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Priority Service and Max-Min Fairness
Peter Marbach

Abstract—We study a priority service where users are free to
choose the priority of their traffic, but are charged accordingly
by the network. We assume that each user chooses priorities to
maximize its own net benefit, and model the resulting interaction
among users as a noncooperative game. We show that there exists
an unique equilibrium for this game and that in equilibrium the
bandwidth allocation is weighted max-min fair.

Index Terms—Game theory, max-min fairness, pricing, priority
service, quality of service, rate control.

I. INTRODUCTION

PRIORITY services can be used to provide differentiated
quality of service (QoS) in packet-based networks (see, for

example, Diffserv proposal from the IETF [1]). Clearly, net-
works offering this service model will charge users based on
the priority of their traffic; otherwise, all users would declare
their traffic as high priority and the above priority model would
degenerate to a best-effort service. In this paper, we consider
a model where the prices associated with the different priority
classes are static. Users can freely choose the priority of their
traffic, but are charged accordingly by the network. The aim of
this paper is to study the bandwidth-sharing properties of this
pricing scheme.

Users accessing a network might run different applications
and, therefore, have different service requirements regarding
throughput, packet loss, and delay. For our analysis, we char-
acterize users’ service requirements through utility functions.
Roughly, submitting more high-priority traffic will increase the
utility of an individual user. However, doing so will also increase
the cost that the user has to pay to the network. We model this
tradeoff by an optimization problem and consider the noncoop-
erative game where users choose a priority allocation to maxi-
mize their own net benefit (for an introduction to the basic con-
cepts of game theory, refer to [2]). To formulate an equilibrium
for the resulting game, we assume that a change in the traffic al-
location of a single user has a negligible effect on the overall
performance of the network. This assumption has commonly
been adopted for the analysis of priced-based resource alloca-
tion schemes when many “small” users share the network (see,
for example, [3] and [4]). We would like to point out that a sim-
ilar assumption is used in economic theory (where it is referred
to as the “competitive price-taking assumption”) to define the
Walras equilibrium for large economies [5] and in transporta-
tion networks to define the Wardrop equilibrium ([6], [7]).
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Using the above framework, we analyzed in [8] the situation
where users access a single link which supports a finite number
of priorities. For this case, we showed that that there always
exists an equilibrium allocation. Furthermore, we showed that
when all users have the same utility function, the bandwidth
allocation in equilibrium is max-min fair. (We will provide a
definition of max-min fairness in Section III.) In this paper, we
extend the results of [8] to the network case. As one would ex-
pect, the analysis of the network case is more involved than the
single-link case and we employ a simpler service model. In par-
ticular, we assume an idealized priority service where the net-
work supports a continuum of priorities . In
our main result, we show that for a homogeneous user popula-
tion (all users have the same utility function), this idealized pri-
ority service leads to a max-min fair allocation of the network
resources. For the general case of a heterogeneous user popula-
tion, we show that the resulting allocation is weighted max-min
fair, where the weights are derived from the users’ utility func-
tions.

Bandwidth-sharing properties of price-based resource alloca-
tion schemes have received much attention in recent years ([4],
[9]–[11]). Kelly et al.propose in [4] a rate-based pricing scheme
where prices are set as a function of the traffic load on indi-
vidual links in the network. Kellyet al. show that this pricing
scheme achieves (in equilibrium) a socially optimal rate allo-
cation. La and Anatharam extend in [9] the work of Mo and
Walrand [11], and propose a family of window-based pricing
schemes which can be used to achieve a weighted proportional
fair allocation, or approximate arbitrarily close a max-min fair
allocation. Based on the dual of [4], Low and Lapsley propose
in [10] a rate-based scheme and show that it can achieve var-
ious bandwidth sharing goals such as proportional fairness and
max-min fairness. Yaicheet al. [12] use the concept of a Nash
Bargaining Solution to derive a price-based resource allocation
scheme that can be applied to the available bit rate (ABR) ser-
vice in ATM networks. As a special case, this approach can be
used to derive the pricing mechanism in [4]. A max-min fair
bandwidth allocation can also be obtained by means of packet
scheduling [13]–[15] and (explicit) rate allocation [16].

Price-based mechanisms for providing differentiated QoS
have been studied in [17]–[21]. Odlyzko proposes Paris Metro
Pricing (PMP) as a means for providing differentiated QoS
[19], [20]. PMP partitions the network into several logically
separated channels where channels differ in the prices paid
for using them. This scheme can be implemented using the
above price-based priority service. Cocchiet al.provide in [18]
an experimental study which demonstrates that price-based
priority services achieve a higher social welfare than best-ef-
fort/flat-rate schemes. Parket al. consider in [17] and [21] a
class-based service model where traffic is served according to

1063-6692/03$17.00 © 2003 IEEE



734 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 5, OCTOBER 2003

users’ QoS requirements. However, there is no price associated
with the different traffic classes, i.e., the costs incurred to
users are purely performance related. Within this framework,
Parket al. study the situation where users are free to choose
their traffic class [21], as well as where users indicate their
QoS requirements and a network controller assigns network
resources [17].

For the single-link case, the idealized priority service that
we consider here is similar to the smart market proposal by
MacKie-Mason and Varian [22]. However, in our framework
we assume that users are charged for submitted traffic, where
in [22] users are charged only for traffic that is actually deliv-
ered. In addition, the price users pay is equal to the priority of
the traffic in our idealized pricing service, while in the smart
market the price is equal to the priority of the first packet that
gets dropped. Despite these differences, we show in Section IV
that these two schemes lead to the same bandwidth allocation in
the single-link case. To our knowledge, there does not exist an
extension of the smart market to the network case.

The rest of this paper is organized as follows. In Section II, we
define the problem that we consider. In Section III, we provide
the definition of a max-min fair rate allocation and introduce a
fairness criteria for a price-based bandwidth allocation schemes.
In Section IV, we analyze the idealized priority service for the
single-link case, and in Section V, we extend the analysis to the
network case.

II. PROBLEM FORMULATION

Consider a network consisting of a set of
links, and let be the capacity of link . Let be
the set of users accessing the network. We associate with each
user a route , where is the length of the
route and is the th link traversed by user. We define

as the set of users which pass through link
, user belongs to the set when the link belongs to

the route of user .
Suppose that the network uses a priority service to provide

differentiated QoS. In particular, we assume that the network
supports a continuum of priorities given by the set .
At each node in the network, traffic is served according to a strict
priority rule in time (service discipline) and space (buffer man-
agement): priority traffic is transmitted only if all traffic with
priority has been served (priority in time), and priority
traffic is dropped from the buffer only if there is no traffic with
priority left in the buffer (priority in space). Each user
can then decide on:

1) its transmission rate, i.e., the amount of traffic sub-
mitted per unit time;

2) its traffic allocation, i.e., the priority of the submitted
traffic.

We represent the allocation of userby a function
, where the value of the function at represents the total

amount of traffic that user submits with priority or higher.
Note that the allocation function is nonincreasing and we
define by

Fig. 1. Allocation functionF (u) of user r.

Given two priorities and such that , the
amount of traffic that user submits in the priority range
is then given by . When ,
we can interpret the quantity as the amount
of traffic that user submits in priority (see Fig. 1). As the
function is nonincreasing, we have that

and is continuous from the left [23].
Let be the vector defining the allocation of

the individual users , and suppose that
is the probability that priority traffic of user is delivered
to the destination node (and not dropped) under the allocation

. We will provide a mathematical model for determining the
transmission probabilities in Section IV; for now, it suf-
fices to note that the above service model implies that high pri-
ority traffic is less likely to be dropped at a node, and we have
that

for

We assume that there exists a feedback mechanism which allows
users to determine the transmission probabilities
under the current allocation.

Throughout this paper, we assume that all users perceive the
QoS provided by the network solely as a function of their av-
erage throughput, i.e., users are insensitive to other QoS param-
eters such as packet loss and delay. Examples of applications
that fall within this framework are email, file transfer, and web
browsing. Similar to [8], the analysis presented here can be ex-
tended to users which measure QoS as a function of both the
average throughput and packet loss. For the idealized priority
service that we consider here, it can be shown that both models
lead to the same (equilibrium) traffic allocation; we omit a de-
tailed derivation.

For our analysis, we model the service requirements
of user by a utility function which depends on the
average throughput of user , which is given by the Rie-
mann–Stieltjes integral [23]

Assumption I: For every user , the utility
function is increasing, bounded, strictly
concave, and continuously differentiable. Furthermore, we
have that .
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We note that utility functions with these characteristics are
commonly used in the pricing literature (see, for example, [4]).
Assumption 1 does not require that all users have the same utility
function. Throughout this paper, we assume that the utility func-
tion is only known to user and unknown to all other users
and the network.

We assume that users are free to choose the priority for their
traffic, but are charged accordingly by the network. In particular,
we assume that the network charges a priceper unit traffic
submitted to the network in priority; i.e., the priority rep-
resents the price the network charges per unit traffic. Note that
this implies that high-priority traffic is more expensive. Given
an allocation , the total cost that userpays the network is
then given by

Assumption 1 implies that a user can increase its utility by
submitting more high-priority traffic. However, doing so will
also increase the cost that the users has to pay the network. We
model this tradeoff by a maximization problem where each user
chooses an allocation to optimize its own net benefit, given by
utility minus cost. More precisely, given an allocation vector,
we assume that each user chooses an allocation which solves the
following maximization problem:

(1)

Note that the above optimization problem assumes that users
do not anticipate how their changes will affect the transmission
probabilities when they optimize their net benefit. This captures
the situation when many “small” users access the network and a
change in the traffic allocation of a single user has a negligible
effect on the transmission probabilities.

We then consider the situation where all users simultaneously
optimize their net benefit. We model this situation as a non-
cooperative game, and call an allocation vector
an equilibrium allocation if for every userthe allocation
solves the maximization problem given by (1). Under the allo-
cation , no user has then an incentive to change its
allocation as this would decrease the net benefit; hence, an
equilibrium is reached. We are interested in the following ques-
tions:

1) Does an equilibrium allocation exist?
2) How is the network bandwidth shared among users

under an equilibrium allocation ?
To characterize the bandwidth-sharing properties of an equi-

librium allocation, we use the following notation. For every user
, let the function be such that

(2)

Under Assumption 1, the maximization problem given by (2)
has a unique solution and is given as follows:

where and is the in-
verse function of . Note that Assumption 1 implies that the
function is continuous. We refer to as the demand func-
tion of user : The value is the potential demand of user
associated with priority , i.e., is the amount of traffic
users would submit when the network charges a priceper
unit traffic and all traffic is transmitted with probability 1. We
define the inverse demand function of user by

In the rest of this paper, we will extensively refer to the demand
function and the inverse demand function .

By Assumption 1, we have that

This models that assumption that the unregulated traffic will
lead to network congestion, as for every link we have

. Furthermore, by Assump-
tion 1 we have that

Using this equation, it can be shown that without any loss of
generality it suffices to consider allocation functions such
that

Let be the set of possible allocation functions, i.e.,is the
set of all nonincreasing functions that are contin-
uous from the left and for which we have that .

Before we analyze the idealized priority service in Section IV,
we briefly review max-min fairness.

III. B ANDWIDTH-SHARING OBJECTIVES

An important problem in computer networks is rate allo-
cation, i.e., ensuring that the available network bandwidth
is shared among users in a fair manner. A well-established
bandwidth-sharing criterion is the max-min fairness criterion as
discussed, for instance, by Bertsekas and Gallager [24]. Among
others, max-min fairness has been applied to window-based
flow control [14], ABR service in ATM networks [16], [25],
wireless networks [26], [27], and multicast protocols [28].

A. Max-Min Fairness

One possible way to define fairness for a rate allocation
scheme is to require that each user obtains the same trans-
mission rate. For example, when users access a single
link with capacity , a fair allocation would give each user
a transmission rate equal to . Applying this notion to a
network consisting of several links could lead to an inefficient
use of link resources (see [24]). Instead, one could first allocate
the same transmission rate to all users, and then share the
remaining network bandwidth to fully utilize the network.
More formally, a max-min fair allocation is defined as follows.

Definition I: Let be the set of users accessing the
network, let be the set of all links in a network, and let be
the capacity of link . Let be the set of all users who pass
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through link . We call a rate allocation feasible,
when for every link we have that

We call a feasible allocation max-min fair, when
it is impossible to increase the rate of a userwithout losing
feasibility or reducing the rate of another userwith a rate

.
Roughly, this definition states that a max-min fair allocation

gives the most poorly treated user (i.e., the user who receives
the lowest rate) the largest possible share, while not wasting any
network resources.

B. Weighted Max-Min Fairness

When users (applications) have different service require-
ments, then the network may not want to share bandwidth
equally among users. Instead, the network could assign weights
(priorities) to users and allocate bandwidth accordingly [24].
Let , , be an increasing function representing the
weight assigned to userat rate . An allocation
is then weighted max-min fair when for each user, any
increase in would cause a decrease in the transmission rate

for some user , satisfying . Definition 1
of a max-min fair allocation is recovered with

C. Max-Min Fairness and Pricing

In [8], we analyzed the above pricing scheme for the situation
where users access a single link which supports a finite number
of priorities. We showed that this scheme leads to a weighted
max-min fair bandwidth allocation with weights

where is the inverse demand function of user. This re-
sult suggests that there exists a close relationship between a
price-based priority services and max-min fairness. To reinforce
this relation, we propose in this section a fairness criterion for
general pricing schemes which leads to a weighted max-min fair
bandwidth allocation, and show in Section IV and V that the ide-
alized price-based priority service considered here satisfies this
fairness criterion.

One possible way to define fairness for a pricing scheme is
to require that each user is charged the same priceper unit
transmission rate. For example, whenusers access a single
link with capacity , a fair pricing scheme would charge each
user the same price , where is such

For the network case, insisting that each user pays the same price
per unit transmission rate could result in the situation that the
network capacity is wasted (see the example given in Fig. 2,
which is based on the example in [24, p. 525]).

To avoid this, we could allow that the network charges users
different prices as long as the poorest treated users (i.e., the users

Fig. 2. The above network consists of two links each with a capacity equal to 1.
Assume that all users (sessions) have the same utility function and, therefore, the
same demand function, which we denote byD (u), u � 0. Requiring that all
users pay the same priceu would lead to an allocation where the transmissions
rates are given byx = x = x = x = D (u ) = 1=3. However, under
this allocation onlyx = x = 2=3 units bandwidth are used on the second
link, and this allocation wastes network capacity.

who are charged that highest price per unit transmission rate) are
charged as low a price as possible. More formally, we define a
fair pricing scheme as follows.

Definition 2: Let be the set of users accessing the
network, let be the set of all links in a network, and let be
the capacity of link . Let , be the set of all users
who pass through link. Furthermore, let be the demand
function associated with user. We identify a pricing scheme
by the vector , where is the price that user is
charged per submitted packet. We say that an allocation under
the price vector is feasible, when for every link

, we have that

We call a price vectorfair when the corresponding allocation is
feasible, and when it is not possible to reduce the price of a user

without losing feasibility or increasing the price of another
user with a price .

Definition 2 implies that when a price vector is
fair, then we have

We then define as the set of all price vectors that satisfy the
above constraint, i.e., we have

In the next proposition, we show that pricing scheme is fair as
defined above if and only if the resulting allocation is weighted
max-min fair with weighting functions .

Lemma 1: Let Assumption 1 hold. Consider a price vector
and let be the corresponding

rate vector, i.e., for , we have that
and . Then the price vector is fair
if and only if the rate vector is weighted max-min
fair for the weight functions , .
The above proposition implies that when all users have the same
utility function, then a fair pricing scheme results in a max-min
fair allocation. Below, we provide a proof for Lemma l.

In the following, we show that the idealized priority service
that we introduced in Section II is fair according to Definition 2
and, therefore, leads to a weighted max-min fair rate allocation
with weights .

Proof: We now prove Lemma l. Let the vectors
and be as in Lemma 1, and con-
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sider a new price vector and rate vector
such that for , we have

and . Assumption 1 implies that the inverse de-
mand function is strictly decreasing and it follows that

if and only if

Using this observation, we prove that the price vector
is fair if and only if the rate vector

is weighted max-min fair.
First, we show that when the vector is not fair,

then the vector is not weighted max-min fair with
weight functions .

Assume that the price vector is not fair. Then
there exists a user and a feasible price vector
such that , and

for all users such that

Let the rate vector be such that for ,
we have and . As the price vector

is feasible, the rate vector is feasible.
Furthermore, using the above observation, it follows that

and for all users such that

This implies that the rate vector is not weighted
max-min fair with weight functions .

Next, we show that when the vector is not
weighted max-min, then the vector is not fair.

Assume that the price vector is not weighted
max-min fair. Then there exists a userand a feasible rate vector

such that and for all users
such that

Let the rate vector be such that for ,
we have and . As the vector

is feasible, the vector is feasible.
Furthermore, using the above observation, it follows that

, and

for all users such that

This implies that the vector price vector is not
fair.

IV. SINGLE-LINK CASE

In this section, we analyze the idealized priority service for
the single-link case.

A. Link Model

For our analysis, we use a discrete-time model where time is
divided into slots of equal length. Let be a given constant,
and consider a single link with a capacity ofunits of traffic
per time slot. There is no buffering and traffic which does not

get transmitted in a given time slot is dropped. Consider a given
time-slot, and let

be the aggregate amount of traffic submitted during this
time-slot in priority or higher. The link then serves traffic
as follows. All traffic with priority such that is
transmitted. For priority with

only units of traffic—chosen at random—are trans-
mitted. Traffic with priority such that is dropped.
The transmission probability for traffic in priority
is then given by

if

if
otherwise

(3)

B. Equilibrium Allocation

For the single-link case, we define an equilibrium allocation
as follows.

Definition 3: We call an allocation an
equilibrium allocation when for every user , we
have that

where and . We
have the following result.

Proposition 1: Under Assumption 1, there exists an unique
equilibrium allocation which is given as follows.
For , we have

otherwise

where is the unique price such that .
We provide a proof in Appendix A. Proposition 1 states that

there exists a unique equilibrium allocation and all users choose
the same priority in equilibrium. Furthermore, the aggregated
amount of traffic submitted in priority is equal to the link
capacity , and we have

We have the following corollary.
Corollary 1: Under Assumption 1, the bandwidth allocation

in equilibrium is weighted max-min fair with weights

Proof: Proposition 1 states that in equilibrium only pri-
ority is used and the throughput of useris given by
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Consider the price vector where

Note that

and by Proposition 1, we have that

Using Definition 2 and Lemma 1, this implies that the price
vector is fair (Definition 2), and the rate allocation

is weighted max-min fair with weights
(Lemma 1).

V. NETWORK CASE

In this section, we extend the above analysis to the network
case. This case is more involved, as traffic of usermay get
dropped by a congested link along its route. As a result, we are
cannot explicitly express the link transmission probabilities by
an equation similar to (3); instead we have to use a fixed-point
equation to determine the link transmission probabilities.

A. Transmission Probabilities

Consider the network model described in Section II, and let
be the allocation of userat the th link along its route

under the allocation vector; i.e., is the amount of
traffic that user submits at link with priority equal or higher
to . As traffic of user may get dropped by a congested link
along its route, we have that

Consider a link and let be the sets of users passing
through link . The total amount of traffic submitted on linkin
priority or higher under the allocation is then given by

We assume that each link serves traffic according to
the link model of Section II. The transmission probabilities of
priority traffic at link is then given by

where the function is defined by (3).
Note that there is a coupling between the link transmission

probabilities and the allocation of user on link .
The link transmission probabilities determine whether traffic of
user gets dropped on the links along the route and, therefore,
determine the allocation . However, the link transmission
probabilities depend themselves on the allocation of the users
who pass through link. We model this coupling in the next
subsection through a fixed-point equation.

We assume that traffic is dropped independently at each link,
and the transmission probabilities , , for the
traffic of user is given by

(4)

B. Fixed-Point Equation

Consider a given user with route and let
be the amount of traffic that usersubmits to link ,

. For link , the allocation function
is given by

Let be the transmission probability function for the
first link on the route of user. The (average) amount of
traffic that user submits to link is then given by

More generally, when is the amount of traffic that
user submits on link and is the transmission
probability function of link , then the amount of traffic that
user submits to the next link along its route is given by

Combining the above results, we obtain the following system of
equations between the link transmission probabilities
and the link allocations . For each user
we have that

(5)

(6)

and for each link we have that

(7)

The above system of equations is consistent when there exists
a set of link transmission probabilities which satisfies
(5)–(7). The following result establishes that there exists such a
set of link transmission probabilities.

Proposition 2: Under Assumption 1, for every allocation
, there exists a set of transmission
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probability functions , which satisfies the
system of equations given by (5)–(7).

We provide a proof in Appendix B.

C. Equilibrium Allocation

For the network case, we define an equilibrium allocation as
follows.

Definition 4: We call an allocation
an equilibrium allocation when for every user ,

we have that

where

and the functions , , satisfy the system of equa-
tions given by (5)–(7).

We have the following result.
Proposition 3: Under Assumption 1, an allocation

is an equilibrium allocation if and only
if there exist transmission probabilities such that the
following properties hold.

1) The transmission probabilities satisfy the
system of equations given by (5)–(7).

2) For every user , there exists a price
such that

otherwise

where is given by (4).
3) Setting , we have for every user

that

otherwise.

This proposition can be proved by the same argument as the one
given for Proposition 1, and we omit a detailed proof.

Proposition 3 states that each usersubmits traffic exclu-
sively in priority and the average throughput of user
is given by . In addition, the transmission
probabilities , for traffic by user have the
following properties. All traffic with priority lower than is
dropped, i.e., we have

for

Furthermore, when is positive then all traffic with pri-
ority is transmitted, i.e.,

Intuitively, this means that every user passes through a bottle-
neck link which drops all traffic with priority less than , i.e.,
at the bottleneck link we have

where the above equation holds with equality when is
positive.

By Proposition 3, we have that

and we can uniquely identify an equilibrium allocation
by the price vector . In the

following, we show that there exists a unique equilibrium
allocation and, moreover, the price vector
associated with this equilibrium allocation is fair (as given by
Definition 2).

Let be the set of all price vectors which
lead to a feasible allocation, i.e., is the set of all price
vectors such that

for all

Given a vector , we say that link is a bottle-
neck with respect to for a user , if

and , for all users .
Furthermore, we associate with a price the

allocation given by

otherwise.

We have the following results.
Proposition 4: Under Assumption 1, the allocation asso-

ciated with a given price vector is an equilib-
rium allocation if and only if every userhas a bottleneck link
with respect to .

Proof: To prove Proposition 4, we adapt the argument
used in [24] to prove the equivalent result for a max-min
fairness bandwidth allocation.

Assume that for a given price vector ,
there exists a user who does not have a bottleneck link with
respect to . This means that for every link

along the route of userwe have

Proposition 3 then implies that does not corre-
spond to an equilibrium allocation as
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Moreover, when every userhas a bottleneck link with re-
spect to , then leads to an equilibrium
allocation. Indeed, in this case, one can show that there exists for
every link a price such that

otherwise.

Setting

it then follows that for every user we have

otherwise.

Furthermore, when is positive, then one can show that
is equal to . When is equal to 0, then one can show

that is equal to , as well as less than or equal to.
Proposition 3 then implies that corresponds to an
equilibrium allocation.

Proposition 5: Under Assumption 1, there exists a unique
price vector such that the corresponding al-
location is an equilibrium allocation. Furthermore, when the
price vector leads to an equilibrium alloca-
tion, then it is fair, i.e., it is not possible to reduce the price
of a user without losing feasibility or increasing the price of
another user with a price .

We provide a proof for Proposition 5 in Appendix C. Proposi-
tion 5 states that the price-based priority service is fair as given
by Definition 2. Using Lemma 1, this implies that the equilib-
rium allocation is weighted max-min fair with weights

This establishes our main result. The following corollary fol-
lows immediately from Proposition 3 and 5.

Corollary 2: Under Assumption 1, there exists an unique
equilibrium allocation.

VI. CONCLUSION

We have analyzed a price-based priority service for which
users are charged according to the priority of their traffic. For
the case where the network supports a continuum of priorities,
we showed that this scheme leads to a weighted max-min fair
allocation. Regarding future work, it would be interesting to an-
alyze the situation where the network supports a finite number,
rather than a continuum. This case seems to be more involved
than the idealized priority service that we consider in this paper;
we are currently exploring this extension. Furthermore, we use a
simplistic link model for our analysis; it would be interesting ex-
tend our analysis which uses discrete-time link model (based on
time slots) without buffering, to a continuous-time model with
traffic queueing. In addition, it would be interesting to explore
whether our assumption that traffic is dropped independently
is (asymptotically) true for continuous-time link models with
buffering.

Fig. 3. Step functionF is an element inS.

APPENDIX A
PROOF OFPROPOSITION1

We use the following notation. Let be the set of all step
functions (see Fig. 3), i.e., is the set of all functions

which have the property that there exist scalars
and such that

otherwise.

For every user let be the set of all functions
which have the property that there exists a price

such that

otherwise.

To prove Proposition 1, we first derive a few preliminary
lemmas.

Fix a user and consider a given aggregate allocation .
We then have the following results.

Lemma 2: For every function there exists a function
such that

where

and

The inequality is strict when .
Proof: Let the price be given by

and consider the following two cases.
First, assume that and consider the allocation

given by

otherwise.
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Then we have

where the last inequality is strict when .
Next, suppose that . By definition, we have

that and we can choose a price such that

Using , we consider the allocation given by

otherwise.

In this case, we have

Lemma 3: For every function there exists a function
such that

where

and

The inequality is strict if .

Proof: Let be such that

otherwise.

First, we assume that and let be such that
. Using , we consider the allocation

otherwise

and let . Note that is the optimal solution to the
maximization problem

and we have that

and

If , then we have that

and the inequality is strict. When , then we have that

and the inequality is strict. Finally, when
, then we have that .
Next, we assume that and let be given by

Consider the allocation

otherwise.

Then we have

where the last inequality is strict when .
Finally, when we have that , then we can

choose a price such that
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where

In this case, consider the following allocation:

otherwise.

Then we have

Lemma 4: Let . Then
there exists optimal allocation for the maximization
problem

where

if and only if . In this case, the unique optimal
allocation is given as

otherwise.

Proof: By Lemma 2 and 3, it suffices to consider alloca-
tions , such that

otherwise.

for some . We can then identify an allocation
with the threshold price .

When , then we have

For every such that , we have for the allocation

otherwise,

that

Therefore, without loss of generality, it suffices to consider
functions such that .

First, suppose that . Let be such
that and let be as given in the statement of the
lemma. Then, we have that

This implies that when , then is the unique
optimal allocation.

Next, suppose that . Let be as given
in the statement of the lemma, and let be such that

. In particular, choose such that

where

This implies that

Furthermore, note that for every such that , we
have that

where

otherwise.

Combining these results, it follows that the maximization
problem in the statement of the lemma does not have a solution
when .
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We are now ready to prove Proposition 1.
Proof: By Lemma 4, there exists an equilibrium allocation

if and only if there exists a price such that

and for every user , we have

otherwise.

As by Assumption 1, we have that

and it follows that there exists a price such that
Furthermore, by Assumption 1 the

function is strictly decreasing, and it follows that there
exists a unique price such that .

Combining these results, we obtain that there exists a unique
equilibrium allocation.

APPENDIX B
PROOF OFPROPOSITION2

We first derive a preliminary lemma where we show that
Proposition 2 holds for the case where the network offers a
single priority class.

Assume that the network supports only a single priority class.
Let be the link capacities. Furthermore, letbe the amount
of traffic submitted by user in this priority class and let be
the transmission probability associated with the link , i.e.,
let the transmission probabilities, , be such that

(8)

(9)

if

otherwise. (10)

We have the following lemma.
Lemma 5: There exists a solution to the system

of equations given by (8)–(10).
Proof: We define the mapping as

follows:
if

otherwise.

where

Note that the mapping is continuous,
and the set is convex and compact. By Brouwer’s fixed-
point theorem [29], it follows that there exists a vector

such that

This implies that there exists a solution to the
system of equations given by (8)–(10).

We can use Lemma 5 to iteratively construct a set of trans-
mission probabilities that solve the system of equations given by
(5)–(7). Intuitively, the procedure can be interpreted as “water
filling.” We start with a high price for accessing the network
such that the total demand is small and no link is saturated. We
then lower the price (increase the demand) until the first link
is saturated. Assume that is the price that saturates the first
link. We then use Lemma 5 to compute the transmission prob-
abilities , , which satisfy (5)–(7) for . We
then proceed to lower the price until we saturate the next link
at the price and use Lemma 5 to compute the transmission
probabilities for such that , and so on.

Note that the transmission probability of priority traffic de-
pends only on the traffic that users submit in priorities ,
and not on the traffic in priorities lower than. Similarly, the
demand of user on link depends only
on the transmission probabilities for priorities (on pre-
vious links along the route of user), but not on the transmission
probabilities for priorities . We use this property in the
following proof for Proposition 2.

Proof: Let be the set of links not saturated at the be-
ginning of iteration , let be the set of links that get saturated
for the first time at iteration , and let be the (highest) price
at which these links get saturated. We then iteratively construct
transmission probabilities , , that satisfy (5)–(7)
as follows.

Initial conditions: ; ; ; for
; and for and .

Then do the following steps.

1) For , let the function be
given by

2) Set , where

3) Set

if

otherwise

and choose transmission probabilities, , which
solve

if

otherwise.

4) Set where
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5) When , then set

otherwise set .
6) Set .
7) If is empty, or , then stop; otherwise set

and go to 1.
To prove that this procedure indeed provides a solution for the
system of equations given by (5)–(7), we proceed in two steps
as follows.

a) Let be the price that we pick at Step 2. We show that
.

b) Using this result, we then show that the transmission prob-
abilities that we obtain when the procedure terminates is
indeed a solution for the systems of equation given by
(5)–(7).

Note that by Lemma 5 we can always carry out Step 3.
We use the following notation. Let , , be the

transmission probabilities on linkthat we obtain when the pro-
cedure terminates. Furthermore, let be the cumulative
demand of user on link on the th link along its route at it-
eration , i.e., we have (see Step 1)

and let

be this demand under the transmission probabilities ,
, when the procedure terminates. We make the fol-

lowing observations. By the definition, we have for all users
that

This implies that the set

is not empty for all links , and we can choose a price
at Step 2 at every iteration . By construction, we
have that

for all users and for all links . This implies that for all links
we have

As (otherwise, the procedure would have already
terminated) and is continuous for the left, it follows that

. This implies that the procedure will terminate in a
finite number of steps (bounded by) as at each iteration we
saturate at least one new link.

To show the transmission probabilities , , that
provide a solution to the system of equations given by (5)–(7),
we use an induction argument.

By Lemma 5, the transmission probabilities , ,
solve the system of equations given by (5)–(7) for . Now
suppose that the transmission probabilities , ,
obtained by the above construction provide a solution for

, where is the price picked in Step 2 at iteration .
We wish to show that these probabilities then also provide a
solution for . By construction, the following properties
hold. For all links , we have that

and for all links we have

Furthermore, for all links we have

and for all links we have

Combining these results, we obtain that the transmission prob-
abilities , , provide a solution for . By the
procedures given in Step 3–5, we have

and it follows that the transmission probabilities ,
, solve the system of equations given by (5)–(7) for .

Let be total number of iterations needed in the above proce-
dure. Then the above induction argument implies that ,

, provide a solution to the system of equations given by
(5)–(7) for . When , then we are done. When

, then all links are saturated under the price. Fur-
thermore, in this case we have by construction that the link trans-
mission probabilities for are given by

This implies that transmission probabilities , ,
solve the systems of equations given by (5)–(7) for ,
which completes the proof.

APPENDIX C
PROOF OFPROPOSITION5

To prove Proposition 5, we again adapt an argument used in
[24] to prove the equivalent result for max-min fairness.

Let be the set of links not saturated at the beginning of
iteration , let be the set of links that get saturated for the
first time at iteration , and let be the price for which the
links in get saturated. Furthermore, let denote the set of
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users not passing through any saturated link at the beginning of
iteration .

Initial conditions: ; ; ;
; and .

1) Set , where

2) Set

3) When is empty, then set ; otherwise, set

4) Set
otherwise.

5) Set .
6) Set .
7) Set .
8) If is empty, then stop; otherwise, go to 1.

Let be the iteration when the procedure terminates and let
. Note that at each iteration, we decrease the price (and

increase the demand) until a new link gets saturated (at price
). When the procedure terminates, each usereither passes

through a bottleneck link or we have , and Proposition
3 implies that corresponds to an equilibrium al-
location.

In fact, unique price vector in such that
every user has a bottleneck link. This can be seen as follows.
Assume that is an allocation such that each
user has a bottleneck link with respect to . Then for
every user , we have that

Indeed, if this is not the case, then there exist users,
, such that and ; otherwise, the vector

would not be a feasible price vector. As for every
link we have that

for

it follows that user does not have a bottleneck link with re-
spect to . Let be such that for all

, we have that

for all

It then follows that for all , we have that

Indeed, if this is not the case, by the same argument given above,
there exists a user , which does not have a bottle-
neck link with respect to . Therefore, by induction,
we have that . This implies that

there exists a unique price vector such that each
user has a bottleneck link with respect to .

Next, we show that a price vector has the
property that each usereither has a bottleneck link with respect
to or , if and only if is fair (as
given by Definition 2).

Suppose that is fair and, to arrive at a
contradiction, assume that there exists a userwith that
does not have a bottleneck link. Then, for each linkcrossed by
user with , there must exist a user such
that . This implies for each link on the route of user
, the quantity

if
if

is positive. Therefore, there exist scalars, , such that
we can decrease the price of userby setting
and increase the prices by all userswith by setting

, without losing feasibility. This contradicts the
fairness property of .

Conversely, assume that each usereither has a bottleneck
link with respect to a price vector . Then, to
decrease the price of a user, we must increase the price of
some user crossing the bottleneck link of userin order to
maintain feasibility. Since for all users crossing
the bottleneck link of user. This implies that the price vector

is fair.
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