed and all equal to some positive
constant β > 0. Since A is exponentially distributed with
rate µ, then

P[N > n] = P(A 6 β)n = G(β)n,

and thus, the expected number of restarts is

E[N ] =

∞∑

n=0

P[N > n] =

∞∑

n=0

G(β)n = Ḡ(β)−1 = eµβ . (3.2)

Furthermore, for fixed jobs B = β, we can compute ex-
plicitly E[S] without the exponential assumption on A. To
this end, note that

E[S] = E

[
N−1∑

i=1

Ai + β

]

= E

[ ∞∑

n=2

1{N=n}

n−1∑

i=1

Ai + β

]

= E

[ ∞∑

n=2

1{A1<β,A2<β,...,An−1<β,An>β}

n−1∑

i=1

Ai

]

+ β

=

∞∑

n=2

E

(
n−1∑

i=1

Ai1{A1<β,A2<β,...,An−1<β,An>β}

)

+ β,

and since (A, {Ai}i>1) are i.i.d, we obtain

E[S] =

∞∑

n=2

(n− 1)E
[
A1{A<β}

]
P(A < β)n−2

P(A > β) + β

=

∞∑

n=2

(n− 1)E
[
A1{A<β}

]
P(N = n− 1) + β,

where we recall that P(N = n) = P(A < β)n−1
P(A > β), by

definition, and thus,

E[S] = E
[
A1{A<β}

]
∞∑

n=1

nP(N = n) + β

= E
[
A1{A<β}

]
E[N ] + β. (3.3)

Hence, for exponential A, the preceding expression (or
(3.1)) yields

E[S] = (eµβ − 1)µ−1,
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and the stability region reduces to

λE[S] = λµ−1(eµβ − 1) < 1. (3.4)

Note that E[S] > µ−1µβ = β, where λβ < 1 gives the
stability region of the ordinary M/G/1 queue without fail-
ures. We observe that as the jobs grow in size, the stability
region shrinks. In other words, the larger the β, the slower
the arrival rate the queue can accommodate. For FCFS
scheduling, if it is not possible to adjust the arrival rate,
we could potentially decrease the job sizes, e.g. apply frag-
mentation techniques, in order to maintain a large stability
region without generating too much overhead, resulting from
dividing a single job into many smaller ones.

3.2 Instability of Processor Sharing Queue
Here, we show in Theorems 3.1 and 3.2 that the M/G/1

PS queue is unstable when jobs need to restart after fail-
ures. We prove that the queue size grows to infinity for gen-
eral job size distributions, when the jobs have a minimum
size. First, in Theorem 3.1, we assume that the job sizes are
bounded from below by some positive constant β. This is a
natural assumption for communication or computing appli-
cations where jobs, e.g. files, packets, threads, must have a
header to contain the required information, such as destina-
tion address, thread id, etc. Hence, the job sizes, in practice,
cannot be smaller than a positive constant. Finally, we drop
this requirement and prove the instability result in general;
see Theorem 3.2.

In this section, we will assume that A has finite first mo-
ment, e.g. EA < ∞. Here, we can assume that the failure
process is in stationarity, or more generally, that the first
failure occurs at time 0 6 A0 < ∞ a.s. and that the time
between subsequent failures i and i+1, is Ai, where {Ai}i>1

are i.i.d., independent of A0. If A0 is the excess distribution
of A1, then the failure process is stationary. The following
Theorem 3.1 shows that the queue is unstable, i.e. its size
grows to infinity. Let Qt be the queue size at time t.

Theorem 3.1 If EA < ∞ and P[B > β] = 1, β > 0, then
the M/G/1 PS queue is unstable, i.e., for any Q0 < ∞,
almost surely

Qt → ∞ as t → ∞.

Remark 1 Although in many applications job arrival times
are well modeled by Poisson processes, our result can be
generalized to more general arrivals at the expense of addi-
tional technical complications. Here, we avoid this analysis
for simplicity reasons, but defer it to the extended version
of the paper.

Remark 2 By carefully examining the proof, it can be seen
that stronger statements about instability can be derived,
i.e.

lim
t→∞

P(no job ever completes service after time t) = 1.

This, along with other generalizations, will be developed in
the journal version of the paper.

Proof: First, we begin with a preliminary result. We
assume that there are at least k jobs in the queue and there
is a failure at time t = 0, and provide a lower bound on the

probability that any job departs the system. Specifically, we
show that, given Q0 > k,

P(no job ever completes service)

> 1−H(EA1(A > βk) + e−θk), (3.5)

for some H,θ > 0 and all k large.
Let T1 =

∑ck
i=1 Ai be the cumulative time that includes

the first ck failures; to simplify notation we write
∑y

x to

denote
∑⌊y⌋

⌈x⌉, where ⌈x⌉ is the smallest integer > x and

⌊y⌋ is the largest integer 6 y. Now, define the event A1 ≡
A1(k) , {A1 < βk,A2 < βk, . . . , Ack < βk}. On this event,
no job can leave the system since Q0 > k and all of them are
at least of size β. Thus, if they were served in isolation, they
could not have completed service in the first ck attempts.

Now, let E1 denote the event that there is no departure
in the first ck attempts and there are at least k arrivals
in (0, T1]; we use Z(t0,t1] to denote the number of Poisson
arrivals in the interval (t0, t1], whereas we simply write Zt

for intervals (0, t]. Formally,

E1 ⊃ E1 , {ZT1 > k,A1},
on the set {Q0 > k}. Now, observe that

P(E1) > P(ZT1 > k, T1 > 2k/λ,A1)

> P(Z2k/λ > k, T1 > 2k/λ,A1)

> P(Z2k/λ > k)P(T1 > 2k/λ,A1),

since Poisson arrivals are independent of the failure process.
Thus,

P(E1) > P(Z2k/λ > k) (P(A1)− P(T1 < 2k/λ)) .

First, note that

P(Z2k/λ > k) = 1− P(Z2k/λ < k) = 1− P(2k − Z2k/λ > k)

> 1− e−θk
Eeθ(2k−Z2k/λ) = 1− eθkEe−θZ2k/λ ,

by Cramer’s bound for θ > 0. Next, observe that Z2k/λ is
Poisson with rate 2k and thus

P(Z2k/λ > k) > 1− eθke2(e
−θ−1)k = 1− e−θ1k,

where θ1 = 2(1− e−θ)− θ > 0, for θ small.
Second, observe that

P(T1 < 2k/λ) = P

(
ck∑

i=1

Ai < 2k/λ

)

= P

(
ck∑

i=1

(Ai − EA) < 2k/λ − ckEA

)

6 P





3k/λEA
∑

i=1

(EA− Ai) > k/λ



 ,

by picking c , 3/(λEA). Now, let Xi , EA−Ai, which are
bounded from above since Xi 6 EA < ∞, from our main
assumption. Therefore, Cramer’s large deviation bound im-
plies that

P(T1 < 2k/λ) 6 P





3k/λEA
∑

i=1

Xi > k/λ



 6 H2e
−θ2k,

170



for some H2, θ2 > 0.
Therefore,

P(E1) > (1− e−θ1k)
(

P(A1)−H2e
−θ2k

)

> P(A < βk)ck − (e−θ1k +H2e
−θ2k −H2e

−(θ1+θ2)k)

> (1− P(A > βk))ck −He−θk,

where θ = min(θ1, θ2) and H > 0 such that H < (1 + H2).
Next, using 1− x > e−2x for small x, we have for all k > k0

P(E1) > e−2ckP(A>βk) −He−θk

> 1− 2ckP(A > βk)−He−θk

> e−4ckP(A>βk)−2He−θk

.

Next, at time T1 = T1, on event E1, the queue has at
least 2k jobs, i.e. QT1 > 2k, and no jobs have departed.

Similarly as before, let T2 =
∑3ck

i=ck+1Ai be the cumulative
time that includes the next 2ck failures, and define A2 ≡
A2(k) , {Ack+1 < 2βk, Ack+2 < 2βk, . . . , A3ck < 2βk}.
The probability that no job departs in (0, T2], where T2 =
T1 + T2, is lower bounded by

P(no job departs in(0, T2])

> P(ZT1 > k, A1, QT1 > 2k, Z(T1,T2] > 2k, A2)

> P(ZT1 > k, A1, ZT2 > 2k, A2), (3.6)

since {QT1 > 2k} ⊇ {ZT1 > k,A1} on the set {Q0 > k}.
Now, if E2 is the event that there is no departure in

the next 2ck attempts and there are at least 2k arrivals in
(T1, T2], then E2 ⊃ E2 , {ZT2 > 2k,A2}; note that E2 is
independent of E1. Via identical arguments as before, we
obtain

P(E2) > P(ZT2 > 2k, T2 > 4k/λ,A2)

> P(Z4k/λ > 2k) (P(A2)− P(T2 < 4k/λ))

> e−8ckP(A>2βk)−2He−2θk

.

Therefore, at time T2, on event E1 ∩ E2, there are at least
4k jobs.

In general, for any n, we can extend the reasoning from
(3.6) to obtain

P(no job departs in(0, Tn])

> P(ZT1 > k,A1, ZT2 > 2k, A2, . . . , ZTn > 2n−1k, An)

= P(E1 ∩E2 ∩ · · · ∩ En),

where En = {ZTn > 2n−1k, An} and Tn =
∑(2n−1)ck

i=(2n−1−1)ck+1
Ai.

Similarly,

P(En) > e−2n+1ckP(A>2n−1βk)−2He−θ2n−1k

.

Hence, we obtain

P(E1 ∩E2 ∩ · · · ∩En) > P(E1 ∩E2 ∩ · · · ∩ En)

= P(E1)P(E2) · · ·P(En),

since the events Ei’s are independent. Thus,

P(E1 ∩E2 ∩ · · · ∩En)

>
n∏

i=1

e−2i+1ckP(A>2i−1βk)−2He−2i−1θk

= e−4
∑n−1

i=0
2ickP(A>2iβk)−2H

∑n−1
i=0

e−2iθk

> e−4
∑

∞

i=0 2ickP(A>2iβk)−2He−θk ∑
∞

i=0 e−(2i−1)θk

.

Now, observe that
∑∞

i=0 e
−(2i−1)θk < ∞, and thus we can

pick H such that

P(E1 ∩E2 ∩ · · · ∩En) > e−4
∑

∞

i=0 2ickP(A>2iβk)−He−θk

.

Furthermore, we observe that

∞∑

i=0

2ickP(A > 2iβk) 6
c

β

∞∑

i=0

βk

∫ 2i+1

2i
P(A > xβk)dx

6
c

β
βk

∫ ∞

1

P(A > xβk)dx

=
c

β

∫ ∞

βk

P(A > y)dy =
c

β
EA1(A > βk).

and thus

P(E1 ∩ E2 ∩ · · · ∩En) > e−4cβ−1
EA1(A>βk)−He−θk

> 1−H(EA1(A > βk) + e−θk),

which further implies, by monotone convergence, that

P(∩∞
i=1Ei) = lim

n→∞
P(E1 ∩E2 ∩ · · · ∩ En)

> 1−H(EA1(A > βk) + e−θk).

Hence, (3.5) follows directly since, by definition,

P(no job ever completes service) > P(∩∞
i=1Ei).

Now, we are ready to finalize our proof. For any k > 1,
let Tk be the first time that there are k jobs in the queue
and a failure occurs. Tk is almost surely finite since it is
upper bounded by the time T̄k that there are at least k
arrivals in an open interval of size β just before a failure.
The probability of this event is P(Zβ > k) > 0.

Next, for any fixed time t, we obtain

P(no job leaves after time t)

> P(Tk 6 t,no job leaves after Tk)

= E[P(Tk 6 t|QTk ,B)P(no job leaves after Tk|QTk ,B)]
> P(Tk 6 t)(1− ǫ), (3.7)

where B , {BTk
1 , . . . , B

Tk
QTk

} denotes the job sizes that are

present in the queue at time Tk; the last inequality follows
from (3.5) by letting k → ∞ and observing that EA1(A >
βk) → 0; the equality follows from the fact the event {no
job leaves after Tk} is independent of the past, i.e. Tk 6 t,
given QTk ,B. Next, recall that Tk is almost surely finite, i.e.
limt→∞ P(Tk 6 t) = 1, and thus taking the limit as t → ∞
and letting ǫ ↓ 0 in (3.7) yields

lim
t→∞

P(no job leaves after time t) = 1.

Last, note that the number of arrivals Zt → ∞ as t → ∞
a.s. and, without loss of generality, we can assume that
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Zt(ω) → ∞ as t → ∞ for every ω (by excluding the set of
zero probability). Then, for any v > 0,

{no job ever leaves after time v} ⊂ {Qt → ∞ as t → ∞}.
Now, since there are no departures, the rate of increase of
Qt is equal to the arrival rate, and thus Qt → ∞. Hence,

P(Qt → ∞ as t → ∞) > P(no job ever leaves after time v)

and by passing v → ∞, we obtain

P(Qt → ∞ as t → ∞) > lim
v→∞

P(no job ever leaves after v)

= 1.

✷

Finally, we show instability, in general, without the con-
dition P[B > β] = 1.

Theorem 3.2 In the M/G/1 PS queue, if EA < ∞ and
B > 0 a.s., we have as t → ∞,

Qt → ∞ a.s.

Remark 3 Note that B > 0 a.s. is just a non-triviality con-
dition that excludes zero-sized jobs, i.e. non-existent ones.

Proof: First, by assumption, we can pick β > 0 such that
P[B > β] > 0. Then, for any time t, let Qβ

t be the number of
jobs whose size is at least β, i.e. they satisfy P[B > β] = 1,

and qβt be the number of jobs that are smaller than β. Hence,

Qt = Qβ
t + qβt > Qβ

t
,

where Qβ

t
is the queue in a system with the same arrival

process where jobs of size B > β are served in isolation.
By Theorem 3.1, Qβ

t
→ ∞ a.s., and, therefore, we obtain

Qt → ∞ a.s. ✷

3.2.1 Extension to DPS

In modern system design, PS cannot capture the hetero-
geneity of users, which is associated with unequal sharing of
resources. Hence, we discuss the Discriminatory Processor
Sharing (DPS) queue which is a multi-class generalization
of the PS queue: all jobs are served simultaneously at rates
that are determined by a set of weights wi, i = 1, . . . , K. If
there are nj jobs in class j, each class-k job receives service

at a rate ck = wk/
∑K

j=1 wjnj .
DPS has a broad range of applications. In computing, it

is used to model Weighted-Round-Robin (WRR) schedul-
ing. In communication networks, DPS is used for modeling
heterogenous, e.g. with different round trip delays, TCP
connections. Despite the fact that the PS queue is well un-
derstood, the analysis of DPS has proven to be very hard;
yet, our previous result on PS is easily extended to DPS in
the corollary below.

Corollary 3.1 Under the conditions in Theorem 3.2, the
Discriminatory Processor Sharing (DPS) queue is also al-
ways unstable.

Proof: Without loss of generality, assume that the set
of weights is ordered such that w1 6 w2 . . . 6 wK . In the

M/G/1 DPS queue, the service allocation at any given time
t for a single customer in class k is given by

ck(t) =
wk

∑K
i=1 wini(t)

6
wk

w1

∑K
i=1 ni(t)

6
wK

w1Qt
.

Note that c(t) = wK/(w1Qt) is the service rate in a PS
queue with capacity c = wK/w1 > 1. Therefore, each class-
k job, k = 1 . . .K, in the DPS queue is served at a lower
rate than the rate c of the PS queue. Hence,

QDPS
t > Q

PS(c)
t ,

and since, under the conditions in Theorem 3.2, the PS
queue is always unstable, it follows that the DPS queue is
also unstable. ✷

4. TRANSIENT BEHAVIOR - SCHEDULING

A FINITE NUMBER OF JOBS
In the previous section, we focused on the steady state

behavior of the M/G/1 queue and proved that PS is always
unstable for failure distributions with finite first moment. In
this section, in order to gain further insight into this system,
we study its transient behavior. In this regard, we consider
a queue with a finite number of jobs and no future arrivals
and compute the total time until all jobs are completed. In
Subsections 4.1 and 4.2, we analyze the system performance
when the jobs are served one at a time and when Processor
Sharing (PS) is used, respectively. More precisely, for a finite
number of jobs with sizes Bi, 1 6 i 6 m, and assuming no
future arrivals, we study the completion time Θm until all
m jobs complete their service.

Note that in the case of traditional work conserving schedul-
ing systems the completion time does not depend on the
scheduling discipline and is always simply equal to

∑m
i=1 Bi.

However, in channels with failures there can be a stark differ-
ence in the total completion time depending on the schedul-
ing policy. This difference can be so large that in some
systems the expected completion time can be infinite while
in others finite, or even having many high moments.

Overall, we discover that, with respect to the distribu-
tion of the total completion time Θm, serving one job at
a time exhibits uniformly better performance than PS; see
Theorems 4.2 and 4.3. Furthermore, when the hazard func-
tions of the job and failure distributions are proportional,
i.e. log F̄ (x) ∼ α log Ḡ(x), we show that PS performs dis-
tinctly worse for the light-tailed job/failure distributions as
opposed to the heavy-tailed ones, see parts (i) and (ii) of
Theorem 4.3.

Before presenting our results, we restate the following the-
orem on the logarithmic asymptotics of the service time S
(from Definition 2.2), which appears in [12].

Theorem 4.1 If log F̄ (x) ∼ α log Ḡ(x) for all x > 0 and
α > 0, and E[A1+θ] < ∞ for some θ > 0, then

lim
t→∞

log P[S > t]

log t
= −α as t → ∞. (4.1)

Remark 4 By examining the proof of Theorem 4.1 in [12],

it is easy to check that S̄ =
∑N

i=1 Ai > S, which includes
the time from the job completion until the next failure, also
satisfies (4.1).
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4.1 Serving One Job at a Time
In this subsection, we consider the failure-prone system

that was introduced in Section 2, with unit capacity. The
jobs are served one at a time, e.g. First Come First Serve
(FCFS). Herein, we analyze the performance of this system
assuming that, initially, there are m jobs in the queue and
there are no future arrivals. Specifically, we study the total
completion time, which is defined below.

Definition 4.1 The total completion time is defined as the
total time until all the jobs are successfully completed and is
denoted as

Θm ,

m∑

i=1

Si,

where m is the total number of jobs in the system and Si is
the service requirement for each job.

Next, we define the forward recurrence time, i.e. the elapsed
time between some fixed t0 until the time that the next
failure occurs after t0.

Definition 4.2 Let Lt be the number of failures in the in-
terval (0, t), i.e. the number of regenerative points of the re-
newal process (A, {An}n>1). The forward recurrence time,
which corresponds to the elapsed time until the next failure
after time t, is defined as

τt :=

Lt+1∑

n=1

An − t. (4.2)

In the following theorem, we prove that the tail asymp-
totics of the total completion time, from Definition 4.1, un-
der this policy is a power law of the same index as the service
time of a single job.

Theorem 4.2 If log F̄ (x) ∼ α log Ḡ(x) for all x > 0 and
α > 0, and E[A1+θ] < ∞ for some θ > 0, then

lim
t→∞

log P[Θm > t]

log t
= −α.

Proof: Recall that the service requirement for a job Bi

was previously defined as Si =
∑Ni−1

j=1 Aj +Bi.
For the lower bound, we observe that

P[Θm > t] > P[S1 > t],

since the total completion time is at least equal to the service
time of a single job. By taking the logarithm and using
Theorem 4.1, we have

log P[Θm > t]

log t
> −(1 + ǫ)α. (4.3)

For the upper bound, we compare Θm with the completion
time in a system where the server is kept idle between the
completion time of the previous job and the next failure.
Clearly,

Θm 6 Θ̄m ,
m∑

i=1

S̄i, (4.4)

where S̄i ,
∑Ni

j=1 Aj are the service times that include the
remaining availability period ANi . We prove this intuitive
claim more formally by induction in the appendix.

Then, we argue that

P[Θm > t] 6 P

[
m∑

i=1

S̄i > t

]

6 mP

[

S̄1 >
t

m

]

,

which follows from the union bound. By taking the loga-
rithm and using Theorem 4.1, we have

log P[Θm > t]

log t
6 −α(1− ǫ) +

logm

log t
6 −(1− 2ǫ)α, (4.5)

where we pick t large enough such that log t > logm/(αǫ).
Letting ǫ → 0 in both (4.3) and (4.5) finishes the proof.

✷

4.2 Processor Sharing Discipline
In this subsection, we analyze the Processor Sharing dis-

cipline where m jobs share the (unit) capacity of a single
server. We present our main theorem on the logarithmic
scale, which shows that the tail asymptotics of the total
completion time is determined by the shortest job in the
queue. In particular, under our main assumptions, this time
is a power law, but it exhibits a different exponent depend-
ing on the job size distribution.

• If the jobs are subexponential (heavy-tailed) or expo-
nential, the total delay is simply determined by the
time required for any single job to complete its ser-
vice, as if it was the only one present in the queue.

• If the jobs are superexponential (light-tailed), the total
delay is determined by the service time of the short-
est job. This job generates the heaviest asymptotics
among all the rest.

Our main result, stated in Theorem 4.3 below, shows that
on the logarithmic scale the distribution of the total com-
pletion time ΘPS

m is heavier by a factor mγ−1 for superex-
ponential jobs relative to the subexponential or exponential
case. Therefore, in systems with failures and restarts, shar-
ing the capacity among light-tailed jobs induces long delays,
whereas, for heavy-tailed ones, PS appears to perform as
good as serving the jobs one at a time. Interestingly enough,
this deterioration in performance is determined by the time
it takes to serve the shortest job in the system.

Note that in a PS queue with no future arrivals, the short-
est job will depart first. Immediately after this, the server
will continue serving the remainingm−1 jobs, and, similarly,
the shortest job, i.e. the second shortest among the origi-
nal m jobs, will depart before all the others. This pattern
will continue until the departure of the largest job, which is
served alone.

Theorem 4.3 Assume that the hazard function − log F̄ (x)
is regularly varying with index γ > 0. If log F̄ (x) ∼ α log Ḡ(x)
for all x > 0 and α > 0, and E[A1+θ] < ∞ for some θ > 0,
then

(i) if γ 6 1, i.e. B is subexponential or exponential, then

lim
t→∞

− log P[ΘPS
m > t]

log t
= α,
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(ii) if γ > 1, i.e. B is superexponential, then

lim
t→∞

− log P[ΘPS
m > t]

log t
=

α

mγ−1
< α.

Remark 5 When α > 1, we easily verify that E[ΘPS
m ] < ∞

in case (i), and the system is stable; if the jobs are superex-
ponential, e.g. case (ii), then E[ΘPS

m ] = ∞ if α < mγ−1.

Proof: Let B(1) 6 B(2) 6 . . . 6 B(m) be the order statis-
tics of the jobs B1, B2, . . . , Bm.

The assumption that − log F̄ (x) is regularly varying with
index γ implies that

log F̄ (λx) ∼ λγ log F̄ (x), (4.6)

for any λ > 0.
We begin with the lower bound.
(i) Subexponential or exponential jobs (γ 6 1).

The total completion time is lower bounded by the time re-
quired for a single job to depart when it is exclusively served,
e.g. if the total capacity of the system is used. Hence, it fol-
lows that

P[ΘPS
m > t] > P[S1 > t], (4.7)

where S1 is the service time of a single job of random size B1,
when there are no other jobs in the system. Now, recalling
Theorem 4.1, it holds that

lim
t→∞

log P[S1 > t]

log t
= −α.

By taking the logarithm in (4.7), the lower bound follows
immediately.

(ii) Superexponential jobs (γ > 1).
The total completion time is lower bounded by the delay
experienced by the shortest job, and hence,

P[ΘPS
m > t] > P[SPS

1 > t], (4.8)

where SPS
1 is the service time of the smallest job B(1). First,

note that the distribution of B(1) is given by

P(B(1) > x) = P(B1 > x,B2 > x, . . . , Bm > x)

= P(B1 > x)P(B2 > x) · · ·P(Bm > x)

= P(B1 > x)m = F̄ (x)m, (4.9)

since Bi, i = 1, . . . ,m, are independent and identically dis-
tributed. Now, the service time SPS

1 is determined by the
number of failures this job has experienced, i.e.

P[N1 > n] = E

[

P

(

B(1) >
A

m

)]n

= E

(

1− Ḡ(mB(1))
)n

,

and, using (4.9) and (4.6), together with our main assump-
tion, we observe that

log P(mB(1) > x) = m log F̄
( x

m

)

∼ m1−γ log F̄ (x) ∼ αm1−γ log Ḡ(x).

Then, Theorem 4.1 applies with α/mγ−1 6 α, i.e.

lim
t→∞

log P[SPS
1 > t]

log t
= − α

mγ−1
.

Next, we derive the upper bound. To this end, we consider
a system where the server is kept idle after the completion

of each job until the next failure occurs. At this time, all the
remaining jobs are served under PS until the next shortest
one departs. If there are more than one jobs of the same
size, only one of these departs. Under this policy, it clearly
holds that

ΘPS
m 6

m∑

i=1

S̄PS
i ,

where S̄PS
i corresponds to the service time of the ith smallest

job and includes the time until the next failure.
Using the union bound, we obtain

P[ΘPS
m > t] 6 P

[
m∑

i=1

S̄PS
i > t

]

6 (1 + ǫ)

m∑

i=1

P

(

S̄PS
i >

t

m

)

.

(4.10)

It is easy to see that the service time of the ith smallest job
B(i) depends on the number of jobs that share the server,
i.e. m− i+ 1, since m− i jobs have remained in the queue.
Now, the distribution of the ith shortest job is derived as

P(B(i) > x) =
i−1∑

k=0

(

m

k

)

P(B1 6 x)kP(B1 > x)m−k

∼
(

m

i− 1

)

P(B1 > x)m−i+1 ∼ F̄ (x)m−i+1.

(4.11)

The number of restarts for the ith smallest job, Ni, is
computed as

P[Ni > n] = E

[

P

(

B(i) >
A

m− i

)]n

= E

(

1− Ḡ((m− i+ 1)B(i))
)n

.

Next, starting from (4.11), it easily follows that

log P
(

(m− i+ 1)B(i) > x
)

∼ log F̄

(
x

m− i+ 1

)m−i+1

∼ (m− i+ 1)1−γ log F̄ (x)

∼ α(m− i+ 1)1−γ log Ḡ(x),

where we use (4.6) and our main assumption and define

αi , α/(m − i)γ−1.
Now, recalling Theorem 4.1 and Remark 4 after it, we

have

log P[S̄PS
i > t]

log t
→ αi as t → ∞,

and thus (4.10) yields

log P[ΘPS
m > t]

log t
6 −(1− ǫ) min

i=1...m
αi,

for all t > t0.
(i) Subexponential or exponential jobs (γ 6 1).

Observe that min
i=1...m

αi = α, and thus

log P[ΘPS
m > t]

log t
6 −(1− ǫ)α. (4.12)
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(ii) Superexponential jobs (γ > 1).
In this case, min

i=1...m
αi = α/mγ−1, and thus

log P[ΘPS
m > t]

log t
6 −(1− ǫ)

α

mγ−1
. (4.13)

Letting ǫ → 0 in (4.12) and (4.13), we obtain the upper
bound. ✷

5. SIMULATION
In this section, we present our simulation experiments in

order to demonstrate our theoretical findings. All the exper-
iments result from N = 108 (or more) samples of each sim-
ulated scenario; this guarantees the existence of at least 100
occurrences in the lightest end of the tail that is presented
in the figures. First, we illustrate the instability result from
Theorem 3.1 of Section 3.

0 0.5 1 1.5 2

x 10
6

0

1

2

3

4

5

6

7

8

9

10
x 10

4

time

Jo
bs

 S
er

ve
d

 

 

λ = 1/5
λ = 1/6
λ = 1/8
λ = 1/10

Figure 3: Example 1. Jobs served over time.

Example 1. M/G/1 PS is unstable. In this example, we
show that the PS queue becomes unstable by simulating the
M/G/1 PS queue for different arrival rates λ > 0, which all
satisfy the stability condition for the M/G/1 FCFS queue,
when jobs are served one at a time. In this regard, we assume
constant job sizes β = 1 and Poisson failures of rate µ =
1/20. Therefore, by evaluating (3.4), we obtain

λE[S] = λµ−1(eµ − 1) = 20(e0.05 − 1)λ = 1.025λ < 1,

or equivalently the stability region for the FCFS queue is
given by Λ = {λ 6 0 : λ < 0.9752}. Hence, in this example,
we use λ from the FCFS stability region, λ ∈ Λ.

In Fig. 3, we plot the number of jobs that have received
service up to time t. We observe that the cumulative number
of served jobs always converges to a fixed number and does
not increase any further. This happens after some critical
time when the queue starts to grow continuously until it
becomes unable to drain. For larger values of λ, the system
saturates faster meaning that the cumulative throughput at
the saturated state is lower.

Furthermore, we observe from the simulation that the sys-
tem behaves as if it were stable until some critical time or
queue size after which it is unable to drain. From Fig. 3, we

can see that the case λ = 10−1 saturates at time t = 106 and
the total number of served jobs reaches 105. Hence, the de-
parture rate until saturation time is 105/106 = 10−1, which
is exactly equal to the arrival rate λ = 10−1, corresponding
to the departure rate of a stable queue. This further em-
phasizes the importance of studying the stability of these
systems since, at first glance, they may appear stable.
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Figure 4: Example 1. Queue size over time.
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Figure 5: Example 1. Queue size for small t. It

zooms in the time range [0, 106] of Fig. 4; Qt (y-axis) is

shown on the logarithmic scale.

Fig. 4 demonstrates the queue size evolution over time.
Similarly as in Fig. 3, we observe that for any arrival rate
λ, there is a critical time after which the queue continues
to grow and never empties. This time varies depending on
the simulation experiment; yet, on average, we observe that
the queue remains stable for longer time when λ is smaller.
Now, we zoom in on the queue evolution on the logarithmic
scale in Fig. 5. Again, we observe that the queue looks stable
until some critical time/queue size.
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Figure 6: Example 1. Queue size over time param-
eterized by fragment length; β = 2, λ = 0.1.

Last, in Fig. 6, we plot the queue evolution for different
job sizes, namely β = 1, 1.2, 1.5 and 2. We observe that
larger job fragments cause instability much faster than the
smaller units. For example, β = 2 leads to instability almost
immediately, while β = 1.5 renders the queue unstable after
104 time units. Similarly, reducing the fragment size by
60% delays the process by an additional 3×104 units. Last,
cutting the jobs in half causes instability after approximately
13 × 104 time units. This implies that one should apply
fragmentation with caution in order to select the appropriate
fragment size that will maintain good system performance
for the longest time.
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Figure 7: Example 2. Queue size over time param-
eterized by job size; β = 4.

Example 2. General arrivals. In this example, we con-
sider non-Poisson arrivals. We assume that the failure dis-
tribution is exponential with mean EA = 10 and that jobs
interarrival times follow the Pareto distribution with α = 2
and mean EA = 10.1. Similarly as in the previous example,

Fig. 7 shows the queue evolution with time for different job
sizes β.

Next, we validate the results on the transient analysis from
Section 4.

Figure 8: Example 3. FCFS: Logarithmic asymp-
totics when α = 2 for exponential, superexponential
(γ > 1) and subexponential (γ < 1) distributions.

Example 3. Serving one job at a time/FCFS: Always
the same index α. In this example, we consider a queue
of m = 10 jobs, which are served First Come First Serve
(FCFS), i.e. one at a time. The logarithmic asymptotics
from Theorem 4.1 implies that the tail is always a power
law of index α = 2.

In Fig. 8, we plot the distribution of the total completion
time in a queue with 10 jobs that are processed one at a time.
On the same graph, we plot the logarithmic asymptotics
(dotted lines) that correspond to a power law of index α = 2.
We consider the following three scenarios:

1. Weibull distributions with γ = 2. The failures A are

distributed according to Ḡ(x) = e−(x/µ)2 with mean
E[A] = µΓ(1.5) = 1.5, and jobs B also follow Weibull

distributions with F̄ (x) = e−(x/λ)2 , λ = µ/
√
2. In this

case, it is easy to check that the main assumption of
Theorem 4.1 is satisfied, i.e.

log F̄ (x) = −(x/λ)2 = α log Ḡ(x), α = (µ/λ)2.

2. Exponential distributions. A’s are exponential with
E[A] = 2, Ḡ(x) = e−x/2, and the jobs B are also expo-
nential of unit mean, i.e. F̄ (x) = e−x. Then, trivially,

log F̄ (x) = 2 log Ḡ(x).

3. Weibull distributions with γ = 0.5. A’s are Weibull

with Ḡ(x) = e−
√
x/2, i.e E[A] = 8. Also, we assume

Weibull jobs B with F̄ (x) = e−
√
x. Thus,

log F̄ (x) = −
√
x = 2 log Ḡ(x).

In all three cases, we obtain α = 2. Yet, we observe that the
tail asymptotics is the same regardless of the distribution of
the job sizes. For the subexponential jobs (case 3: Weibull
with γ < 1), the power law tail appears later compared
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to the case of superexponential jobs. This is because the
constant factor of the exact asymptotics is different for each
case, and it depends on the mean size of A, E[A].
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Figure 9: Example 4. Logarithmic asymptotics for
different number of superexponential jobs when α =
4 under PS and FCFS discipline.

Example 4. PS: The effect of the number of jobs. In this
example, we consider a PS queue with m = 5 and m = 2
superexponential jobs, and compare it against a FCFS queue
with m = 5 jobs. We assume superexponential job sizes B’s
and A’s, namely Weibull with γ = 2; see case 1 of Example 3.
Here α is taken equal to 4. The logarithmic asymptotics is
given in Theorems 4.2 and 4.3.

In Fig. 9, we demonstrate the total completion time ΘPS
m ,

for different number of jobs, when γ = 2. Theorem 4.2(ii)
states that α(m) = α/mγ−1 and, thus, for γ = 2 we have
α(m) = α/m, e.g. we expect power law asymptotes with
index α/m for the different values of m. On the same figure,
we also plot the FCFS completion time Θm, which is always
a power law of index α = 4, as we previously observed in
Example 3. It can be seen that PS generates heavier power
laws, for superexponential jobs. In particular, PS with m =
2 results in power law asymptotics with α(2) = 2, while PS
with m = 5 jobs leads to system instability since α(5) =
4/5 < 1.

Example 5. PS: The effect of the distribution type. In
this example, for completeness, we evaluate the impact of
the job distribution on the total completion time under both
heavy and light-tailed job sizes. To this end, we consider the
PS queue from Example 4, with m = 5 jobs, and compare it
against FCFS. In Fig. 10, we re-plot the logarithmic asymp-
totics of the total completion time P(ΘPS

m > t), for different
distribution types of the failures/jobs and index α = 4, as
before. In particular, we consider Weibull distributions as
in Example 3 with γ = 1/2 < 1 and γ = 2 > 1 for the
subexponential and superexponential cases, respectively.

On the same graph, we plot the distribution of the com-
pletion time Θm in FCFS, which is always a power law of
the same index, as illustrated in Example 3. By fixing the
number of jobs to be m = 5, Fig. 10 shows that when the
jobs are superexponential, PS yields the heaviest asymp-
totics among all three scenarios; for subexponential jobs,
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Figure 10: Example 5. Logarithmic asymptotics un-
der FCFS, PS with subexponential and superexpo-
nential jobs.

PS generates asymptotics with the same power law index as
in FCFS, albeit with a different constant factor.
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Figure 11: Example 6. Throughput vs. utilization
tradeoff.

Example 6. Limited queue: Throughput vs. overhead
tradeoff. In practice, job and buffer sizes are bounded and
therefore the queue may never become unstable. However,
our results indicate that the queue may lock itself in a ‘nearly
unstable’ state, where it is at its maximum size and the
throughput is very low. Here, we would like to emphasize
that, unlike in the case of unlimited queue size, job frag-
mentation can be useful in increasing the throughput and
the efficiency of the system. In this case, one has to be care-
ful about the overhead cost of fragmentation. Basically, each
fragment requires additional information, called the ‘header’
in the context of communications, which contains details on
how it fits into the bigger job, e.g. destination/routing infor-
mation in communication networks. Hence, if the fragments
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are too small, there will be a lot of overhead and waste of
resources. In view of this fact, one would like to optimize
the fragment sizes by striking a balance between throughput
and utilization.

In this example, we demonstrate the tradeoff between
throughput and generated overhead, assuming limited queue
size Q̃. If the newly arriving job does not fit in the queue,
i.e. the number of jobs currently in the queue is equal to
Q̃, it is discarded. We define throughput as the percentage
of the jobs that complete service among all jobs that arrive
at the M/G/1 PS queue. It basically corresponds to the
total work that is carried out in the system. On the other
hand, we define utilization as the useful work that is served
over the aggregated load in the system. Specifically, we con-
sider jobs that require a minimum size β, where β represents
the overhead, e.g. the packet header, thread id, etc. The
remaining job size, B−β, represents the useful information.

We consider different job sizes B from 0.4 up to 5 bytes,
with overhead β = 0.2. We simulate the M/G/1 PS queue

with maximum queue size Q̃ = 10 jobs for a fixed time
T = 108 time units. The arrivals are Poisson with rate 1/10
and the failures are exponential of the same rate.

In Fig. 11, we observe that for small job sizes, the through-
put is 100% and it deteriorates as the job size B increases.
In particular, when the job size exceeds 1.5, the throughput
drops exponentially. Utilization exhibits a different behav-
ior; it is low when the job size is small, i.e. the useful job
size is comparable to the overhead β, and reaches its peak
at B ≈ 1.8. After this, it starts decreasing following similar
trend as the throughput. In this case, B−β ≈ 1.5 appears to
be the optimal size for the job fragments. This phenomenon
of combining limited queue size with job fragmentation may
require further investigation.

6. CONCLUDING REMARKS
Retransmissions/restarts represent a primary failure re-

covery mechanism in large-scale engineering systems, as it
was argued in the introduction. In communication networks,
retransmissions lie at the core of the network architecture,
as they appear in all layers of the protocol stack. Similarly,
PS/DPS based scheduling mechanisms, due to their inherent
fairness, are commonly used in computing and communica-
tion systems. Such mechanisms allow for efficient and fair
resource allocation, and thus they are preferred in engineer-
ing system design.

However, our results show that, under mild conditions,
PS/DPS scheduling in systems with retransmissions is al-
ways unstable. Furthermore, this instability cannot be re-
solved by job fragmentation techniques. On the contrary,
serving one job at a time, e.g. FCFS, can be stable and its
performance can be further enhanced with fragmentation.
Interestingly, systems where jobs are served one at a time
can highly benefit from fragmentation and, in fact, their
performance can approach closely the corresponding system
without failures.

Overall, using PS in combination with retransmissions in
the presence of failures deteriorates the system performance
and induces instability. In addition, our findings suggest
that further examination of existing techniques is necessary
in the failure-prone environment with retransmission/restart
failure recovery and sharing, e.g. see Example 6.
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APPENDIX

Proof: [of (4.4) in Theorem 4.2]
We formally prove that Θm 6 Θ̄m =

∑m
i=1 S̄i. The proof

follows by induction.
n = 1 . Let τΘ1 denote the time between Θ1 until the first

failure occurs after Θ1, i.e. the time after the departure of
the first job (see also Definition 4.2). Then the total service
time for jobs B1 and B2 is

Θ2 =

{
Θ1 + τΘ1 + S2, if B2 > τΘ1

Θ1 +B2, otherwise.

If we idle the server after the successful completion of the
first job until the next failure, the total completion time will
be equal to Θ̄2 = Θ1+τΘ1+S2, since we discard the remain-
ing interval τΘ1 and start service at Θ1 + τΘ1 . Therefore,
Θ2 6 Θ̄2 (see Figure 12 for an illustration).

✲

t = 0

✻✻

B2
︷ ︸︸ ︷

Θ1

✻

Θ2 Θ1 + τΘ1

B2
︷ ︸︸ ︷

Θ̄2

Figure 12: Completion time in a failure-prone sys-
tem: Assume that there are two jobs B1 and B2 and the

first succeeds at time Θ1. In the original system, job B2

starts service immediately and completes at time Θ2, be-

fore the next failure occurs after τΘ1
time units. In the

alternate system, B2 will only start its service at time

Θ1 + τΘ1
. If B2 < τΘ2

, then Θ̄2 = Θ1 + τΘ1
+ B2.

Induction step. Assume Θn 6 Θ̄n for n < m. If Θn is the
time when the nth job is completed, then τΘn is the time
until the next failure after Θn. Now, for the following job
Bn+1, we have

Θn+1 =

{
Θn + τΘn + Sn+1, if Bn+1 > τΘn

Θn +Bn+1, otherwise.

If Θn = Θ̄n, then clearly Θ̄n+1 = Θn + τΘn +Sn+1 > Θn+1.
If Θ̄n > Θn then, by construction, job Bn+1 can start

its service after time Θn + τΘn , i.e the time that the first
failure occurs after Θn. This implies that Θ̄n > Θn + τΘn .
Now, if Bn+1 finishes before the failure occurs, then clearly
Θ̄n+1 > Θn+1. If not, it will either succeed during the pe-
riod (Θn + τΘn , Θ̄n) implying that Θn+1 6 Θ̄n+1, or it will
synchronize with the other system and Θn+1 = Θ̄n + τΘ̄n

+
Sn+1 6 Θ̄n+1. ✷
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