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ABSTRACT

Frequent failures characterize many existing communication
networks, e.g. wireless ad-hoc networks, where retransmissi-
on-based failure recovery represents a primary approach for
successful data delivery. Recent work has shown that re-
transmissions can cause power law delays and instabilities
even if all traffic and network characteristics are super-expo-
nential. While the prior studies have considered an inde-
pendent channel model, in this paper we extend the anal-
ysis to the practically important dependent case. We use
modulated processes, e.g. Markov modulated, to capture
the channel dependencies. We study the number of retrans-
missions and delays when the hazard functions of the dis-
tributions of data sizes and channel statistics are propor-
tional, conditionally on the channel state. Our results show
that the tails of the retransmission and delay distributions
are asymptotically insensitive to the channel correlations
and are determined by the state that generates the light-
est asymptotics. This insight is beneficial both for capacity
planning and channel modeling since we do not need to ac-
count for the correlation details. However, these results may
be overly optimistic when the best state is infrequent, since
the effects of ‘bad’ states may be prevalent for sufficiently
long to downgrade the expected performance.

1. INTRODUCTION
Recovery mechanisms are employed in almost all engi-

neering systems that are prone to failures. Restarting the
interrupted jobs from the beginning after a failure occurs
is a straightforward and often used failure recovery mecha-
nism. It was first shown in [3, 16] that processing light-tailed
(e.g. exponential) jobs with ‘restart’ mechanism may result
in power law delays. Furthermore, it was recognized in [9]
that widely used retransmission failure recovery in commu-
nication networks is a form of ‘restart’ mechanism and, thus,
can cause heavy-tailed (long) delays even if all data, channel
and protocol characteristics are light-tailed. In addition, it
was observed in [9] that retransmission phenomena can lead
to zero throughput and system instabilities, and therefore
need to be carefully considered for the design of fault tol-
erant communication systems, especially for wireless ad-hoc
networks, where failures are typical.
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More specifically, it has been shown that power law delays
arise in different layers of the networking architecture, where
retransmission-based protocols are used, e.g. ALOHA type
protocols in MAC layer [10, 7], end-to-end acknowledge-
ments in transport layer [8, 13] as well as in other layers
[9]. Retransmission induced heavy tails represent a novel
explanation for the broadly observed power law delays in
communication networks. For other (non-retransmission)
mechanisms that can give rise to heavy tails see [12] and the
references therein.

Previous studies consider an i.i.d model that was first in-
troduced in [3] and further studied in [1, 9, 13] to describe
the channel dynamics. In practice, communication channels
are highly correlated in the sense that they switch between
states with different characteristics. We extend the previ-
ously studied independent model [9] to the dependent case
where the availability periods depend on the channel state.
In order to capture the channel dependencies, we introduce
a modulating process, e.g. see [12], where the distributions
of the channel availability periods depend on the current
state of the channel.

The proposed model is as follows. Let {Jn}n≥1 be a sta-
tionary and ergodic modulating process with finitely many
states {1, 2, . . . ,K}. Now, let {An(k), n ≥ 1, k = 1, . . . ,K}
be a family of independent random variables, independent
of {Jn}, such that for fixed k, {An(k)}n≥1 are identically
distributed with Ḡk(x) = P(A1(k) > x). Then, we can con-
struct a modulated process An such that An := An(Jn) and
P(An > x|Jn = k) = Ḡk(x). At each available period An,
we transmit a generic data unit of size L; if An > L, the
transmission is successful, else we wait until the next period
An+1 to retransmit. We study the asymptotic properties of
the distribution of the number of retransmissions N when

log P(L > x) ≈ αk log P(An > x|Jn = k), (1)

k = 1, . . . ,K; see Subsection 1.1 for a more detailed descrip-
tion of the preceding model.

We show that when the channel is correlated, or less for-
mally, when it alternates between different states, the tail
asymptotics is determined by the properties of the ‘best’
channel state, e.g. the state that generates the lightest
asymptotics in the corresponding independent channel model.
Intuitively, as the channel switches between states, a large
data unit is more likely to be transmitted when the channel
is ‘good’. Specifically, the ‘best’ availability periods corre-
spond to the state with the largest αk [as defined in (1)]
among 1, . . . ,K. Undoubtedly, this is an optimistic obser-
vation which further implies that instabilities (infinite ex-

Performance Evaluation Review, Vol. 41, No. 2, September 2013 15



pected delay) can be eliminated as long as there exists at
least one state with α > 1.

From an engineering perspective, this optimistic best case
scenario prediction and the apparent insensitivity to the
structure of the channel correlations can be very promis-
ing in system analysis and design. The result implies that
the initial i.i.d. model might be sufficient for modeling, and
can also be extended to even more complex failure-prone
networks. However, this is partially true as there are cer-
tain circumstances under which this claim underestimates
the intricacies of the system.

Specifically, the lighter tail does not guarantee consis-
tently good behavior for the entire body of the delay distri-
bution. As discussed in [5, 6] in a different context, the delay
distribution of bounded documents will always have a light
exponential tail. However, the main body of the distribution
can be a power law which may determine the performance
in the relevant range of probabilities. Similarly here, the tail
is determined by the lightest power law (largest value of αk

in (1)). However, when the corresponding channel state is
rare, the main body of the retransmission distribution can
be dominated by the heavier power laws resulting from the
‘bad’ states. Hence, the system performance may be much
worse than predicted by the tail. Therefore, when the best
case scenario is atypical, we need to pay closer attention to
the channel correlations. We provide further discussions and
some preliminary analysis of this situation in Section 4.

In engineering, our results can be used both for modeling
and system design. In view of the observed insensitivity and
state space reduction, it is likely that this analysis can be
extended to more complex networks or multi-channel sys-
tems that are characterized by frequent failures and corre-
lated states. The results may be applied in designing new
protocols, or developing new fragmentation schemes [11, 14]
specifically for correlated channels. A dynamic fragmenta-
tion technique (see [11]) is more likely to exhibit better per-
formance in a channel with high variability. In addition, the
explicit approximation presented in [6] could be combined
with the analytical results of this paper in order to accu-
rately estimate the optimal sizes of the packet fragments.

The paper is organized as follows. In the following Sub-
section 1.1, we formally describe the model and introduce
the necessary definitions and notation, while in Section 2,
we present our main theorems, on both the logarithmic and
the exact scale. Next, Section 3 includes our simulation ex-
periments that verify our analytic approximations. Last, in
Section 4, we discuss the engineering implications of our re-
sults and provide some insight on the situation when the
‘best case’ scenario occurs rarely, while Section 5 contains
some of the proofs.

1.1 Description of the Channel
In this section, we formally describe our model and pro-

vide necessary definitions and notation. Consider transmit-
ting a generic data unit of random size L over a channel
with failures. Without loss of generality, we assume that the
channel is of unit capacity. The channel dynamics is mod-
eled as follows. Let {Jn}n≥1 be a stationary and ergodic
modulating process with finitely many states {1, 2, . . . ,K}.
Let πk = P(Jn = k) denote the stationary probability that
the process is in state k, k = 1 . . .K; let J be a generic ran-
dom variable whose distribution is given by πk = P(J = k).

Now, define a family of independent random variables

{An(k), n ≥ 1, k = 1, . . . ,K}, independent of the modu-
lating process {Jn}. In addition, for fixed k, {An(k)}n≥1

are identically distributed with Gk(x) = P(A1(k) ≤ x).
Then, we construct a modulated process An such that An :=
An(Jn) and P(An ≤ x|Jn = k) = Gk(x). Note that the con-
structed process {An} is also stationary and ergodic.

At each period of time that the channel becomes avail-
able, say Ai, we attempt to transmit a generic data unit of
size L. If Ai > L, we say that the transmission is success-
ful; otherwise, we wait until the next period Ai+1 when the
channel is available and attempt to retransmit the data from
the beginning. A sketch of the model depicting the system
is drawn in Figure 1.

L

Channel with

failures

{An(J), J}

Is An > L?

no

yes
success

Figure 1: Packets sent over a channel with failures

We are interested in computing the number of attempts
N (retransmissions) that are required until L is successfully
transmitted, which is formally defined as follows.

Definition 1.1. The total number of retransmissions for
a generic data unit of length L is defined as

N := inf{n : An > L}.
Moreover, we define the total transmission time.

Definition 1.2. The total transmission time is defined
as the total time until the data unit L is successfully delivered
and is denoted as

T :=

N−1∑
i=1

Ai + L.

We denote the conditional complementary cumulative dis-
tribution functions for {An}n≥1 and L, respectively, as

Ḡk(x) := 1−Gk(x) = P(An > x|Jn = k)

and

F̄ (x) := P[L > x].

Throughout the paper we assume that L and A are contin-
uous (equivalently, F̄ (x) and Ḡk(x) are absolutely continu-
ous) and have infinite support, i.e. Ḡk(x) > 0 and F̄ (x) > 0
for all x ≥ 0. We use the following standard notations. For
any two real functions a(t) and b(t) and fixed t0 ∈ R

⋃{∞},
we use a(t) ∼ b(t) as t → t0 to denote limt→t0 a(t)/b(t) = 1.
Similarly, we say that a(t) � b(t) as t → t0 if limt→t0
[a(t)/b(t)] ≥ 1; a(t) � b(t) has a complementary definition.
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2. MAIN RESULTS
In this section, we present our main analytical results.

In Theorem 2.1, we characterize the tail distribution of the
number of retransmissions on the logarithmic scale. In par-
ticular, under the assumption that the hazard functions of
the data sizes and channel statistics are proportional, we
show that the distribution exhibits a power law tail and the
index is determined by the channel state with the longest
availability periods, e.g. the maximum αk as defined in (1).
In other words, the asymptotics is the same as in the case
of the uncorrelated channel with Ḡ(x) = Ḡm(x), see Theo-
rem 2 in [9], where m denotes the index of the ‘best’ state
with maximum αk.

Next, in Theorem 2.2, under more restrictive assumptions,
we prove the result on the exact scale. We derive the exact
asymptotic tail of the number of retransmissions N , which
also depends on the steady state probability πm of the ‘best’
state m. Last, Theorem 2.3 presents the logarithmic asymp-
totics of the total delay distribution.

Throughout the paper, we will use m to denote the index
of the state with the largest α among all states 1, 2, . . . ,K.
This corresponds to the state m which dominates the tail
distribution ofN and is responsible for the lighter asymptote
for large n. Without loss of generality, we assume that there
is a unique m that achieves the maximum αm = maxk αk,
i.e. αm > maxk �=m αk. Otherwise, if there is more than
one index that attains the maximum, we can merge the cor-
responding underlying states of the process {Jn}n≥1 into a
single one that uniquely achieves the maximum.

Furthermore, to simplify the notation, we sometimes omit
the indices in An and Jn and simply write P(An > x|Jn =
k) = P(A > x|J = k).

Theorem 2.1. Let {Jn}n≥1 be a stationary and ergodic
process that takes values on the positive integers k = 1 . . .K.
Assume that

log P(L > x) ∼ αk log P(A > x|J = k) as x → ∞,

and P(|∑n
i=1 1{Ji = k}−πkn| ≥ εn) = O(n−(αm+ε)/K), for

positive ε and αm := max
k=1...K

αk > 0, then

lim
n→∞

log P(N > n)

log n
= −αm.

Remark 1. Note that the condition P(|∑n
i=1 1{Ji = k}−

πkn| ≥ εn) = O(n−(αm+ε)/K) is satisfied for a large class of
modulating processes Jn, i.e. semi-Markov processes where
the sojourn time distributions decay fast enough. For ex-
ample, for the class of renewal Markov processes consid-
ered in Section 5 of [4], it can be shown that the condi-
tion holds if the sojourn time distribution is lighter than
O(n−(αm+ε)/K+1).

Proof: By assumption, there exists 0 < ε < 1 such that
for all x ≥ x0,

F̄ (x)
1

αk(1−ε) ≤ Ḡk(x) ≤ F̄ (x)
1

αk(1+ε) , k = 1 . . .K. (2)

Recall that {An}n≥1 are conditionally independent given
{Jn}n≥1 and P(An > x|Jn = k) = Ḡk(x). Note that Ai(Ji)
is independent of the past and future states of the modu-
lating process {Jj}j �=i given Ji. Let Nk

n :=
∑n

i=1 1{Ji = k}
be the number of times that {Ji = k} in interval [1, n] and

observe that
∑K

k=1 N
k
n = n.

First, we establish the lower bound. It is easy to see that

P(N > n|L) = P[L > A1, L > A2 . . . , L > An|L]
= EL[P(L > Aj , 1 ≤ j ≤ n|J1, . . . , Jn, L)]

= EL

[
n∏

j=1

P(L > Aj |Jj , L)

]

= EL

[
n∏

j=1

K∏
k=1

P(L > Aj |Jj = k, L)1{Jj=k}
]

= EL

[
n∏

j=1

K∏
k=1

P(L > A|J = k, L)1{Jj=k}
]

= EL

[
K∏

k=1

P(L > A|J = k, L)N
k
n

]
, (3)

where EL[·] = E[·|L]. For the ergodic and stationary process
{Jn}n≥1, by the weak law of large numbers, it follows that

P[Nk
n ≤ (1 + ε)πkn] → 1 as n → ∞,

for all k = 1 . . .K. Thus, for any ε > 0, we can choose n0,
such that P[Nk

n ≤ (1 + ε)πkn] ≥ (1 − ε), for all n ≥ n0 and
k = 1 . . .K. Therefore,

P(N > n|L)

≥ EL

[
K∏

k=1

P(L > A|J = k, L)(1+ε)πkn1
{
Nk

n ≤ (1 + ε)πkn
}]

=

K∏
k=1

(
P(Nk

n ≤ (1 + ε)πkn)P(L > A|J = k, L)(1+ε)πkn
)

≥ (1− ε)K
K∏

k=1

(1− Ḡk(L))
(1+ε)πkn.

Now, using our main assumption (2) and the elementary

inequality 1− x ≥ e−(1+ε)x for small x, we obtain

P(N > n) = E[P(N > n|L)]

≥ (1− ε)KE

[
K∏

k=1

(
1− F̄ (L)

1
αk(1+ε)

)πkn(1+ε)

1{L ≥ x0}
]

≥ (1− ε)KE

[
K∏

k=1

exp
(
−πkn(1 + ε)2F̄ (L)

1
αk(1+ε)

)
1{L ≥ x0}

]
,

for x0 as in (2). Next, observe that the expectation in the
preceding expression is

E

[
exp

(
−

K∑
k=1

πkn(1 + ε)2U
1

αk(1+ε)

)
1{L ≥ x0}

]

≥ E

[
exp

(
−

K∑
k=1

πkn(1 + ε)2U
1

αk(1+ε)

)]

− exp

(
−

K∑
k=1

πkn(1 + ε)2F̄ (x0)
1

αk(1+ε)

)
:= I1 − I0, (4)

which follows from F̄ (L) = U , with U being uniformly dis-
tributed in (0, 1) by Proposition 2.1 in Chapter 10 of [15].
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The first term in (4) is computed as

I1 =

∫ 1

0

exp

(
−

K∑
k=1

πkn(1 + ε)2u
1

αk(1+ε)

)
du

≥
∫ ε

0

exp
(
−n(1 + ε)2u

1
αm(1+ε) πm

·
⎛⎝1 +

K∑
k=1,k �=m

πk

πm
u

1
αk(1+ε)

− 1
αm(1+ε)

⎞⎠⎞⎠ du

≥
∫ ε

0

exp
(
−n(1 + ε)2(1 + δ)u

1
αm(1+ε) πm

)
du,

where we observe that for ε small enough,∑K
k=1,k �=m(πk/πm)u1/(αk(1+ε))−1/(αm(1+ε)) ≤ δ. Next, by

change of variables z = nπm(1+ ε)2(1+ δ)u1/(αm(1+ε)), and
setting (1− δε)

−1 = (1 + ε)2(1 + δ), we have

I1 ≥ (1− δε)
αm(1+ε)αm(1 + ε)

π
αm(1+ε)
m nαm(1+ε)

·
∫ nε1/αm (1−δε)πm

0

e−zzαm(1+ε)−1dz

∼ (1− δε)
αm(1+ε)

π
αm(1+ε)
m nαm(1+ε)

Γ(αm(1 + ε) + 1),

where we use the definition and the property of the Gamma
function for large n.

Now, for hε,δ = (1 − ε)K(1 − δε)
αm(1+ε)Γ(αm(1 + ε) +

1)/π
αm(1+ε)
m , and, since x0 is fixed, the second term in (4) is

negligible, i.e. I0 → 0 exponentially fast as n → ∞. Hence,
taking the logarithm yields

log P(N > n) ≥ log hε,δ − αm(1 + 2ε) log n,

and by picking n0 such that log hε,δ ≥ −αmε log n, we have

log P(N > n) ≥ −αm(1 + 3ε) log n.

After replacing ε with ε/3, we derive

log P(N > n)

log n
≥ −(1 + ε)αm. (5)

The remainder of the proof of the upper bound follows
similar arguments and is deferred to Section 5.
Next, as briefly stated in the beginning of this section, we

present our analytical approximation on the exact scale. In
the following theorem, we need more restrictive assumptions
and, in particular, we assume that the matching between the
distribution of the data sizes and the channel characteristics
is described by a regularly varying function of index α. A
regularly varying function is defined as a function of the
form �(x)xα, where �(·) is slowly varying.

Definition 2.1. A function �(x) is slowly varying if
�(x)/�(λx) → 1 as x → ∞ for any fixed λ > 0.

Typical examples of slowly varying functions are positive
constants, logarithmic, e.g. logβ x, β ∈ R, log(log x), and

e(log x)γ , 0 < γ < 1. We assume that functions �(x) are
positive and bounded on finite intervals.

Theorem 2.2. Let m := arg max
k=1...K

αk. If F̄−1(x) =

Φk(Ḡ
−1
k (x)), where Φk(x) = �(x)xαk , for all x ≥ 0, αk >

0, k = 1 . . .K, and P(|∑n
i=1 1{Ji = k} − πkn| ≥ εn) =

O(n−(αm+ε)/K), ε > 0, then as n → ∞,

P(N > n) ∼ Γ(αm + 1)

nαm�(n)παm
m

.

Proof: The proof is deferred to Section 5.
Last, we prove the logarithmic asymptotics of the total

transmission time, which is also a power law.

Theorem 2.3. Under the same conditions as in Theo-
rem 2.1 and E[A1+θ] < ∞ for some θ > 0, we obtain

lim
t→∞

log P(T > t)

log t
= −αm.

Proof: See Section 5.

3. SIMULATIONS
In this section, we illustrate the validity of our theoretical

results with simulation experiments. In all of the experi-
ments, we observed that the theoretical tail asymptotics is
literally indistinguishable from the simulation. In the fol-
lowing examples, we present the simulation experiments re-
sulting from 108 (or more) samples of Ni, 1 ≤ i ≤ 108. This
number of samples was needed to ensure at least 100 occur-
rences in the lightest end of the tail that is presented in the
figures (Ni ≥ nmax). This provides a good confidence inter-
val given that we used simple two and three-state Markov
chains to model {Jn}.
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Figure 2: Example 1(a). Asymptotics of P(N > n)
for a two-state channel.

Example 1. In this example, we simulate a channel with
two states, 1 and 2. At each state, the availability periods
are i.i.d. random variables exponentially distributed with
μ1 = 1/4 and μ2 = 1. Also, the data unit sizes are continu-
ous random variables, following the exponential distribution
with mean 2 (λ = 1/2). Therefore, by definition, we have
α1 = 2 and α2 = 0.5. The transition probability from state i
to state j is defined as pij so that the steady state probabil-
ities are given by πi = pji/(pij + pji), i = 1, 2. In Fig. 3, we
present the asymptotics of the number of retransmissions on
the logarithmic scale for three values of steady state proba-
bilities: π1 = 0.1, π1 = 0.5 and π1 = 0.8; observe that m = 1
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Figure 3: Example 1(b). Asymptotics of P(T > t) for
a two-state channel.

is the index of the state with the larger α. We plot the ex-
act asymptotics from Theorem 2.2, where we note that the
constant term Γ(αm +1)/παm

m increases the precision of our
logarithmic asymptotics (Theorem 2.1). We observe that
our simulation results are in excellent agreement with the
theoretical asymptote.

Next, for the same channel and two values of π1, namely
0.1, and 0.5, Fig. 3 demonstrates the logarithmic asymp-
totics for P(T > t) obtained from Theorem 2.3.

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Retransmissions: n

P
[N

 >
 n

]

 

 
π

m
 = 0.75

π
m

 = 0.25

Asymptote

Figure 4: Example 2. Asymptotics of P(N > n) for a
three-state channel.

Example 2. In this example, we consider a three state
channel, with transition probabilities such that πm = 0.25
and πm = 0.75,m = 1. The availability periods at each state
are exponentially distributed with μ1 = 2, μ2 = 1/2 and
μ3 = 1/4 and the data sizes are exponential with unit mean.
From Fig. 4, we observe that the lightest asymptotics (power
law with exponent α = 4) dominates the tail of P(N >
n). The power law tail appears relatively early when πm =
0.75 and is not affected by other states for almost the entire

distribution. However, when the state is less frequent, i.e.
πm = 0.25, the other states contribute noticeably in shaping
the distribution.

10
0

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

Retransmissions: n

P
[N

 >
 n

]

 

 

σ
A

 = 8

σ
A

 = 6

σ
A

 = 4

Asymptote

Figure 5: Example 3. Logarithmic Asymptotics for
a two-state channel where data sizes and channel
statistics are normally distributed.

Example 3. In the third example, we simulate a two-
state channel where the packet sizes and the availability pe-
riods are normally distributed and the channel alternates
between the two states with probability 1/2. Suppose that
A and L take absolute values of zero mean normal ran-
dom variables, with σL = 5 and σA1 = 2, σA2 = 4, 6, 8, for
states 1 and 2, respectively. Note that P[|N(0, σ2)| > x] ∼
2σ/(

√
2πx)e−x2/2σ2

and thus log Ḡ(x) ≈ σ2
A/σ

2
L log F̄ (x),

i.e. the asymptotic assumption of Theorem 2.1 is satisfied.
In Fig. 5, we plot the logarithmic asymptotics for three dif-
ferent values of α = σ2

A/σ
2
L, as marked on the graph.
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b =5 →

b =10 →

b =10 →

b =5 →

Figure 6: Example 4. Simulation of a two-state
channel with bounded data sizes.

Example 4. In our last example, we simulate a two-state
channel in the practically important case where the packet
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sizes are bounded. In this setting, it is easy to see that the
distribution of N has an exponential tail. However, this tail
may appear for very small probabilities, which implies that
the number of retransmissions (or delay) of interest can fall
inside the main body of the distribution that behaves as
power law. We simulate the channel of our first example,
but here we further assume that L has finite support [0, b];
we consider two values for b, e.g. 5 and 10. In Fig. 6, we
plot the distributions of P(N > n), parameterized by b, in
two different scenarios where the stationary probability of
the ‘best’ state πm is 0.1, and 0.01 respectively. From the
figure we observe that, when we increase the support of the
distribution from b = 5 to b = 10, the region of the main
(power law) body of the distribution of N increases, e.g. for
πm = 0.1 there is a tenfold increase, from less than 100 to
almost 103. This effect was first discussed in [9] and then
rigorously proved in [6]. Nevertheless, the transition to the
exponential behavior is not insensitive to the probabilities
πm. For the same b, higher stationary probabilities of the
‘best’ state tend to shrink the power law region. Hence, the
exponential behavior happens at different times depending
on how frequent the ‘good’ state is; we provide a deeper
insight on this in the following Section 4.

4. ENGINEERING IMPLICATIONS AND

CONCLUDING REMARKS
In this section, we discuss the engineering implications

of our results. Previously, we showed that when the chan-
nel is correlated, meaning that it switches between depen-
dent states, the ‘best case’ scenario wins. This implies that
the delay asymptotics and the stability conditions are de-
termined by the state that generates the lightest tail in the
corresponding independent model. This insensitivity to the
detailed structure of the correlations as well as the opti-
mistic best case predictions are beneficial both for modeling
and dimensioning/capacity planning of such systems. In
particular, our insights show that the independent channel
model might be sufficient. Furthermore, the analysis of the
independent model is more likely to be extended to more
complex multi-channel and networking systems with fail-
ures.

4.1 A Word of Caution
However, in this subsection, we emphasize that a design

relying on the best case scenario may be overly optimistic
and even completely wrong if the best state of the channel
is atypical, i.e. it occurs very rarely. To illustrate this point,
we study the following simplified model that demonstrates
the impact of the correlated channel states on the distribu-
tion of N . In particular, we consider a channel with two
states (K = 2), such that α1 > α2, and we assume that π1

is very small (π1 
 π2, π1 ≈ 0), i.e. state 1 is much less fre-
quent than state 2. In this case, the tail of the distribution
is still a power law with index αm = α1. However, there ex-
ists another power law asymptote that appears earlier and
dominates the body of the distribution for smaller values of
n.

We herein characterize these two asymptotes with two
equivalent explicit formulas that approximate the retrans-
mission distribution for large n (informal derivations are
presented in the Appendix):

P(N > n) ≈ α2

nα2πα2
2

∞∑
i=0

(−n1−δP2)
iΓ(α2 + iδ)

i!
, (6)

and

P(N > n) ≈ α1

nα1πα1
1

∞∑
i=0

(−n1−1/δP1)
iΓ(α1 + i/δ)

i!
, (7)

where δ = α2/α1, P1 = π2/π
1/δ
1 and P2 = π1/π

δ
2.

Note that the sum in (6) is absolutely convergent since
Γ(α2+ iδ) ≤ �α2+ iδ�!. As we can easily infer from the first
expression, when n1−δP2 
 1, the leading term dominates
and the initial part of the distribution is determined by the
heavier power law O(n−α2) with exponent α2 < α1. This
is indeed the asymptote that works well for small values of
n, specifically when n1−δ 
 1/P2, as will be evident in the
forthcoming example. Accordingly, the leading term of the
second asymptote from (7) yields the correct tail asymp-
totics from Theorem 2.2, which holds as n → ∞.

In order to illustrate the preceding derivation, we plot the
exact asymptotes from equations (6) and (7), in Fig. 7, and
compare with simulation. In this setting, we assume ex-
ponential distributions as in Example 1, such that α1 = 2
and α2 = 1/2; the steady state probabilities are π1 = 0.01
and π2 = 0.99. Specifically, we use five error terms for
both asymptotes. We observe that the precision of the first
asymptote deteriorates after n ≈ 102 unless we increase the
number of terms in expression (6). The leading term is a
power law of index 1/2, which leads to the heavier asymp-
tote. On the other hand, the tail asymptote derived in this
section, even with few terms, fits perfectly for large values
of n, which lends credit to our main Theorem 2.2.
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Figure 7: Exact asymptotes from (6) and (7) for a
two-state channel where α1 = 2 and α2 = 1/2.

In conclusion, our results imply that the tail distribution
of the delay in a dynamic channel will be light as long as
there is at least one state that generates light tail asymp-
totics. However, using the tail as a primary performance
measure might result in an optimistic design that will expose
the system to high congestion if the ‘good’ state is relatively
rare. In such a case, the main body of the distribution may

20 Performance Evaluation Review, Vol. 41, No. 2, September 2013



be characterized by different power laws and a mixture of
distributions in between that are, in principle, much heavier
than the tail. This situation must be treated with caution in
order to guarantee system stability and good performance
for all n. As illustrated in the last example, the main body
can exhibit power law asymptotics with index α < 1, which
corresponds to a system with zero throughput. If the design
does not account for this behavior, it is highly likely that
the system will achieve poor performance for a considerably
long period of time.

In general, the best strategy under unpredictable situa-
tions when the channel is unknown is to utilize channel feed-
back, possibly combined with dynamic fragmentation based
on the number of unsuccessful retransmission attempts.

5. PROOFS
In this section, we present the proof for the upper bound

of Theorem 2.1 as well as the proofs of Theorems 2.2, 2.3.
Proof: [of Theorem 2.1]
Here, we prove the upper bound. Using the notation EL[·] =
E[·|L] and similarly as before

P(N > n|L) = EL

[
K∏

k=1

P(L > A|J = k, L)N
k
n

]

≤ EL

[
K∏

k=1

P(L > A|J = k, L)(1−ε)πkn1
{
Nk

n ≥ (1− ε)πkn
}]

+ EL

[
K∏

k=1

1
{
Nk

n ≤ (1− ε)πkn
}]

=

K∏
k=1

P

(
Nk

n ≥ (1− ε)πkn
)
P(L > A|J = k, L)(1−ε)πkn

+

K∏
k=1

P

(
Nk

n ≤ (1− ε)πkn
)
,

where P(Nk
n ≥ (1−ε)πkn) → 1, as n → ∞, implied by ergod-

icity and stationarity, whereas, from our main assumption,∏K
k=1 P(N

k
n ≤ (1− ε)πkn) = O(1/nαm+ε). Thus,

P(N > n) = E[P(N > n|L)]

≤ (1 + ε)KE

K∏
k=1

(
1− F̄ (L)

1
αk(1−ε)

)πkn(1−ε)

1{L ≥ x0}

+ (1 + ε)K
K∏

k=1

(
1− F̄ (x0)

1
αk(1−ε)

)πkn(1−ε)

+
ε

nαm+ε
,

where x0 is such so that (2) holds. Now using the elementary
inequality 1 − x ≤ ex, and by picking n0 large so that

(1 + ε)K
(
1− F̄ (x0)

1
αk(1−ε)

)n(1−ε)

≤ ε/nαm+ε, for n ≥ n0,

we obtain

P(N > n) ≤ (1 + ε)KE

K∏
k=1

e−πkn(1−ε)F̄ (L)
1

αk(1−ε)

1{L ≥ x0}

+
2ε

nαm+ε

≤ (1 + ε)KE

[
e−

∑K
k=1 πkn(1−ε)U

1
αk(1−ε)

]
1{L ≥ x0}

+
ε

nαm(1−ε)
,

where the first integral is derived similarly as in the proof
of the lower bound, by picking x0 large. Thus

P(N > n) ≤ (1− ε)Γ(αm(1− ε) + 1)

(πmn)αm(1−ε)
+

ε

nαm(1−ε)
.

Next, we set Hε = (1− ε)Γ(αm(1− ε) + 1)/π
αm(1−ε)
m + ε,

and after taking the logarithm, we obtain

log P(N > n) ≤ logHε − αm(1− ε) log n,

and by picking n0 such that logHε ≤ αmε log n, we have

log P(N > n) ≤ −αm(1− 2ε) log n.

Last, replacing ε with ε/2 yields

log P(N > n)

log n
≤ −(1− ε)αm. (8)

Letting ε → 0 in both (5) and (8) completes the proof. �
Proof: [of Theorem 2.2]
We begin with the lower bound. Following the same argu-
ments as in the proof of Theorem 2.1, we obtain

P(N > n|L) = P[L > A1, L > A2 . . . , L > An|L]
= EL[P(L > Aj , 1 ≤ j ≤ n|J1, . . . , Jn, L)]

= EL

[
K∏

k=1

P(L > A|J = k, L)N
k
n

]

≥ EL

[
K∏

k=1

P(L > A|J = k, L)(1+ε)πkn1
{
Nk

n ≤ (1 + ε)πkn
}]

≥ (1− ε)K
K∏

k=1

(1− Ḡk(L))
(1+ε)πkn,

which follows from recalling that P(Nk
n ≤ (1 + ε)πkn) ≥

(1− ε) for n ≥ n0.
Next, note that by assumption Φk(·) is monotonic since

F̄ (x)−1 = Φk(Ḡ
−1
k (x)) and both F̄ (x), Ḡk(x) are monotonic.

Hence, we can define (in a standard way) an inverse Φ←
k (·)

such that Φ←
k (Φk(x)) = x, where Φ←

k (x) is also regularly
varying (e.g. see Theorem 1.5.11 in [2]). Now, by Proposi-
tion 1.5.8 of [2], we can always find an absolutely continuous,
strictly monotone and locally bounded (for x > 0) function

Φ∗
k(x) =

{
α
∫ x

1
Φk(s)s

−1ds, x ≥ 1

0, 0 ≤ x < 1,
(9)

which satisfies Φk(x) ∼ Φ∗
k(x) for x large.

Next, by Theorem 1.5.13 in [2], Φ←
k (x) is asymptotically

equivalent to the inverse of Φ∗
k(x); observe that Φ∗

k(x) is
strictly monotone, for all x ≥ 1, which guarantees that its
inverse exists. Hence, our main assumption becomes

Ḡk(x)
−1 ∼ Φ∗←

k (F̄ (x)−1),

where Φ∗←
k (·) is absolutely continuous (differentiable) for

each k. This implies that, for any 0 < ε < 1 and x ≥ x0, we
have

(1− ε)/Φ∗←
k

(
F̄ (x)−1) ≤ Ḡk(x) ≤ (1 + ε)/Φ∗←

k

(
F̄ (x)−1) ,

(10)
In the rest of the proof, for simplicity, we will abuse the

notation and simply write Φk(·) and Φ←
k (·) to denote Φ∗

k(·)
and its inverse Φ∗←

k (·), respectively.
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Therefore,

P(N > n) = E[P (N > n|L)]

≥ (1− ε)KE

K∏
k=1

(
1− 1 + ε

Φ←
k (F̄ (L)−1)

)πkn(1+ε)

1{L ≥ xn}

where, we can choose xn such that Φ←
k (F̄ (xn)

−1) = n/H,
for n large and H > 0. Thus, by the elementary inequality
1− x ≥ e−(1+ε)x for small x, we obtain

P(N > n)

≥ (1− ε)KE

K∏
k=1

exp

(
−nπk(1 + ε)3

Φ←
k (U−1)

)
1{U ≤ F̄ (xn)}

= (1− ε)K
∫ F̄ (xn)

0

exp

(
−n

K∑
k=1

πk(1 + ε)3

Φ←
k (u−1)

)
du

≥ (1− ε)K
∫ F̄ (xn)

0

exp

(
−n(1 + ε)4πm

Φ←
m (u−1)

)
du,

where we observe that F̄ (L) = U , where U is uniform in
(0, 1), and that for large n,

∑
k �=m πkΦ

←
m (u−1)/

πmΦ←
k (u−1) ≤ ε, for small u. Next, by changing the vari-

ables z = n/Φ←
m (u−1), we obtain for small h > 0,

P(N > n) ≥ (1− ε)K
∫ H

h

e−(1+ε)4πmz Φ
′
m(n/z)

Φ2
m(n/z)

n

z2
dz.

Now, we use the properties of regularly varying functions
that, for positive h,H, we obtain uniformly for all h ≤ z ≤
H and large n,

Φm(n)

Φm(n/z)
≥ (1− ε)zαm and

Φm
′(n/z)

Φm(n/z)
=

αmz

n
,

where the equation follows from (9), for n > h. Thus,

P[N > n] ≥ (1− ε)K+1αm

Φm(n)

∫ H

h

e−(1+ε)4πmzzαm−1dz

≥ (1− ε)αm

παm
m Φm(n)

∫ Hπm

h

e−yyαm−1dy,

which is derived after replacing (1− ε)K+1/(1 + ε)4αm with
(1 − ε) and by change of variables. Last, letting H → ∞
and h → 0, we obtain

P(N > n) ≥ (1− ε)
Γ(αm + 1)

παm
m Φm(n)

, (11)

for n ≥ n0, which proves the lower bound.
For the upper bound, similarly as before, we obtain

P(N > n|L) ≤ E

[
K∏

k=1

(1− Ḡk(L))
(1−ε)πkn1

{
Nk

n ≥ (1− ε)πkn
}]

+ E

[
K∏

k=1

1
{
Nk

n ≤ (1− ε)πkn
}]

≤ (1 + ε)K
K∏

k=1

(1− Ḡk(L))
(1−ε)πkn +

K∏
k=1

P

(
Nk

n ≤ (1− ε)πkn
)
,

where, by ergodicity and stationarity, we recall that as n →
∞, P(Nk

n ≥ (1 − ε)πkn) → 1 whereas, from our main as-

sumption,
∏K

k=1 P(N
k
n ≥ (1− ε)πkn) = O(1/nαm+ε). Thus,

P(N > n) = E[P(N > n|L)]

≤ (1 + ε)KE

K∏
k=1

(
1− 1− ε

Φ←
k (F̄ (L)−1)

)πkn(1−ε)

1{L ≥ x0}

+ (1 + ε)KE

K∏
k=1

(
1− Ḡk(x0)

)πkn(1−ε)
+

ε

nαm+ε

:= I1 +
2ε

nαm+ε
,

where we pick x0 such that (1 + ε)K
(
1− Ḡ(x0)

)πkn(1−ε) ≤
ε/nαm+ε, for n ≥ n0. Now using the elementary inequality
1− x ≤ ex, we have

I1 ≤ (1 + ε)KE exp

(
−

K∑
k=1

πkn(1− ε)2

Φ←
k (F̄ (L)−1)

)

≤ (1 + ε)K
∫ 1

0

exp

(
−

K∑
k=1

πkn(1− ε)2

Φ←
k (1/u)

)
du

≤ (1 + ε)K
∫ 1

0

exp

(
−πmn(1− ε)2

Φ←
m (1/u)

)
du,

where we argue similarly as in the preceding proof for the
lower bound. Then, changing the variables z = n/Φ←

m (1/u)
yields

I1 ≤ (1 + ε)K
∫ 1

0

e
−πmn(1−ε)2

Φ←
m (1/u) 1

(
h ≤ n

Φ←
m (u−1)

≤ em
)
du

+

	log(n/nε)
∑
k=m

e−πmek
P

[
ek ≤ n

Φ←
m (U−1)

≤ ek+1

]
+ e−n/nε

:= I11 + I12 + I10.

First, we compute I11 as

I11 ≤ (1 + ε)K
∫ em

h

e−πm(1−ε)2z Φ′
m(n/z)n

Φ2
m(n/z)z2

dz

≤ (1 + ε)K+1αm

Φm(n)

∫ em

h

e−πm(1−ε)2zzαm−1dz

≤ (1 + ε)αm

παm
m Φm(n)

∫ em

h(1−ε)2πm

e−zzαm−1dz,

where we replace (1 + ε)K+1/(1− ε)2αm with (1 + ε). Now,
I12 becomes

I12 ≤
	log(n/nε)
∑

k=m

e−πmek

Φm(n/ek+1)

≤
	log(n/nε)
∑

k=m

e−πmek (1 + ε)k+1

Φm(n)
≤ ε

Φm(n)
,

since the preceding sum is finite and Φm(n)/Φm(n/ek) ≤
(1 + ε)k for all n ≥ n0.
Last, I10 decays exponentially fast and thus I10 = o(1/Φm(n)).

Therefore,

P(N > n)Φm(n)παm
m ≤ (1 + ε)αm

∫ em

0

e−zzαm−1dz + o(1).

(12)
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Note that passing m → ∞ in the first term of (12), yields
that for all n ≥ n0,

P(N > n)Φm(n)παm
m

Γ(αm + 1)
≤ 1 + 2ε.

After replacing 2ε with ε/2, we obtain the upper bound

P(N > n) ≤ (1 + ε)
Γ(αm + 1)

παm
m Φm(n)

, (13)

which, along with (11), finishes the proof. �
Proof: [of Theorem 2.3]
In the following proof, we use the notation (x∧y) = min(x, y)
to refer to the minimum of x and y. First we prove the upper
bound.

For any 0 < δ < 1, we have

P[T > t] = P

[
N−1∑
i=1

Ai + L > t

]

≤ P

[
N−1∑
i=1

(Ai ∧ L) > (t− t1−δ), L ≤ t1−δ

]
+ P[L > t1−δ]

≤ P

[
N∑
i=1

(Ai ∧ t1−δ) > (t− t1−δ)

]
+ P[L > t1−δ]

≤ P

[
N∑
i=1

(Ai ∧ t1−δ) > (1− ε)t,N ≤ t1−δ

]
+ P

[
N > t1−δ

]
+ P[L > t1−δ]

:= I1 + I2 + I3,

where in the third inequality, we use t− t1−δ ≈ (1− ε)t for
large t. First, I3 is upper bounded by

I3 ≤ E[Lαm1{L > t1−δ}]
tαm(1−δ)

= o(1/tαm(1−δ)), (14)

since the condition E(A1+θ) < ∞, together with our main
assumption, implies that for x0 as in (2),

E[Lαm ] = x0 +

∫ ∞

x0

P[Lαm > x]dx ≤ x0

+

∫ ∞

x0

P[A > x1/αm |J = m]αm(1−ε)dx

≤ x0 +

∫ ∞

x0

(
EA1+θ

)αm(1−ε)

x(1+θ)(1−δ)(1−ε)
dx < ∞,

as t → ∞ for 1 + θ > 1/(1− δ)(1− ε).
Next, for I1, we have

I1 = EP

⎡⎣t1−δ∑
i=1

(Ai ∧ t1−δ) > (1− ε)t|J1, J2, . . . , J�t1−δ�

⎤⎦
≤ Ee−θ(1−ε)t

E exp

⎡⎣t1−δ∑
i=1

θ(Ai ∧ t1−δ) > (1− ε)t|J1, . . . , J�t1−δ�

⎤⎦
= Ee−θ(1−ε)t

t1−δ∏
i=1

E exp
[
θ(Ai ∧ t1−δ)|Ji

]
,

which follows by applying the exponential Chebyshev’s in-
equality for θ > 0. Now, observe that E[Ai|Ji] ≤
max

k=1,...,K
E[A|J = k] =: μm and using the inequality

ex ≤ 1 + xey, 0 ≤ x ≤ y, we upper bound the exponen-
tial moments of Xi := (Ai ∧ t1−δ|Ji) by

Eeθ(Ai∧t1−δ)|Ji ≤ 1 + eθt
1−δ

θE(Ai|Ji)

≤ 1 + eθt
1−δ

θμm ≤ exp
(
θμmeθt

δ−1
)
,

which renders

I1 ≤ e−θ(1−ε)t exp
(
t1−δθμmeθt

δ−1
)

= e−(1−ε)tδeμme ≤ o
(
t−αm(1−δ)

)
, (15)

where we pick θ = tδ−1.
From Theorem 2.2, we recall that for 0 < δ < 1,

lim
t→∞

log P
[
N > t1−δ

]
log t

= −(1− δ)αm,

which, along with (14) and (15), and passing δ → 0, implies

lim sup
t→∞

log P[T > t]

log t
≤ −αm. (16)

Next, we establish the lower bound. It follows easily that

P[T > t] = P

[
N−1∑
i=1

Ai + L > t

]

≥ P

[
N−1∑
i=1

Ai > t,N ≥ t1+δ + 1

]

≥ P

[
N ≥ t1+δ + 1

]
− P

⎡⎣t1+δ∑
i=1

Ai ≤ t

⎤⎦
≥ P

[
N ≥ t1+δ + 1

]
− E

⎡⎣P
⎡⎣t1+δ∑

i=1

Ai ≤ t|J1, J2, . . . , J�t1−δ�

⎤⎦⎤⎦
:= I1 − I2.

Now, we can show that I2 ≤ o(t−αm(1+δ)), by similar argu-
ments as in the proof of (15) for the upper bound; we omit
the details.

Regarding I1, we recall from Theorem 2.1 that for 0 <
δ < 1, we have

lim
t→∞

log P
[
N > t1+δ + 1

]
log t

= −(1 + δ)αm,

and thus, by passing δ → 0,

lim inf
t→∞

log P[T > t]

log t
≥ −αm. (17)

Finally, combining (16) and (17) concludes the proof. �
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[8] P. R. Jelenković and J. Tan. Are end-to-end
acknowlegements causing power law delays in large
multi-hop networks? In 14th Informs Applied Probability
Conference, July 2007.
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APPENDIX

Appendix
In this Appendix, we provide the informal derivation of formulas
(6) and (7) of Subsection 4.1.
Proof: [of (6) and (7)]
Starting from equation (3), assuming that F̄ (x) ≈ Ḡk(x)

αk , k =
1, 2, and using similar arguments as in the derivation of (3)-(4),
we informally argue that

P(N > n) ≈ E[(1− Ḡ1(L))
π1n(1− Ḡ2(L))

π2n]

≈ E[(1− F̄ (L)1/α1 )π1n(1− F̄ (L)1/α2 )π2n]

≈ E[(1− U1/α1 )π1n(1− U1/α2 )π2n]

≈ E[e−π1nU1/α1−π2nU1/α2
],

since F̄ (L) = U , where U is uniformly distributed in (0,1). Thus,

P(N > n) ≈
∫ 1

0
e−π1nu1/α1−π2nu1/α2

du (18)

=
α2

nα2πα2
2

∫ nπ2

0
e
−z− π1nzα2/α1

(nπ2)α2/α1 zα2−1dz,

which follows by changing the variables z = π2nu1/α2 . Now, let
δ := α2/α1 < 1 and P2 := π1/πδ

2 , so that

P(N > n) ≈ α2

nα2πα2
2

∫ nπ2

0
e−z−n1−δP2z

δ
zα2−1dz

=
α2

nα2πα2
2

∫ nπ2

0
e−zzα2−1

(
1− n1−δP2z

δ

+
(n1−δP2)2z2δ

2
− · · ·+ (−n1−δP2)iziδ

i!
+ . . .

)
dz,

by the Taylor expansion of the function ex =
∑∞

i=0 x
i/i!. Now

by extending the integral to infinity we have

P(N > n) ≈ α2

nα2πα2
2

∫ ∞

0
e−zzα2−1

(
1− n1−δP2z

δ

+
(n1−δP2)2z2δ

2
− · · ·+ (−n1−δP2)iziδ

i!
+ . . .

)
dz

=
α2

nα2πα2
2

(∫ ∞

0
e−zzα2−1dz − n1−δP2

∫ ∞

0
e−zzα2+δ−1dz

+
(n1−δP2)2

2

∫ ∞

0
e−zzα2+2δ−1dz−

· · ·+ (−n1−δP2)i

i!

∫ ∞

0
e−zzα2+iδ−1dz + . . .

)

=
α2

nα2πα2
2

(
Γ(α2)− n1−δP2Γ(α2 + δ)

+
(n1−δP2)2Γ(α2 + 2δ)

2
− · · ·+ (−n1−δP2)iΓ(α2 + iδ)

i!
+ . . .

)
,

which follows immediately from the definition of the gamma func-
tion Γ(α) =

∫∞
0 e−zzα−1dz. This yields the explicit form

P(N > n) ≈ α2

nα2πα2
2

∞∑
i=0

(−n1−δP2)iΓ(α2 + iδ)

i!
.

By the same approach, starting from (18) and changing of vari-
ables as z = nπ1uα1 , we obtain

P(N > n) ≈
∫ 1

0
e−π1nu1/α1−π2nu1/α2

du

=
α1

nα1πα1
1

∫ nπ1

0
e
−z− π2nzα1/α2

(nπ1)α1/α2 zα1−1dz.
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Now, for P1 := π2/π
1/δ
1 and using Taylor expansion of ex, we

have

P(N > n) ≈ α1

nα1πα1
1

∫ nπ1

0
e−z−n1−1/δP1z

1/δ
zα1−1dz

≈ α1

nα1πα1
1

∫ ∞

0
e−zzα1−1

(
1− n1−1/δP1z

1/δ

+
(n1−1/δP1)2z2/δ

2
− · · ·+ (−n1−1/δP1)izi/δ

i!
+ . . .

)
dz,

for large n. By identical arguments as before,

P(N > n) ≈ α1

nα1πα1
1

(
Γ(α1)− n1−1/δP1Γ(α1 + 1/δ)

+
(n1−1/δP1)2Γ(α1 + 2/δ)

2
− · · ·+ (−n1−1/δP1)iΓ(α1 + i/δ)

i!
+ . . .

)
,

which yields the explicit form

P(N > n) ≈ α1

nα1πα1
1

∞∑
i=0

(−n1−1/δP1)iΓ(α1 + i/δ)

i!
. �
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